metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tert-butyl isocyanide)-1κ2C-di-μ-carbonyl-2:3κ4C-octa­carbonyl-1κ2C,2κ3C,3κ3C-triangulo-diironosmium

CROSSMARK_Color_square_no_text.svg

aWest CHEM, Department of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: cevans@chem.gla.ac.uk

(Received 24 January 2006; accepted 3 February 2006; online 10 February 2006)

The preparation of the mixed-metal cluster, [Fe2Os(C5H9N)2(CO)10], and its crystal structure at 100 K are reported. This complex, along with the cluster in the preceding paper, are the first structurally characterized substitution derivatives of Fe2Os(CO)12. The isonitrile ligands adopt axial positions on the osmium centre and the cluster is isostructural with the Fe2Ru analogue.

Comment

The background to this study has been set out in the preceding paper (Evans et al., 2006[Evans, C., Farrugia, L. J. &Tegel, M. (2006). Acta Cryst. E62, m475-m477.]). We report here and in that paper the synthesis and structures of Fe2Os(CO)12−n(CNBut)n (n = 1 and 2).

Fe2Os(CO)10(CNBut)2, (II)[link], was prepared by carbonyl substitution of the parent Fe2Os(CO)12 cluster using standard methods (Farrugia & Mertes, 2002[Farrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199-213.]). The compound was characterized spectroscopically, by FAB mass spectrometry, and by single-crystal X-ray structure determination. The structure was determined at room temperature and 100 K with no discernible metal atom disorder at either temperature. As the structures at different temperatures are essentially identical, only the more precise low-temperature structure will be discussed here.

[Scheme 1]

The structure of (II)[link] at 100 K is shown in Fig. 1[link]. Both isonitrile ligands adopt axial positions on the Os atom, identical to that reported for the Fe2Ru analogue but contrasting with Fe3(CO)10(CNBut)2 [where one isonitrile is axial and the other equatorial (Murray et al., 1990[Murray, J. B., Nicholson, B. K. & Whitton, A. J. (1990). J. Organomet. Chem. 385, 91-100.])] and M3(CO)10(CNR)2 [M = Ru and Os; R = But and Me] (Dawson et al., 1982[Dawson, P. A., Johnson, B. F. G., Lewis, J., Puga, J., Raithby, P. R. & Rosales, M. J. (1982). J. Chem. Soc. Dalton Trans. pp. 233-235.]; Bruce et al., 1983[Bruce, M. I., Matisons, J. G., Wallis, R. C., Patrick, J. M., Skelton, B. W. & White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 2365-2373.]; Farrugia et al., 1998[Farrugia, L. J., Rosenhahn, C. & Whitworth, S. (1998). J. Cluster Sci. 9, 505-528.]), where the two isonitrile ligands are axial but attached to different metal centres. The average Fe—Os distance [2.7590 (3) Å] and Fe—Fe distance [2.5738 (3) Å] are longer than those reported (Farrugia & Mertes, 2002[Farrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199-213.]) for the ruthenium analogue [Ru—Fe = 2.7527 (3) Å and Fe—Fe = 2.5678 (2) Å]. Two carbonyl ligands symmetrically bridge the Fe—Fe bond [δ(M—C) = 0.009 and 0.003 Å for C14 and C24, respectively].

[Figure 1]
Figure 1
A view of Fe2Os(CO)10(CNBut)2, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, with H atoms represented by circles of arbitrary size.

Experimental

Complex (II)[link] was prepared in the same manner as reported for the ruthenium analogue (Farrugia & Mertes, 2002[Farrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199-213.]) by reaction of the parent carbonyl with a 1:2 molar ratio of isonitrile. The product was purified by chromatography on Florisil using hexane/CH2Cl2 mixtures as eluant. Crystals were obtained from a concentrated hexane solution at 25 K. Analysis calculated for C20H18Fe2N2O10Os: C 32.10, H 2.42, N 3.74%; found: C 32.15, H 2.20, N 3.74%. IR [ν(CN), cm−1] 2200 (vw), 2170 (m); IR [ν(CO), cm−1] 2053 (w), 2021 (vs), 2015 (vs), 1981 (m), 1975 (m), 1901 (vw), 1834 (vw), 1802 (w). 1H NMR: δ 1.54 (s, CH3). Mass spectrum, m/z = 750.2 [M+], 694.2 [M+ − 2CO], 666.2 [M+ − 3CO], 638.2 [M+ − 4CO], 610.2 [M+ − 5CO], 582.2 [M+ − 6CO], 554.3 [M+ − 7CO], 526.3 [M+ − 8CO], 498.3 [M+ − 9CO], 470.3 [M+ − 10CO].

Crystal data
  • [Fe2Os(C5H9N)2(CO)10]

  • Mr = 748.26

  • Monoclinic, P 21 /a

  • a = 11.6903 (2) Å

  • b = 12.4357 (2) Å

  • c = 17.6041 (3) Å

  • β = 91.753 (1)°

  • V = 2558.03 (7) Å3

  • Z = 4

  • Dx = 1.943 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 11369 reflections

  • θ = 2.2–35.0°

  • μ = 6.13 mm−1

  • T = 100 (2) K

  • Prism, purple

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ or ω scans

  • Absorption correction: multi-scan(Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])Tmin = 0.197, Tmax = 0.294

  • 64585 measured reflections

  • 10967 independent reflections

  • 9945 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 35.0°

  • h = −18 → 18

  • k = −20 → 20

  • l = −27 → 28

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.042

  • S = 1.1

  • 10967 reflections

  • 317 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0113P)2 + 1.9594P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.94 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.00024 (4)

All H atoms were placed in calculated positions and refined using a riding model [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)]. The highest features in the difference map are associated with the Os atom.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Bis(tert-butyl isocyanide)-1κ2C-di-µ-carbonyl-2:3κ4C-octacarbonyl- 1κ2C,2κ3C,3κ3C-triangulo-diironosmium top
Crystal data top
[Fe2Os(C5H9N)2(CO)10]F(000) = 1440
Mr = 748.26Dx = 1.943 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 11369 reflections
a = 11.6903 (2) Åθ = 2.2–35.0°
b = 12.4357 (2) ŵ = 6.13 mm1
c = 17.6041 (3) ÅT = 100 K
β = 91.753 (1)°Prism, purple
V = 2558.03 (7) Å30.3 × 0.3 × 0.2 mm
Z = 4
Data collection top
KappaCCD
diffractometer
9945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
CCD rotation images, thick slices scansθmax = 35.0°, θmin = 2.4°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1818
Tmin = 0.197, Tmax = 0.294k = 2020
64585 measured reflectionsl = 2728
10967 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0113P)2 + 1.9594P]
where P = (Fo2 + 2Fc2)/3
S = 1.1(Δ/σ)max = 0.002
10967 reflectionsΔρmax = 1.28 e Å3
317 parametersΔρmin = 0.94 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00024 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Os10.796803 (5)0.078714 (5)0.264536 (3)0.01175 (2)
Fe10.715245 (19)0.128082 (18)0.246561 (13)0.01250 (4)
Fe20.567762 (19)0.024601 (19)0.256179 (14)0.01351 (4)
N10.79148 (13)0.09910 (12)0.08484 (9)0.0182 (3)
N20.79307 (13)0.04302 (13)0.44331 (9)0.0176 (3)
O110.59757 (13)0.33642 (11)0.23028 (9)0.0249 (3)
O120.88483 (13)0.14605 (12)0.12654 (8)0.0261 (3)
O130.88504 (13)0.19340 (12)0.36481 (9)0.0270 (3)
O140.58792 (12)0.07302 (11)0.10291 (8)0.0207 (2)
O210.33447 (12)0.06186 (13)0.23777 (10)0.0294 (3)
O220.53743 (15)0.20690 (13)0.15018 (10)0.0320 (3)
O230.53714 (14)0.17035 (13)0.38615 (9)0.0308 (3)
O240.58865 (12)0.12054 (11)0.39045 (8)0.0212 (2)
O310.79104 (13)0.32166 (11)0.28107 (9)0.0265 (3)
O321.05737 (12)0.07111 (12)0.26688 (10)0.0273 (3)
C10.79257 (14)0.09169 (13)0.15043 (10)0.0149 (3)
C20.79353 (14)0.05589 (13)0.37818 (10)0.0158 (3)
C110.64394 (15)0.25598 (14)0.23622 (10)0.0166 (3)
C120.81911 (15)0.13642 (14)0.17307 (10)0.0180 (3)
C130.81919 (15)0.16485 (14)0.31989 (10)0.0180 (3)
C140.61172 (14)0.06415 (13)0.16762 (10)0.0163 (3)
C210.42448 (15)0.02751 (14)0.24587 (10)0.0182 (3)
C220.55314 (15)0.13531 (15)0.19031 (11)0.0201 (3)
C230.55223 (15)0.11236 (15)0.33704 (11)0.0202 (3)
C240.61162 (14)0.09012 (14)0.32994 (10)0.0168 (3)
C310.79279 (14)0.22992 (14)0.27532 (10)0.0170 (3)
C320.95936 (15)0.07170 (13)0.26613 (10)0.0168 (3)
C1000.78631 (17)0.10920 (16)0.00192 (10)0.0206 (3)
C1010.6633 (2)0.1395 (2)0.02095 (14)0.0380 (6)
H11A0.64440.20920.00150.057*
H11B0.61090.08450.00250.057*
H11C0.65570.14430.07640.057*
C1020.8185 (3)0.00110 (19)0.03189 (13)0.0362 (5)
H12A0.76260.05330.01750.054*
H12B0.89480.01990.01260.054*
H12C0.8190.00690.08740.054*
C1030.8706 (2)0.19684 (19)0.01871 (13)0.0317 (5)
H13A0.84730.26510.00390.048*
H13B0.87160.20440.07410.048*
H13C0.94730.17750.00080.048*
C2000.78282 (16)0.02367 (16)0.52508 (10)0.0203 (3)
C2010.8067 (2)0.09521 (18)0.53928 (12)0.0321 (5)
H21A0.74910.13860.51170.048*
H21B0.80350.11020.59380.048*
H21C0.88290.11320.52140.048*
C2020.6608 (2)0.0530 (2)0.54526 (13)0.0358 (5)
H22A0.60680.00620.51740.054*
H22B0.64570.12810.53140.054*
H22C0.65150.04370.60.054*
C2030.8706 (2)0.0943 (2)0.56696 (12)0.0328 (5)
H23A0.94780.0730.55290.049*
H23B0.86290.08570.62190.049*
H23C0.85760.16970.5530.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os10.01157 (3)0.01227 (3)0.01136 (3)0.00138 (2)0.00030 (2)0.00027 (2)
Fe10.01141 (9)0.01120 (9)0.01485 (10)0.00009 (7)0.00012 (7)0.00092 (7)
Fe20.01043 (9)0.01270 (9)0.01735 (10)0.00028 (7)0.00046 (8)0.00107 (8)
N10.0176 (6)0.0210 (7)0.0161 (6)0.0007 (5)0.0000 (5)0.0036 (5)
N20.0175 (6)0.0206 (7)0.0148 (6)0.0028 (5)0.0002 (5)0.0020 (5)
O110.0254 (7)0.0174 (6)0.0317 (8)0.0042 (5)0.0045 (6)0.0005 (5)
O120.0241 (7)0.0309 (7)0.0237 (7)0.0057 (6)0.0058 (5)0.0002 (6)
O130.0269 (7)0.0290 (7)0.0246 (7)0.0034 (6)0.0082 (6)0.0002 (6)
O140.0216 (6)0.0230 (6)0.0173 (6)0.0020 (5)0.0034 (5)0.0020 (5)
O210.0170 (6)0.0325 (8)0.0388 (9)0.0052 (5)0.0000 (6)0.0067 (6)
O220.0361 (8)0.0272 (7)0.0329 (8)0.0083 (6)0.0025 (7)0.0084 (6)
O230.0309 (8)0.0314 (8)0.0300 (8)0.0043 (6)0.0008 (6)0.0121 (6)
O240.0224 (6)0.0236 (6)0.0179 (6)0.0021 (5)0.0028 (5)0.0013 (5)
O310.0250 (7)0.0162 (6)0.0383 (8)0.0008 (5)0.0025 (6)0.0014 (5)
O320.0152 (6)0.0293 (7)0.0375 (8)0.0000 (5)0.0006 (5)0.0005 (6)
C10.0122 (6)0.0147 (7)0.0177 (7)0.0004 (5)0.0001 (5)0.0012 (5)
C20.0146 (7)0.0162 (7)0.0165 (7)0.0022 (5)0.0001 (5)0.0010 (5)
C110.0181 (7)0.0160 (7)0.0156 (7)0.0018 (5)0.0028 (5)0.0003 (5)
C120.0168 (7)0.0183 (7)0.0188 (7)0.0023 (6)0.0011 (6)0.0013 (6)
C130.0177 (7)0.0177 (7)0.0186 (7)0.0006 (6)0.0004 (6)0.0008 (6)
C140.0135 (7)0.0159 (7)0.0195 (7)0.0010 (5)0.0002 (5)0.0002 (5)
C210.0165 (7)0.0188 (7)0.0194 (8)0.0006 (6)0.0007 (6)0.0022 (6)
C220.0179 (7)0.0200 (8)0.0226 (8)0.0033 (6)0.0013 (6)0.0012 (6)
C230.0167 (7)0.0207 (8)0.0232 (8)0.0015 (6)0.0014 (6)0.0017 (6)
C240.0147 (7)0.0173 (7)0.0184 (7)0.0026 (5)0.0010 (5)0.0019 (6)
C310.0142 (7)0.0182 (7)0.0188 (8)0.0014 (5)0.0013 (6)0.0003 (6)
C320.0164 (7)0.0157 (7)0.0182 (7)0.0002 (5)0.0007 (5)0.0007 (6)
C1000.0243 (8)0.0244 (8)0.0130 (7)0.0007 (6)0.0001 (6)0.0042 (6)
C1010.0302 (11)0.0592 (16)0.0241 (10)0.0038 (10)0.0075 (8)0.0130 (10)
C1020.0589 (16)0.0281 (10)0.0214 (10)0.0033 (10)0.0012 (10)0.0045 (8)
C1030.0414 (12)0.0319 (11)0.0222 (9)0.0078 (9)0.0072 (8)0.0065 (8)
C2000.0223 (8)0.0285 (9)0.0102 (7)0.0030 (7)0.0013 (6)0.0010 (6)
C2010.0475 (13)0.0293 (10)0.0194 (9)0.0012 (9)0.0018 (9)0.0061 (7)
C2020.0257 (10)0.0606 (16)0.0214 (10)0.0030 (10)0.0062 (8)0.0039 (9)
C2030.0390 (12)0.0418 (12)0.0171 (8)0.0133 (10)0.0059 (8)0.0048 (8)
Geometric parameters (Å, º) top
Os1—C311.8906 (18)O24—C241.169 (2)
Os1—C321.9017 (17)O31—C311.146 (2)
Os1—C12.0143 (17)O32—C321.145 (2)
Os1—C22.0221 (17)C100—C1031.521 (3)
Os1—Fe12.7576 (2)C100—C1021.522 (3)
Os1—Fe22.7604 (2)C100—C1011.528 (3)
Fe1—C111.8023 (17)C101—H11A0.98
Fe1—C131.8044 (18)C101—H11B0.98
Fe1—C121.8041 (18)C101—H11C0.98
Fe1—C141.9812 (17)C102—H12A0.98
Fe1—C241.9884 (18)C102—H12B0.98
Fe1—Fe22.5738 (3)C102—H12C0.98
Fe2—C211.8000 (18)C103—H13A0.98
Fe2—C221.8047 (19)C103—H13B0.98
Fe2—C231.8073 (19)C103—H13C0.98
Fe2—C241.9858 (18)C200—C2021.525 (3)
Fe2—C141.9904 (18)C200—C2031.524 (3)
N1—C11.158 (2)C200—C2011.524 (3)
N1—C1001.465 (2)C201—H21A0.98
N2—C21.158 (2)C201—H21B0.98
N2—C2001.468 (2)C201—H21C0.98
O11—C111.141 (2)C202—H22A0.98
O12—C121.146 (2)C202—H22B0.98
O13—C131.143 (2)C202—H22C0.98
O14—C141.169 (2)C203—H23A0.98
O21—C211.141 (2)C203—H23B0.98
O22—C221.148 (2)C203—H23C0.98
O23—C231.144 (2)
C31—Os1—C3294.13 (7)O12—C12—Fe1177.30 (17)
C31—Os1—C191.18 (7)O13—C13—Fe1176.45 (16)
C32—Os1—C190.71 (7)O14—C14—Fe1140.12 (14)
C31—Os1—C292.23 (7)O14—C14—Fe2139.09 (14)
C32—Os1—C291.61 (7)Fe1—C14—Fe280.79 (7)
C1—Os1—C2175.73 (7)O21—C21—Fe2178.31 (17)
C31—Os1—Fe1158.36 (5)O22—C22—Fe2175.85 (17)
C32—Os1—Fe1107.50 (5)O23—C23—Fe2176.16 (17)
C1—Os1—Fe187.85 (5)O24—C24—Fe2140.02 (15)
C2—Os1—Fe188.03 (5)O24—C24—Fe1139.26 (15)
C31—Os1—Fe2102.76 (5)Fe2—C24—Fe180.73 (7)
C32—Os1—Fe2163.11 (5)O31—C31—Os1179.18 (17)
C1—Os1—Fe288.41 (5)O32—C32—Os1177.73 (16)
C2—Os1—Fe288.33 (5)N1—C100—C103106.99 (16)
Fe1—Os1—Fe255.606 (7)N1—C100—C102108.10 (16)
C11—Fe1—C1398.51 (8)C103—C100—C102111.69 (19)
C11—Fe1—C12101.31 (8)N1—C100—C101107.07 (16)
C13—Fe1—C1292.59 (8)C103—C100—C101111.83 (18)
C11—Fe1—C1490.72 (7)C102—C100—C101110.9 (2)
C13—Fe1—C14170.76 (7)C100—C101—H11A109.5
C12—Fe1—C1485.99 (7)C100—C101—H11B109.5
C11—Fe1—C2489.64 (7)H11A—C101—H11B109.5
C13—Fe1—C2486.80 (8)C100—C101—H11C109.5
C12—Fe1—C24168.99 (8)H11A—C101—H11C109.5
C14—Fe1—C2492.84 (7)H11B—C101—H11C109.5
C11—Fe1—Fe2110.43 (6)C100—C102—H12A109.5
C13—Fe1—Fe2125.29 (6)C100—C102—H12B109.5
C12—Fe1—Fe2123.81 (6)H12A—C102—H12B109.5
C14—Fe1—Fe249.76 (5)C100—C102—H12C109.5
C24—Fe1—Fe249.59 (5)H12A—C102—H12C109.5
C11—Fe1—Os1172.65 (6)H12B—C102—H12C109.5
C13—Fe1—Os186.06 (6)C100—C103—H13A109.5
C12—Fe1—Os184.14 (6)C100—C103—H13B109.5
C14—Fe1—Os184.72 (5)H13A—C103—H13B109.5
C24—Fe1—Os184.85 (5)C100—C103—H13C109.5
Fe2—Fe1—Os162.253 (7)H13A—C103—H13C109.5
C21—Fe2—C2298.07 (8)H13B—C103—H13C109.5
C21—Fe2—C23100.44 (8)N2—C200—C202107.11 (16)
C22—Fe2—C2392.04 (9)N2—C200—C203107.81 (16)
C21—Fe2—C2491.61 (8)C202—C200—C203111.72 (18)
C22—Fe2—C24170.28 (8)N2—C200—C201107.45 (15)
C23—Fe2—C2487.07 (8)C202—C200—C201111.25 (19)
C21—Fe2—C1489.04 (7)C203—C200—C201111.26 (18)
C22—Fe2—C1486.64 (8)C200—C201—H21A109.5
C23—Fe2—C14170.53 (8)C200—C201—H21B109.5
C24—Fe2—C1492.64 (7)H21A—C201—H21B109.5
C21—Fe2—Fe1110.55 (6)C200—C201—H21C109.5
C22—Fe2—Fe1124.82 (6)H21A—C201—H21C109.5
C23—Fe2—Fe1125.52 (6)H21B—C201—H21C109.5
C24—Fe2—Fe149.68 (5)C200—C202—H22A109.5
C14—Fe2—Fe149.45 (5)C200—C202—H22B109.5
C21—Fe2—Os1172.43 (6)H22A—C202—H22B109.5
C22—Fe2—Os185.46 (6)C200—C202—H22C109.5
C23—Fe2—Os186.07 (6)H22A—C202—H22C109.5
C24—Fe2—Os184.82 (5)H22B—C202—H22C109.5
C14—Fe2—Os184.47 (5)C200—C203—H23A109.5
Fe1—Fe2—Os162.141 (7)C200—C203—H23B109.5
C1—N1—C100178.22 (18)H23A—C203—H23B109.5
C2—N2—C200175.33 (17)C200—C203—H23C109.5
N1—C1—Os1179.22 (15)H23A—C203—H23C109.5
N2—C2—Os1179.17 (15)H23B—C203—H23C109.5
O11—C11—Fe1179.03 (17)
C31—Os1—Fe1—C13135.44 (15)C2—Os1—Fe2—C22137.62 (8)
C32—Os1—Fe1—C1346.72 (8)Fe1—Os1—Fe2—C22133.62 (6)
C1—Os1—Fe1—C13136.79 (7)C31—Os1—Fe2—C2346.65 (8)
C2—Os1—Fe1—C1344.35 (7)C32—Os1—Fe2—C23135.29 (19)
Fe2—Os1—Fe1—C13133.67 (6)C1—Os1—Fe2—C23137.49 (8)
C31—Os1—Fe1—C12131.54 (15)C2—Os1—Fe2—C2345.26 (8)
C32—Os1—Fe1—C1246.30 (8)Fe1—Os1—Fe2—C23134.03 (6)
C1—Os1—Fe1—C1243.77 (7)C31—Os1—Fe2—C24134.06 (7)
C2—Os1—Fe1—C12137.36 (7)C32—Os1—Fe2—C2447.88 (19)
Fe2—Os1—Fe1—C12133.32 (6)C1—Os1—Fe2—C24135.09 (7)
C31—Os1—Fe1—C1445.04 (15)C2—Os1—Fe2—C2442.15 (7)
C32—Os1—Fe1—C14132.80 (8)Fe1—Os1—Fe2—C2446.61 (5)
C1—Os1—Fe1—C1442.73 (7)C31—Os1—Fe2—C14132.77 (7)
C2—Os1—Fe1—C14136.14 (7)C32—Os1—Fe2—C1445.29 (19)
Fe2—Os1—Fe1—C1446.82 (5)C1—Os1—Fe2—C1441.92 (7)
C31—Os1—Fe1—C2448.31 (15)C2—Os1—Fe2—C14135.32 (7)
C32—Os1—Fe1—C24133.86 (8)Fe1—Os1—Fe2—C1446.56 (5)
C1—Os1—Fe1—C24136.07 (7)C31—Os1—Fe2—Fe1179.33 (5)
C2—Os1—Fe1—C2442.79 (7)C32—Os1—Fe2—Fe11.27 (18)
Fe2—Os1—Fe1—C2446.53 (5)C1—Os1—Fe2—Fe188.48 (5)
C31—Os1—Fe1—Fe21.77 (14)C2—Os1—Fe2—Fe188.76 (5)
C32—Os1—Fe1—Fe2179.61 (6)C11—Fe1—C14—O1463.4 (2)
C1—Os1—Fe1—Fe289.54 (5)C12—Fe1—C14—O1437.9 (2)
C2—Os1—Fe1—Fe289.32 (5)C24—Fe1—C14—O14153.1 (2)
C11—Fe1—Fe2—C212.83 (9)Fe2—Fe1—C14—O14180.0 (2)
C13—Fe1—Fe2—C21120.02 (9)Os1—Fe1—C14—O14122.3 (2)
C12—Fe1—Fe2—C21117.26 (9)C11—Fe1—C14—Fe2116.52 (7)
C14—Fe1—Fe2—C2169.86 (9)C12—Fe1—C14—Fe2142.18 (7)
C24—Fe1—Fe2—C2173.82 (9)C24—Fe1—C14—Fe226.85 (6)
Os1—Fe1—Fe2—C21177.85 (6)Os1—Fe1—C14—Fe257.71 (4)
C11—Fe1—Fe2—C22119.14 (9)C21—Fe2—C14—O1461.5 (2)
C13—Fe1—Fe2—C22123.67 (10)C22—Fe2—C14—O1436.6 (2)
C12—Fe1—Fe2—C220.95 (10)C24—Fe2—C14—O14153.1 (2)
C14—Fe1—Fe2—C2246.45 (10)Fe1—Fe2—C14—O14180.0 (2)
C24—Fe1—Fe2—C22169.87 (10)Os1—Fe2—C14—O14122.4 (2)
Os1—Fe1—Fe2—C2261.54 (7)C21—Fe2—C14—Fe1118.45 (7)
C11—Fe1—Fe2—C23117.52 (10)C22—Fe2—C14—Fe1143.41 (7)
C13—Fe1—Fe2—C230.33 (10)C24—Fe2—C14—Fe126.88 (6)
C12—Fe1—Fe2—C23122.39 (10)Os1—Fe2—C14—Fe157.65 (4)
C14—Fe1—Fe2—C23169.79 (10)C21—Fe2—C24—O2463.6 (2)
C24—Fe1—Fe2—C2346.53 (10)C23—Fe2—C24—O2436.7 (2)
Os1—Fe1—Fe2—C2361.80 (8)C14—Fe2—C24—O24152.8 (2)
C11—Fe1—Fe2—C2470.99 (9)Fe1—Fe2—C24—O24179.5 (2)
C13—Fe1—Fe2—C2446.20 (9)Os1—Fe2—C24—O24123.0 (2)
C12—Fe1—Fe2—C24168.92 (9)C21—Fe2—C24—Fe1115.89 (7)
C14—Fe1—Fe2—C24143.68 (9)C23—Fe2—C24—Fe1143.74 (7)
Os1—Fe1—Fe2—C24108.33 (6)C14—Fe2—C24—Fe126.78 (6)
C11—Fe1—Fe2—C1472.69 (9)Os1—Fe2—C24—Fe157.42 (4)
C13—Fe1—Fe2—C14170.12 (9)C11—Fe1—C24—O2461.9 (2)
C12—Fe1—Fe2—C1447.40 (9)C13—Fe1—C24—O2436.6 (2)
C24—Fe1—Fe2—C14143.68 (9)C12—Fe1—C24—O24123.7 (4)
Os1—Fe1—Fe2—C14107.99 (6)C14—Fe1—C24—O24152.6 (2)
C11—Fe1—Fe2—Os1179.32 (6)Fe2—Fe1—C24—O24179.5 (2)
C13—Fe1—Fe2—Os162.14 (7)Os1—Fe1—C24—O24122.9 (2)
C12—Fe1—Fe2—Os160.59 (7)C11—Fe1—C24—Fe2117.62 (7)
C14—Fe1—Fe2—Os1107.99 (6)C13—Fe1—C24—Fe2143.84 (7)
C24—Fe1—Fe2—Os1108.33 (6)C12—Fe1—C24—Fe256.7 (4)
C31—Os1—Fe2—C2245.71 (8)C14—Fe1—C24—Fe226.92 (6)
C32—Os1—Fe2—C22132.35 (19)Os1—Fe1—C24—Fe257.51 (4)
C1—Os1—Fe2—C2245.13 (7)
 

Acknowledgements

CE thanks the New Zealand Foundation for Research, Science and Technology for a Postdoctoral Research Fellowship (contract No. UOGX0201).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruce, M. I., Matisons, J. G., Wallis, R. C., Patrick, J. M., Skelton, B. W. & White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 2365–2373.  CrossRef Google Scholar
First citationDawson, P. A., Johnson, B. F. G., Lewis, J., Puga, J., Raithby, P. R. & Rosales, M. J. (1982). J. Chem. Soc. Dalton Trans. pp. 233–235.  CrossRef Google Scholar
First citationEvans, C., Farrugia, L. J. &Tegel, M. (2006). Acta Cryst. E62, m475–m477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199–213.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J., Rosenhahn, C. & Whitworth, S. (1998). J. Cluster Sci. 9, 505–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurray, J. B., Nicholson, B. K. & Whitton, A. J. (1990). J. Organomet. Chem. 385, 91–100.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds