organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Eth­oxy­carbonyl-3-furoic acid

CROSSMARK_Color_square_no_text.svg

aWestCHEM Research School, Department of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, and bBearsden Academy, Morven Road, Bearsden, Glasgow G61 3SU, Scotland
*Correspondence e-mail: a.parkin@chem.gla.ac.uk

(Received 1 February 2006; accepted 6 February 2006; online 10 February 2006)

The structure of 4-ethoxy­carbonyl-3-furoic acid, C8H8O5, has been determined at 100 K.

Comment

The title compound, (I)[link], represents the first example of a crystal structure of a mono-ester of furoic acid. Previous related crystal structures observed in the Cambridge Structural Database (CSD, Version 5.26; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) include the cyclo­hexane (CSD refcode CIHNIQ; Baldwin et al., 1997[Baldwin, C. R., Britton, M. M., Davies, S. C., Gillies, D. G., Hughes, D. L., Smith, G. W. & Sutcliffe, L. H. (1997). J. Mol. Struct. 403, 1-2.]) and methyl (CSD refcode FURCAM; Okada et al., 1971[Okada, Y., Nakatsu, K. & Shimada, A. (1971). Bull. Chem. Soc. Jpn, 44, 928-929.]) diesters, and the diacid (CSD refcode FURDCB and derivatives), although there has been some discussion as to the correct space group of this compound (Williams & Rundle, 1964[Williams, D. E. & Rundle, R. E. (1964). J. Am. Chem. Soc. 86, 1660-1666.]; Semmingsen et al., 1986[Semmingsen, D., Nordensen, S. & Aasen, A. (1986). Acta Chem. Scand. Ser. A, 40, 559-565.]).

[Scheme 1]

The molecular structure of the title compound is essentially flat, with all the non-H atoms coplanar. No intermolecular hydrogen bonding is observed, although there are a number of non-classical C—H⋯O interactions observed between molecules. The single hydrogen bond observed in the title structure is an intra­molecular O11—H11⋯O71 hydrogen bond (Table 2 [link] and Fig. 1[link]), lying approximately perpendicular to the (021) plane. Much of our inter­est in such materials lies in the possibility of hydrogen-bond disorder. The difference Fourier map (Fig. 2[link]) shows that no disorder is observed in this hydrogen bond at this temperature; there is also no disorder observed in the hydrogen bond at higher temperatures, as a difference Fourier map of the hydrogen bond from a data set collected at 293 K on the same crystal shows (Fig. 2[link]). The data for the 293 K structure have been deposited with the Cambridge Crystallographic Data Centre.

The packing of the mol­ecule in this structure is layered, with each layer having rows of the title mol­ecule in alternating directions (Fig. 3[link]a). The layers are then superimposed on each other, with alternating rows lying on top of one another (Fig. 3[link]b). These layers are quite distinct throughout the structure (Fig. 3[link]c).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] observed in the crystal structure, showing anisotropic displacement parameter ellipsoids and the numbering scheme used. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Difference Fourier map sections through the intra­molecular hydrogen bond in the same crystal at (a) 100 K and (b) 293 K.
[Figure 3]
Figure 3
Packing diagrams showing (a) the layered structure of the mol­ecule, (b) how the layers fit together and (c) a side view of the layers.

Experimental

The title material was prepared from diethyl-3,4-furan­dicarboxyl­ate after exposure to moist air, the crystals being observed floating in the parent material a few days after exposure.

Crystal data
  • C8H8O5

  • Mr = 184.15

  • Triclinic, [P \overline 1]

  • a = 7.0424 (11) Å

  • b = 7.4653 (12) Å

  • c = 9.0724 (14) Å

  • α = 111.236 (4)°

  • β = 93.207 (5)°

  • γ = 109.601 (4)°

  • V = 410.18 (11) Å3

  • Z = 2

  • Dx = 1.491 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2341 reflections

  • θ = 2–31°

  • μ = 0.13 mm−1

  • T = 100 K

  • Block, colourless

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Brüker APEX2 CCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 1996[Bruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.91, Tmax = 0.98

  • 5968 measured reflections

  • 2461 independent reflections

  • 1763 reflections with I > 2σ(I)

  • Rint = 0.028

  • θmax = 30.7°

  • h = −10 → 9

  • k = −10 → 10

  • l = −13 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.098

  • S = 0.93

  • 2461 reflections

  • 150 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(F2) + 0.05]

  • (Δ/σ)max < 0.001

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected geometric parameters (Å, °)

C6—C2 1.4527 (18)
C6—C5 1.3621 (19)
C6—C7 1.4669 (19)
C2—C1 1.4874 (18)
C2—C3 1.3557 (19)
C1—O12 1.2182 (17)
C1—O11 1.3327 (17)
C3—O4 1.3713 (16)
O4—C5 1.3634 (17)
C7—O8 1.3311 (16)
C7—O71 1.2289 (16)
O8—C9 1.4635 (17)
C9—C10 1.506 (2)
C2—C6—C5 106.07 (12)
C2—C6—C7 129.92 (12)
C5—C6—C7 124.01 (12)
C6—C2—C1 132.51 (12)
C6—C2—C3 105.77 (11)
C1—C2—C3 121.70 (12)
C2—C1—O12 121.56 (12)
C2—C1—O11 118.18 (12)
O12—C1—O11 120.26 (12)
C2—C3—O4 110.72 (12)
C3—O4—C5 106.99 (10)
O4—C5—C6 110.44 (12)
C6—C7—O8 111.88 (11)
C6—C7—O71 124.32 (12)
O8—C7—O71 123.79 (12)
C7—O8—C9 116.73 (11)
O8—C9—C10 107.16 (12)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O71 0.94 (2) 1.70 (2) 2.6267 (16) 172 (2)

All H atoms were found in difference density syntheses and were refined isotropically without restraints.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: MERCURY (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Bruno et al., 2002), ORTEP-3 for Windows (Farrugia, 1997) and WinGX (Farrugia, 1999); software used to prepare material for publication: CRYSTALS.

4-ethoxycarbonyl-3-furoic acid top
Crystal data top
C8H8O5Z = 2
Mr = 184.15F(000) = 192
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0424 (11) ÅCell parameters from 2341 reflections
b = 7.4653 (12) Åθ = 2–31°
c = 9.0724 (14) ŵ = 0.13 mm1
α = 111.236 (4)°T = 100 K
β = 93.207 (5)°Block, colourless
γ = 109.601 (4)°0.50 × 0.40 × 0.20 mm
V = 410.18 (11) Å3
Data collection top
Brüker APEX2 CCD
diffractometer
1763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 30.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1996)
h = 109
Tmin = 0.91, Tmax = 0.98k = 1010
5968 measured reflectionsl = 1312
2461 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.098 w = 1/[σ2(F2) + 0.05]
S = 0.93(Δ/σ)max = 0.000192
2461 reflectionsΔρmax = 0.54 e Å3
150 parametersΔρmin = 0.48 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.70076 (19)0.1024 (2)0.41479 (16)0.0154
C20.65366 (19)0.1080 (2)0.29745 (16)0.0153
C10.6760 (2)0.2927 (2)0.31147 (17)0.0178
O120.62826 (16)0.45688 (15)0.19436 (13)0.0236
O110.74836 (16)0.27534 (16)0.45702 (13)0.0216
C30.5715 (2)0.1164 (2)0.15520 (17)0.0178
O40.56311 (16)0.07133 (15)0.17399 (12)0.0209
C50.6426 (2)0.2022 (2)0.33238 (16)0.0191
C70.7916 (2)0.1998 (2)0.58785 (16)0.0164
O80.81253 (15)0.39804 (15)0.65420 (12)0.0205
C90.9021 (2)0.5115 (2)0.82699 (18)0.0227
C100.9139 (3)0.7307 (2)0.8735 (2)0.0276
O710.84080 (15)0.10958 (15)0.66351 (12)0.0199
H310.517 (2)0.230 (3)0.049 (2)0.022 (4)*
H510.654 (2)0.346 (3)0.3662 (19)0.019 (4)*
H911.036 (3)0.504 (3)0.844 (2)0.024 (4)*
H920.811 (2)0.442 (3)0.881 (2)0.022 (4)*
H1010.976 (3)0.819 (3)0.990 (3)0.044 (6)*
H1021.010 (3)0.804 (3)0.817 (2)0.039 (5)*
H1030.780 (3)0.733 (3)0.857 (2)0.035 (5)*
H110.781 (3)0.143 (3)0.538 (3)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.0192 (6)0.0132 (6)0.0130 (6)0.0059 (5)0.0026 (5)0.0048 (5)
C20.0190 (6)0.0122 (6)0.0153 (6)0.0069 (5)0.0036 (5)0.0052 (5)
C10.0187 (6)0.0151 (6)0.0208 (7)0.0075 (5)0.0033 (5)0.0080 (5)
O120.0316 (5)0.0137 (5)0.0225 (6)0.0105 (4)0.0007 (4)0.0032 (4)
O110.0318 (5)0.0168 (5)0.0190 (5)0.0121 (4)0.0009 (4)0.0082 (4)
C30.0238 (7)0.0137 (6)0.0160 (7)0.0087 (5)0.0040 (5)0.0048 (5)
O40.0333 (5)0.0165 (5)0.0142 (5)0.0118 (4)0.0014 (4)0.0062 (4)
C50.0288 (7)0.0140 (6)0.0137 (7)0.0089 (5)0.0021 (5)0.0042 (5)
C70.0182 (6)0.0132 (6)0.0164 (7)0.0055 (5)0.0037 (5)0.0047 (5)
O80.0296 (5)0.0137 (5)0.0147 (5)0.0089 (4)0.0007 (4)0.0022 (4)
C90.0266 (7)0.0195 (7)0.0145 (7)0.0070 (6)0.0002 (6)0.0012 (6)
C100.0299 (8)0.0187 (7)0.0251 (8)0.0073 (6)0.0049 (6)0.0009 (6)
O710.0252 (5)0.0178 (5)0.0165 (5)0.0091 (4)0.0006 (4)0.0067 (4)
Geometric parameters (Å, º) top
C6—C21.4527 (18)C5—H510.978 (16)
C6—C51.3621 (19)C7—O81.3311 (16)
C6—C71.4669 (19)C7—O711.2289 (16)
C2—C11.4874 (18)O8—C91.4635 (17)
C2—C31.3557 (19)C9—C101.506 (2)
C1—O121.2182 (17)C9—H910.971 (17)
C1—O111.3327 (17)C9—H920.957 (16)
O11—H110.94 (2)C10—H1011.00 (2)
C3—O41.3713 (16)C10—H1021.004 (19)
C3—H310.971 (17)C10—H1030.955 (19)
O4—C51.3634 (17)
C2—C6—C5106.07 (12)C6—C7—O8111.88 (11)
C2—C6—C7129.92 (12)C6—C7—O71124.32 (12)
C5—C6—C7124.01 (12)O8—C7—O71123.79 (12)
C6—C2—C1132.51 (12)C7—O8—C9116.73 (11)
C6—C2—C3105.77 (11)O8—C9—C10107.16 (12)
C1—C2—C3121.70 (12)O8—C9—H91107.5 (10)
C2—C1—O12121.56 (12)C10—C9—H91112.9 (10)
C2—C1—O11118.18 (12)O8—C9—H92106.8 (10)
O12—C1—O11120.26 (12)C10—C9—H92111.5 (10)
C1—O11—H11113.3 (13)H91—C9—H92110.7 (14)
C2—C3—O4110.72 (12)C9—C10—H101112.0 (12)
C2—C3—H31131.4 (10)C9—C10—H102111.4 (11)
O4—C3—H31117.8 (10)H101—C10—H102103.1 (15)
C3—O4—C5106.99 (10)C9—C10—H103111.0 (11)
O4—C5—C6110.44 (12)H101—C10—H103106.1 (15)
O4—C5—H51117.8 (10)H102—C10—H103112.9 (16)
C6—C5—H51131.7 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O710.94 (2)1.70 (2)2.6267 (16)172 (2)
 

Footnotes

Also affiliated to WestCHEM Research School, Department of Chemistry, University of Glasgow, University Avenue Glasgow, G12 8QQ, Scotland

Acknowledgements

The authors thank the Nuffield Foundation for funding for JLK.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef IUCr Journals Google Scholar
First citationBaldwin, C. R., Britton, M. M., Davies, S. C., Gillies, D. G., Hughes, D. L., Smith, G. W. & Sutcliffe, L. H. (1997). J. Mol. Struct. 403, 1–2.  CSD CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOkada, Y., Nakatsu, K. & Shimada, A. (1971). Bull. Chem. Soc. Jpn, 44, 928–929.  CrossRef CAS Google Scholar
First citationSemmingsen, D., Nordensen, S. & Aasen, A. (1986). Acta Chem. Scand. Ser. A, 40, 559–565.  CrossRef Google Scholar
First citationWilliams, D. E. & Rundle, R. E. (1964). J. Am. Chem. Soc. 86, 1660–1666.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds