metal-organic compounds
tert-Butyl isocyanide-1κC-di-μ-carbonyl-2:3κ4C-nonacarbonyl-1κ3C,2κ3C,3κ3C-triangulo-diironosmium
aWest CHEM, Department of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: cevans@chem.gla.ac.uk
The preparation of the mixed-metal cluster, [Fe2Os(C5H9N)(CO)11], and its at 100 K are reported. This complex, along with the cluster reported in the following paper, are the first structurally characterized substitution derivatives of Fe2Os(CO)12. The isonitrile ligand adopts an axial position on the osmium centre and the cluster is isostructural with the Fe2Ru analogue.
Comment
The structures of the mixed metal clusters Fe2M(CO)12 (M = Ru and Os) have been examined in detail (Churchill & Fettinger, 1990; Braga et al., 1995, 1996; Farrugia et al., 1996), with particular focus on dynamic disorder within the metal triangle. In addition, various phosphine-, phosphite- (Venalainen & Pakkanen, 1984) and isonitrile-substituted (Farrugia & Mertes, 2002) derivatives of Fe2Ru(CO)12 have been structurally characterized. Phosphine and phosphite derivatives of Fe2Os(CO)12 have been reported (Shojaie & Atwood, 1988) though, to date, no derivatives have been structurally characterized. We report here (and in Evans et al., 2006) the synthesis and structures of Fe2Os(CO)12−n(CNBut)n (n = 1 and 2).
Fe2Os(CO)11(CNBut), (I), was prepared by carbonyl substitution of the parent Fe2Os(CO)12 cluster using standard methods (Farrugia & Mertes, 2002). The complex was characterized spectroscopically, by FAB and by single-crystal X-ray The structure was determined at room temperature and 100 K with no discernible metal atom disorder at either temperature. As the structures at different temperatures are essentially identical, only the more precise low-temperature structure will be discussed here.
The structure of (I) is shown in Fig. 1. The isonitrile ligand adopts an axial position on the Os atom, equivalent to the orientation observed for Fe2Ru(CO)11(CNBut) (Farrugia & Mertes, 2002) and isomer B of Fe3(CO)11PPh3 (Dahm & Jacobson, 1968) but contrasting with the equatorial positions adopted by the phosphine and phosphite ligands in Fe2Ru(CO)11(PR3) (R = Ph and OMe; Venalainen & Pakkanen, 1984). The average Os—Fe distance [2.7495 (8) Å] is marginally longer than that observed (Farrugia & Mertes, 2002) for Ru—Fe in the ruthenium analogue [2.7441 (7) Å], while the Fe—Fe distance [2.5675 (8) Å] is slightly shorter [2.5724 (6) Å]. The C—Os distance [2.042 (4) Å] and N—C—Os angle [177.9 (4)°] are comparable to those reported for the ruthenium analogue [2.045 (3) Å and 177.9 (2)°] and Os3(CO)11(CNMe) [2.074 (23) Å and 173.6 (17)°; Dawson et al., 1982]. Two carbonyl ligands symmetrically bridge the Fe—Fe bond [δ(M—C) = 0.018 and 0.023 Å for C14 and C24, respectively].
The crystal of (I) is affected by in a manner similar to that reported for the ruthenium analogue (Farrugia & Mertes, 2002). The twin axis is [101] and the non-merohedral results in a significant number of seriously overlapped reflections, which were removed from the data file used for At 100 K, the proportion of the second component refines to 0.207 (1) compared with 0.172 (2) at room temperature.
Experimental
Complex (I) was prepared in the same manner as reported for the ruthenium analogue (Farrugia & Mertes, 2002), by reaction of the parent carbonyl with a 1:1 molar ratio of isonitrile. The product was purified by on Florisil using hexane/CH2Cl2 mixtures as eluant. Crystals were obtained from a concentrated hexane solution at 253 K. Analysis calculated for C16H9Fe2NO11Os: C 27.73, H 1.31, N 2.02%; found: C 27.72, H 1.30, N 1.97%. IR [ν(CN), cm−1] 2200 (vw); IR [ν(CO), cm−1] 2042 (vs), 2033 (vs), 2019 (m), 1994 (w), 1984 (w), 1895 (vw), 1856 (vw), 1813 (w). 1H NMR: δ 1.54 (s, CH3). m/z = 695.1 [M+], 667.2 [M+ − CO], 639.2 [M+ − 2CO], 611.1 [M+ − 3CO], 583.1 [M+ − 4CO], 555.1 [M+ − 5 CO], 527.1 [M+ − 6CO], 499.1 [M+ − 7CO], 471.2 [M+ − 8CO], 443.1 [M+ − 9 CO].
Crystal data
|
Refinement
|
All H atoms were placed in calculated positions and refined using a riding model [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)]. The highest features in the difference map are associated with the Os atom.
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536806004235/hg6300sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806004235/hg6300Isup2.hkl
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Fe2Os(C5H9N)(CO)11] | F(000) = 1312 |
Mr = 693.14 | Dx = 2.296 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 8960 reflections |
a = 11.6861 (2) Å | θ = 2.2–35.0° |
b = 11.6142 (2) Å | µ = 7.81 mm−1 |
c = 15.5189 (2) Å | T = 100 K |
β = 107.829 (1)° | Prism, black |
V = 2005.14 (6) Å3 | 0.3 × 0.2 × 0.1 mm |
Z = 4 |
KappaCCD diffractometer | 4158 independent reflections |
Radiation source: Enraf Nonius FR590 | 4019 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
CCD rotation images, thick slices scans | θmax = 27.6°, θmin = 1.9° |
Absorption correction: multi-scan (Blessing, 1995) | h = −15→15 |
Tmin = 0.215, Tmax = 0.452 | k = −15→14 |
40723 measured reflections | l = −20→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0019P)2 + 10.979P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.001 |
4158 reflections | Δρmax = 1.55 e Å−3 |
282 parameters | Δρmin = −1.23 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00067 (8) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.0863 (4) | 0.1792 (4) | 0.1082 (3) | 0.0125 (8) | |
C11 | 0.8759 (4) | 0.5245 (4) | 0.1518 (3) | 0.0140 (8) | |
C12 | 0.9341 (4) | 0.3731 (3) | 0.0368 (3) | 0.0132 (8) | |
C13 | 0.7239 (4) | 0.3506 (4) | 0.0697 (3) | 0.0162 (9) | |
C14 | 1.0483 (4) | 0.3761 (4) | 0.2118 (3) | 0.0145 (8) | |
C21 | 1.0292 (4) | 0.3552 (3) | 0.3803 (3) | 0.0134 (8) | |
C22 | 1.1308 (4) | 0.1910 (4) | 0.3052 (3) | 0.0152 (8) | |
C23 | 0.9238 (4) | 0.1467 (4) | 0.3302 (3) | 0.0166 (9) | |
C24 | 0.8239 (4) | 0.3338 (3) | 0.2418 (3) | 0.0142 (8) | |
C31 | 0.9743 (4) | −0.0146 (4) | 0.1611 (3) | 0.0159 (8) | |
C32 | 0.8590 (4) | 0.1093 (4) | −0.0026 (3) | 0.0143 (8) | |
C33 | 0.7690 (4) | 0.1149 (4) | 0.1436 (3) | 0.0140 (8) | |
C100 | 1.2935 (4) | 0.2314 (4) | 0.0850 (3) | 0.0138 (8) | |
C101 | 1.3028 (4) | 0.3629 (4) | 0.0842 (3) | 0.0199 (9) | |
H10A | 1.3025 | 0.3935 | 0.143 | 0.03* | |
H10B | 1.2342 | 0.3943 | 0.0365 | 0.03* | |
H10C | 1.3777 | 0.3851 | 0.0726 | 0.03* | |
C102 | 1.3899 (4) | 0.1792 (4) | 0.1650 (3) | 0.0205 (9) | |
H10D | 1.3801 | 0.0954 | 0.1644 | 0.031* | |
H10E | 1.382 | 0.2104 | 0.2216 | 0.031* | |
H10F | 1.4695 | 0.1981 | 0.1604 | 0.031* | |
C103 | 1.2950 (4) | 0.1802 (4) | −0.0054 (3) | 0.0189 (9) | |
H10G | 1.2901 | 0.0961 | −0.0028 | 0.028* | |
H10H | 1.3696 | 0.2022 | −0.0173 | 0.028* | |
H10I | 1.2261 | 0.2095 | −0.0539 | 0.028* | |
N1 | 1.1767 (3) | 0.2023 (3) | 0.0969 (2) | 0.0131 (7) | |
O11 | 0.8763 (3) | 0.6214 (3) | 0.1617 (2) | 0.0191 (7) | |
O12 | 0.9639 (3) | 0.3781 (3) | −0.0264 (2) | 0.0198 (7) | |
O13 | 0.6252 (3) | 0.3433 (3) | 0.0286 (2) | 0.0232 (7) | |
O14 | 1.1403 (3) | 0.4232 (3) | 0.2157 (2) | 0.0174 (6) | |
O21 | 1.0583 (3) | 0.4115 (3) | 0.4435 (2) | 0.0205 (7) | |
O22 | 1.2228 (3) | 0.1478 (3) | 0.3243 (2) | 0.0253 (8) | |
O23 | 0.8907 (3) | 0.0728 (3) | 0.3652 (2) | 0.0235 (7) | |
O24 | 0.7414 (3) | 0.3486 (3) | 0.2664 (2) | 0.0184 (6) | |
O31 | 1.0013 (3) | −0.1066 (3) | 0.1831 (3) | 0.0268 (8) | |
O32 | 0.8180 (3) | 0.0910 (3) | −0.0788 (2) | 0.0224 (7) | |
O33 | 0.6785 (3) | 0.0980 (3) | 0.1540 (2) | 0.0185 (6) | |
Fe1 | 0.88075 (5) | 0.37081 (5) | 0.13486 (4) | 0.01044 (12) | |
Fe2 | 0.98706 (5) | 0.26332 (5) | 0.28223 (4) | 0.01091 (12) | |
Os1 | 0.923356 (15) | 0.139606 (12) | 0.123351 (11) | 0.00966 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.014 (2) | 0.0116 (18) | 0.0107 (18) | 0.0013 (15) | 0.0022 (15) | −0.0031 (15) |
C11 | 0.0128 (19) | 0.018 (2) | 0.0123 (19) | 0.0020 (16) | 0.0049 (15) | 0.0012 (15) |
C12 | 0.014 (2) | 0.0104 (18) | 0.014 (2) | −0.0002 (15) | 0.0028 (16) | 0.0004 (15) |
C13 | 0.022 (2) | 0.0119 (19) | 0.016 (2) | 0.0028 (17) | 0.0077 (18) | 0.0004 (16) |
C14 | 0.020 (2) | 0.0130 (19) | 0.0090 (18) | 0.0076 (16) | 0.0017 (16) | −0.0031 (15) |
C21 | 0.015 (2) | 0.0121 (18) | 0.014 (2) | −0.0020 (15) | 0.0045 (16) | 0.0034 (16) |
C22 | 0.023 (2) | 0.0128 (19) | 0.0116 (19) | −0.0019 (17) | 0.0080 (16) | −0.0014 (15) |
C23 | 0.014 (2) | 0.020 (2) | 0.013 (2) | 0.0016 (17) | 0.0002 (16) | −0.0003 (17) |
C24 | 0.019 (2) | 0.0091 (18) | 0.0133 (19) | −0.0011 (16) | 0.0040 (17) | −0.0006 (15) |
C31 | 0.014 (2) | 0.019 (2) | 0.017 (2) | −0.0004 (16) | 0.0077 (16) | −0.0007 (16) |
C32 | 0.0108 (19) | 0.0159 (19) | 0.017 (2) | 0.0010 (15) | 0.0054 (16) | −0.0024 (16) |
C33 | 0.018 (2) | 0.0127 (19) | 0.0110 (18) | 0.0010 (16) | 0.0040 (16) | 0.0002 (16) |
C100 | 0.0106 (19) | 0.0155 (19) | 0.018 (2) | 0.0006 (15) | 0.0081 (16) | −0.0002 (16) |
C101 | 0.020 (2) | 0.016 (2) | 0.027 (2) | −0.0029 (17) | 0.0129 (19) | −0.0004 (18) |
C102 | 0.015 (2) | 0.025 (2) | 0.020 (2) | 0.0023 (18) | 0.0027 (17) | 0.0034 (18) |
C103 | 0.024 (2) | 0.016 (2) | 0.020 (2) | 0.0002 (17) | 0.0131 (19) | −0.0014 (17) |
N1 | 0.0138 (17) | 0.0129 (16) | 0.0122 (16) | 0.0012 (13) | 0.0036 (13) | 0.0001 (13) |
O11 | 0.0234 (17) | 0.0122 (15) | 0.0212 (16) | 0.0019 (12) | 0.0061 (13) | −0.0004 (12) |
O12 | 0.0257 (18) | 0.0196 (16) | 0.0164 (16) | 0.0008 (13) | 0.0101 (13) | 0.0012 (13) |
O13 | 0.0193 (18) | 0.0243 (18) | 0.0216 (17) | −0.0002 (14) | 0.0001 (14) | −0.0041 (14) |
O14 | 0.0154 (15) | 0.0176 (15) | 0.0200 (15) | −0.0027 (12) | 0.0064 (12) | −0.0011 (12) |
O21 | 0.0239 (17) | 0.0217 (16) | 0.0166 (16) | −0.0045 (14) | 0.0072 (13) | −0.0039 (13) |
O22 | 0.0185 (18) | 0.0304 (19) | 0.0271 (18) | 0.0084 (14) | 0.0068 (14) | 0.0025 (15) |
O23 | 0.0237 (18) | 0.0233 (17) | 0.0233 (17) | −0.0058 (14) | 0.0069 (14) | 0.0051 (14) |
O24 | 0.0170 (16) | 0.0226 (16) | 0.0186 (16) | 0.0032 (13) | 0.0100 (13) | 0.0019 (13) |
O31 | 0.0277 (19) | 0.0151 (16) | 0.041 (2) | 0.0052 (14) | 0.0152 (16) | 0.0084 (15) |
O32 | 0.0232 (17) | 0.0274 (18) | 0.0174 (16) | 0.0000 (14) | 0.0072 (13) | −0.0046 (14) |
O33 | 0.0151 (15) | 0.0218 (16) | 0.0202 (16) | −0.0015 (13) | 0.0079 (12) | −0.0010 (13) |
Fe1 | 0.0122 (3) | 0.0099 (3) | 0.0092 (3) | 0.0013 (2) | 0.0033 (2) | 0.0003 (2) |
Fe2 | 0.0128 (3) | 0.0102 (3) | 0.0096 (3) | 0.0007 (2) | 0.0032 (2) | 0.0006 (2) |
Os1 | 0.00983 (9) | 0.00890 (8) | 0.01084 (8) | −0.00011 (6) | 0.00403 (6) | −0.00070 (6) |
C1—N1 | 1.154 (6) | C31—Os1 | 1.922 (4) |
C1—Os1 | 2.042 (4) | C32—O32 | 1.150 (5) |
C11—O11 | 1.136 (5) | C32—Os1 | 1.901 (4) |
C11—Fe1 | 1.807 (4) | C33—O33 | 1.135 (5) |
C12—O12 | 1.139 (5) | C33—Os1 | 1.944 (4) |
C12—Fe1 | 1.813 (4) | C100—N1 | 1.472 (5) |
C13—O13 | 1.138 (6) | C100—C102 | 1.524 (6) |
C13—Fe1 | 1.817 (5) | C100—C103 | 1.528 (6) |
C14—O14 | 1.191 (6) | C100—C101 | 1.531 (6) |
C14—Fe1 | 1.958 (5) | C101—H10A | 0.98 |
C14—Fe2 | 1.976 (5) | C101—H10B | 0.98 |
C21—O21 | 1.141 (5) | C101—H10C | 0.98 |
C21—Fe2 | 1.799 (4) | C102—H10D | 0.98 |
C22—O22 | 1.140 (6) | C102—H10E | 0.98 |
C22—Fe2 | 1.814 (5) | C102—H10F | 0.98 |
C23—O23 | 1.144 (6) | C103—H10G | 0.98 |
C23—Fe2 | 1.810 (5) | C103—H10H | 0.98 |
C24—O24 | 1.154 (6) | C103—H10I | 0.98 |
C24—Fe2 | 1.991 (5) | Fe1—Fe2 | 2.5675 (8) |
C24—Fe1 | 2.014 (4) | Fe1—Os1 | 2.7467 (6) |
C31—O31 | 1.136 (5) | Fe2—Os1 | 2.7522 (6) |
N1—C1—Os1 | 177.9 (4) | C13—Fe1—C24 | 84.27 (19) |
O11—C11—Fe1 | 177.7 (4) | C14—Fe1—C24 | 91.44 (18) |
O12—C12—Fe1 | 177.0 (4) | C11—Fe1—Fe2 | 112.27 (13) |
O13—C13—Fe1 | 176.9 (4) | C12—Fe1—Fe2 | 123.90 (14) |
O14—C14—Fe1 | 139.8 (4) | C13—Fe1—Fe2 | 124.31 (14) |
O14—C14—Fe2 | 138.7 (3) | C14—Fe1—Fe2 | 49.55 (13) |
Fe1—C14—Fe2 | 81.50 (18) | C24—Fe1—Fe2 | 49.75 (13) |
O21—C21—Fe2 | 178.2 (4) | C11—Fe1—Os1 | 171.57 (14) |
O22—C22—Fe2 | 176.3 (4) | C12—Fe1—Os1 | 81.01 (13) |
O23—C23—Fe2 | 175.5 (4) | C13—Fe1—Os1 | 90.56 (13) |
O24—C24—Fe2 | 140.7 (4) | C14—Fe1—Os1 | 84.42 (12) |
O24—C24—Fe1 | 139.5 (4) | C24—Fe1—Os1 | 87.53 (12) |
Fe2—C24—Fe1 | 79.74 (17) | Fe2—Fe1—Os1 | 62.273 (18) |
O31—C31—Os1 | 178.2 (4) | C21—Fe2—C23 | 97.84 (19) |
O32—C32—Os1 | 178.8 (4) | C21—Fe2—C22 | 96.4 (2) |
O33—C33—Os1 | 178.2 (4) | C23—Fe2—C22 | 92.48 (19) |
N1—C100—C102 | 106.8 (3) | C21—Fe2—C14 | 91.34 (18) |
N1—C100—C103 | 107.3 (3) | C23—Fe2—C14 | 170.81 (19) |
C102—C100—C103 | 112.3 (4) | C22—Fe2—C14 | 86.81 (18) |
N1—C100—C101 | 107.6 (3) | C21—Fe2—C24 | 90.61 (19) |
C102—C100—C101 | 111.5 (4) | C23—Fe2—C24 | 88.0 (2) |
C103—C100—C101 | 111.1 (4) | C22—Fe2—C24 | 172.84 (18) |
C100—C101—H10A | 109.5 | C14—Fe2—C24 | 91.58 (18) |
C100—C101—H10B | 109.5 | C21—Fe2—Fe1 | 113.43 (13) |
H10A—C101—H10B | 109.5 | C23—Fe2—Fe1 | 125.69 (14) |
C100—C101—H10C | 109.5 | C22—Fe2—Fe1 | 124.50 (13) |
H10A—C101—H10C | 109.5 | C14—Fe2—Fe1 | 48.95 (13) |
H10B—C101—H10C | 109.5 | C24—Fe2—Fe1 | 50.51 (13) |
C100—C102—H10D | 109.5 | C21—Fe2—Os1 | 174.99 (13) |
C100—C102—H10E | 109.5 | C23—Fe2—Os1 | 86.86 (14) |
H10D—C102—H10E | 109.5 | C22—Fe2—Os1 | 85.08 (13) |
C100—C102—H10F | 109.5 | C14—Fe2—Os1 | 83.95 (12) |
H10D—C102—H10F | 109.5 | C24—Fe2—Os1 | 87.82 (12) |
H10E—C102—H10F | 109.5 | Fe1—Fe2—Os1 | 62.058 (18) |
C100—C103—H10G | 109.5 | C32—Os1—C31 | 97.42 (18) |
C100—C103—H10H | 109.5 | C32—Os1—C33 | 92.55 (18) |
H10G—C103—H10H | 109.5 | C31—Os1—C33 | 91.67 (18) |
C100—C103—H10I | 109.5 | C32—Os1—C1 | 90.72 (17) |
H10G—C103—H10I | 109.5 | C31—Os1—C1 | 91.88 (17) |
H10H—C103—H10I | 109.5 | C33—Os1—C1 | 174.83 (17) |
C1—N1—C100 | 178.5 (4) | C32—Os1—Fe1 | 103.04 (13) |
C11—Fe1—C12 | 98.15 (18) | C31—Os1—Fe1 | 159.51 (13) |
C11—Fe1—C13 | 97.87 (19) | C33—Os1—Fe1 | 86.44 (12) |
C12—Fe1—C13 | 94.71 (19) | C1—Os1—Fe1 | 88.92 (11) |
C11—Fe1—C14 | 87.18 (18) | C32—Os1—Fe2 | 158.70 (13) |
C12—Fe1—C14 | 88.53 (19) | C31—Os1—Fe2 | 103.87 (13) |
C13—Fe1—C14 | 173.54 (19) | C33—Os1—Fe2 | 86.67 (13) |
C11—Fe1—C24 | 93.35 (17) | C1—Os1—Fe2 | 88.83 (11) |
C12—Fe1—C24 | 168.48 (18) | Fe1—Os1—Fe2 | 55.669 (17) |
O14—C14—Fe1—C11 | −56.5 (5) | Os1—Fe1—Fe2—C14 | 107.68 (15) |
Fe2—C14—Fe1—C11 | 122.73 (17) | C11—Fe1—Fe2—C24 | 74.7 (2) |
O14—C14—Fe1—C12 | 41.7 (5) | C12—Fe1—Fe2—C24 | −167.9 (2) |
Fe2—C14—Fe1—C12 | −139.04 (17) | C13—Fe1—Fe2—C24 | −42.6 (2) |
O14—C14—Fe1—C24 | −149.8 (5) | C14—Fe1—Fe2—C24 | 139.9 (2) |
Fe2—C14—Fe1—C24 | 29.44 (16) | Os1—Fe1—Fe2—C24 | −112.40 (16) |
O14—C14—Fe1—Fe2 | −179.2 (6) | C11—Fe1—Fe2—Os1 | −172.90 (14) |
O14—C14—Fe1—Os1 | 122.8 (5) | C12—Fe1—Fe2—Os1 | −55.53 (16) |
Fe2—C14—Fe1—Os1 | −57.93 (9) | C13—Fe1—Fe2—Os1 | 69.81 (16) |
O24—C24—Fe1—C11 | 61.8 (5) | C14—Fe1—Fe2—Os1 | −107.68 (15) |
Fe2—C24—Fe1—C11 | −116.61 (17) | C24—Fe1—Fe2—Os1 | 112.40 (15) |
O24—C24—Fe1—C12 | −121.2 (9) | C12—Fe1—Os1—C32 | −43.66 (19) |
Fe2—C24—Fe1—C12 | 60.4 (10) | C13—Fe1—Os1—C32 | 51.02 (19) |
O24—C24—Fe1—C13 | −35.8 (5) | C14—Fe1—Os1—C32 | −133.05 (18) |
Fe2—C24—Fe1—C13 | 145.81 (17) | C24—Fe1—Os1—C32 | 135.26 (18) |
O24—C24—Fe1—C14 | 149.0 (5) | Fe2—Fe1—Os1—C32 | −179.81 (13) |
Fe2—C24—Fe1—C14 | −29.35 (16) | C12—Fe1—Os1—C31 | 139.3 (4) |
O24—C24—Fe1—Fe2 | 178.4 (6) | C13—Fe1—Os1—C31 | −126.0 (4) |
O24—C24—Fe1—Os1 | −126.6 (5) | C14—Fe1—Os1—C31 | 49.9 (4) |
Fe2—C24—Fe1—Os1 | 55.00 (10) | C24—Fe1—Os1—C31 | −41.8 (4) |
O14—C14—Fe2—C21 | 58.8 (5) | Fe2—Fe1—Os1—C31 | 3.2 (4) |
Fe1—C14—Fe2—C21 | −120.46 (17) | C12—Fe1—Os1—C33 | −135.45 (19) |
O14—C14—Fe2—C22 | −37.5 (5) | C13—Fe1—Os1—C33 | −40.77 (19) |
Fe1—C14—Fe2—C22 | 143.21 (17) | C14—Fe1—Os1—C33 | 135.16 (18) |
O14—C14—Fe2—C24 | 149.4 (5) | C24—Fe1—Os1—C33 | 43.46 (18) |
Fe1—C14—Fe2—C24 | −29.81 (16) | Fe2—Fe1—Os1—C33 | 88.39 (13) |
O14—C14—Fe2—Fe1 | 179.2 (6) | C12—Fe1—Os1—C1 | 46.83 (18) |
O14—C14—Fe2—Os1 | −122.9 (5) | C13—Fe1—Os1—C1 | 141.51 (18) |
Fe1—C14—Fe2—Os1 | 57.83 (10) | C14—Fe1—Os1—C1 | −42.56 (17) |
O24—C24—Fe2—C21 | −57.9 (6) | C24—Fe1—Os1—C1 | −134.25 (17) |
Fe1—C24—Fe2—C21 | 120.42 (16) | Fe2—Fe1—Os1—C1 | −89.32 (11) |
O24—C24—Fe2—C23 | 39.9 (6) | C12—Fe1—Os1—Fe2 | 136.15 (14) |
Fe1—C24—Fe2—C23 | −141.76 (17) | C13—Fe1—Os1—Fe2 | −129.17 (14) |
O24—C24—Fe2—C14 | −149.3 (5) | C14—Fe1—Os1—Fe2 | 46.76 (13) |
Fe1—C24—Fe2—C14 | 29.06 (16) | C24—Fe1—Os1—Fe2 | −44.93 (13) |
O24—C24—Fe2—Fe1 | −178.4 (6) | C23—Fe2—Os1—C32 | 134.2 (4) |
O24—C24—Fe2—Os1 | 126.8 (5) | C22—Fe2—Os1—C32 | −133.1 (4) |
Fe1—C24—Fe2—Os1 | −54.82 (10) | C14—Fe2—Os1—C32 | −45.8 (4) |
C11—Fe1—Fe2—C21 | 4.7 (2) | C24—Fe2—Os1—C32 | 46.1 (4) |
C12—Fe1—Fe2—C21 | 122.1 (2) | Fe1—Fe2—Os1—C32 | 0.5 (3) |
C13—Fe1—Fe2—C21 | −112.6 (2) | C23—Fe2—Os1—C31 | −45.19 (19) |
C14—Fe1—Fe2—C21 | 69.9 (2) | C22—Fe2—Os1—C31 | 47.57 (19) |
C24—Fe1—Fe2—C21 | −70.0 (2) | C14—Fe2—Os1—C31 | 134.88 (18) |
Os1—Fe1—Fe2—C21 | 177.59 (15) | C24—Fe2—Os1—C31 | −133.30 (18) |
C11—Fe1—Fe2—C23 | 124.3 (2) | Fe1—Fe2—Os1—C31 | −178.86 (13) |
C12—Fe1—Fe2—C23 | −118.3 (2) | C23—Fe2—Os1—C33 | 45.70 (19) |
C13—Fe1—Fe2—C23 | 7.0 (2) | C22—Fe2—Os1—C33 | 138.47 (18) |
C14—Fe1—Fe2—C23 | −170.5 (2) | C14—Fe2—Os1—C33 | −134.23 (18) |
C24—Fe1—Fe2—C23 | 49.6 (2) | C24—Fe2—Os1—C33 | −42.40 (17) |
Os1—Fe1—Fe2—C23 | −62.79 (18) | Fe1—Fe2—Os1—C33 | −87.96 (12) |
C11—Fe1—Fe2—C22 | −111.7 (2) | C23—Fe2—Os1—C1 | −136.84 (19) |
C12—Fe1—Fe2—C22 | 5.6 (2) | C22—Fe2—Os1—C1 | −44.08 (17) |
C13—Fe1—Fe2—C22 | 131.0 (2) | C14—Fe2—Os1—C1 | 43.23 (17) |
C14—Fe1—Fe2—C22 | −46.5 (2) | C24—Fe2—Os1—C1 | 135.05 (17) |
C24—Fe1—Fe2—C22 | 173.6 (2) | Fe1—Fe2—Os1—C1 | 89.49 (12) |
Os1—Fe1—Fe2—C22 | 61.16 (17) | C23—Fe2—Os1—Fe1 | 133.67 (15) |
C11—Fe1—Fe2—C14 | −65.2 (2) | C22—Fe2—Os1—Fe1 | −133.57 (13) |
C12—Fe1—Fe2—C14 | 52.2 (2) | C14—Fe2—Os1—Fe1 | −46.26 (13) |
C13—Fe1—Fe2—C14 | 177.5 (2) | C24—Fe2—Os1—Fe1 | 45.56 (12) |
C24—Fe1—Fe2—C14 | −139.9 (2) |
Acknowledgements
CE thanks the New Zealand Foundation for Research, Science and Technology for a Postdoctoral Research Fellowship (contract No. UOGX0201).
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Braga, D., Farrugia, L. J., Gillon, A. L., Grepioni, F. & Tedesco, E. (1996). Organometallics, 15, 4684–4686. CSD CrossRef CAS Web of Science Google Scholar
Braga, D., Farrugia, L. J., Grepioni, F. & Senior, A. (1995). J. Chem. Soc. Chem. Commun. pp. 1219–1220. CrossRef Google Scholar
Churchill, M. R. & Fettinger, J. C. (1990). Organometallics, 9, 446–452. CSD CrossRef CAS Web of Science Google Scholar
Dahm, D. J. & Jacobson, R. A. (1968). J. Am. Chem. Soc. 90, 5106–5112. CSD CrossRef CAS Web of Science Google Scholar
Dawson, P. A., Johnson, B. F. G., Lewis, J., Puga, J., Raithby, P. R. & Rosales, M. J. (1982). J. Chem. Soc. Dalton Trans. pp. 233–235. CrossRef Google Scholar
Evans, C., Farrugia, L. J. & Tegel, M. (2006). Acta Cryst. E62, m478–m479. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199–213. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J., Senior, A., Braga, D., Grepioni, F., Orpen, A. G. & Crossley, J. G. (1996). J. Chem. Soc. Dalton Trans. pp. 631–641. CrossRef Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Shojaie, R. & Atwood, J. D. (1988). Inorg. Chem. 27, 2558–2560. CrossRef CAS Web of Science Google Scholar
Venalainen, T. & Pakkanen, T. (1984). J. Organomet. Chem. 266, 269–283. CSD CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.