organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cylo­pentyl­amine monohydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland
*Correspondence e-mail: d.r.allan@ed.ac.uk

(Received 25 January 2006; accepted 13 February 2006; online 17 February 2006)

The crystal structure of cylopentyl­amine monohydrate, C5H11N·H2O, is composed of mol­ecular chains of alternating cyclo­pentyl­amine and water mol­ecules which are linked by O—H⋯O and O—H⋯N hydrogen bonds. These chains are parallel to the monoclinic b axis and they are bridged by weaker O⋯H—N contacts, forming hydrogen-bonded layers of mol­ecules parallel to (100).

Comment

The crystal structure of cylopentyl­amine monohydrate, (I)[link], was determined at 205 K (just below the ∼215 K melting point) as part of a series of studies on the structural behaviour of prototypical hydrogen-bonded mol­ecular systems at conditions of either non-ambient temperature or pressure. It crystallizes in the monoclinic space group P21/c with one cyclo­pentyl­amine mol­ecule and a single water mol­ecule in the asymmetric unit (Fig. 1[link]).

[Scheme 1]

The water mol­ecules are linked by O—H⋯O hydrogen bonds, forming the backbone of mol­ecular chains which run parallel to the b axis, while O—H⋯N hydrogen bonds link the cyclo­pentyl­amine mol­ecules to this backbone in an alternating sequence (Fig. 2[link] and Table 1[link]). The lengths of these hydrogen bonds are fairly similar, while the weaker O—H⋯N hydrogen bond is correspondingly less linear. Significantly weaker O⋯H—N contacts bridge neighbouring mol­ecular chains, forming slabs of mol­ecules parallel to (100) (Fig. 3[link]). One of these O⋯N distances is marginal.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing 30% probability displacement ellipsoids.
[Figure 2]
Figure 2
The hydrogen-bonded mol­ecular chains of (I)[link], viewed perpendicular to (101). The O—H⋯O and O—H⋯N hydrogen bonds are shown as light dotted lines and heavy dashed lines, respectively.
[Figure 3]
Figure 3
The packing of (I)[link], viewed along the b axis. The O—H⋯O and O—H⋯N hydrogen bonds are shown as dashed lines.

Experimental

The sample of cyclo­pentyl­amine monohydrate was prepared from anhydrous starting material (of 99% purity, as received from Aldrich) and placed in a sealed glass capillary tube with an inter­nal diameter of ca 0.2 mm. The sample was cooled using an Oxford Cryosystems low-temperature device (Cosier & Glazer, 1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]) until crystallization was observed. The temperature was then cycled between 180 and 215 K, and the capillary successively translated through the gas stream, so that the sample was partially remelted and the number of crystallites reduced. The final sample, at 205 K, was composed of a small number of crystals and the reflections from the largest of these were indexed and their intensities subsequently used for structure solution.

Crystal data
  • C5H11N·H2O

  • Mr = 103.16

  • Monoclinic, P 21 /c

  • a = 12.969 (4) Å

  • b = 4.7125 (13) Å

  • c = 11.005 (3) Å

  • β = 102.614 (17)°

  • V = 656.4 (3) Å3

  • Z = 4

  • Dx = 1.044 Mg m−3

  • Synchrotron radiation

  • λ = 0.6813 Å

  • Cell parameters from 445 reflections

  • θ = 8–43°

  • μ = 0.07 mm−1

  • T = 205 K

  • Cylinder, colourless

  • 0.20 × 0.10 (radius) mm

Data collection
  • Bruker SMART diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Gottingen, Germany.])Tmin = 0.35, Tmax = 0.99

  • 5211 measured reflections

  • 1573 independent reflections

  • 875 reflections with I > 2σ(I)

  • Rint = 0.051

  • θmax = 27.5°

  • h = −17 → 17

  • k = −6 → 6

  • l = −14 → 14

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.054

  • S = 1.13

  • 875 reflections

  • 76 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Modified Chebychev polynomial (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]) with the coefficients 2.88, −1.06, 1.90

  • (Δ/σ)max = 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 (1) 2.01 (1) 2.821 (2) 172 (2)
O1—H2⋯O1i 0.82 (1) 2.00 (1) 2.820 (1) 178 (3)
N1—H11⋯O1ii 0.89 (1) 2.35 (1) 3.137 (2) 148 (2)
N1—H12⋯O1iii 0.89 (1) 2.55 (1) 3.426 (2) 166 (2)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y, -z+2; (iii) -x+2, -y+1, -z+2.

H atoms attached to C atoms were placed in idealized positions (C—H = 0.96–1.00 Å) and allowed to ride on their parent atoms. H atoms attached to N and O atoms were located in a difference map and restrained to idealized distances and angles [N—H = 0.90 (1) Å, O—H = 0.82 (1) Å and O—H—O = 104 (1)°]. All H atoms were constrained so that Uiso(H) values were equal to 1.2Ueq of their respective parent atoms.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT; data reduction: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435-436.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT; data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2003).

Cylopentylamine monohydrate top
Crystal data top
C5H11N·H2OF(000) = 232
Mr = 103.16Dx = 1.044 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.68130 Å
Hall symbol: -P 2ybcCell parameters from 445 reflections
a = 12.969 (4) Åθ = 8–43°
b = 4.7125 (13) ŵ = 0.07 mm1
c = 11.005 (3) ÅT = 205 K
β = 102.614 (17)°Cylinder, colourless
V = 656.4 (3) Å30.20 × 0.10 × 0.10 × 0.10 (radius) mm
Z = 4
Data collection top
Bruker SMART
diffractometer
875 reflections with I > 2σ(I)
Curved silicon monochromatorRint = 0.051
φ and ω scansθmax = 27.5°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1717
Tmin = 0.35, Tmax = 0.99k = 66
5211 measured reflectionsl = 1414
1573 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 Modified Chebychev polynomial (Watkin, 1994; Prince, 1982) with the coefficients 2.88, -1.06, 1.90
S = 1.13(Δ/σ)max = 0.001
875 reflectionsΔρmax = 0.25 e Å3
76 parametersΔρmin = 0.16 e Å3
5 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.01039 (11)0.1644 (3)0.82203 (12)0.0497
N10.87797 (12)0.2930 (4)0.98670 (14)0.0473
C20.76853 (14)0.3412 (4)0.92430 (17)0.0473
C30.75593 (15)0.5310 (5)0.81296 (17)0.0552
C60.69733 (15)0.4823 (6)1.00014 (19)0.0638
C40.63976 (15)0.6122 (6)0.78280 (19)0.0630
C50.60449 (16)0.5968 (6)0.9053 (2)0.0678
H210.73900.15340.89470.0574*
H320.79980.70440.83540.0677*
H310.77710.43710.74330.0675*
H620.73370.63751.05040.0798*
H610.67440.34891.05470.0796*
H420.62950.80190.74610.0731*
H410.59990.47740.72380.0730*
H520.58400.77850.93210.0824*
H510.54540.47080.90090.0827*
H10.9678 (15)0.188 (5)0.8667 (18)0.0777*
H120.9016 (16)0.454 (3)1.0256 (19)0.0630*
H21.0062 (19)0.311 (3)0.7810 (19)0.0780*
H110.8823 (17)0.155 (4)1.0422 (16)0.0627*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0579 (8)0.0455 (8)0.0482 (8)0.0092 (7)0.0172 (6)0.0043 (6)
N10.0446 (9)0.0530 (11)0.0420 (8)0.0072 (8)0.0044 (7)0.0023 (8)
C20.0442 (10)0.0479 (11)0.0474 (10)0.0012 (9)0.0046 (8)0.0010 (9)
C30.0486 (10)0.0762 (15)0.0403 (10)0.0097 (11)0.0089 (8)0.0055 (10)
C60.0542 (12)0.0909 (17)0.0500 (11)0.0145 (12)0.0194 (9)0.0110 (12)
C40.0465 (11)0.0831 (17)0.0536 (12)0.0070 (11)0.0021 (9)0.0056 (11)
C50.0438 (11)0.0847 (17)0.0756 (15)0.0073 (11)0.0148 (10)0.0102 (13)
Geometric parameters (Å, º) top
O1—H10.823 (9)C3—H310.975
O1—H20.822 (9)C6—C51.510 (3)
N1—C21.453 (2)C6—H620.975
N1—H120.894 (9)C6—H610.960
N1—H110.887 (9)C4—C51.517 (3)
C2—C31.497 (3)C4—H420.978
C2—C61.526 (3)C4—H410.973
C2—H210.991C5—H520.961
C3—C41.519 (3)C5—H510.962
C3—H320.995
H1—O1—H2103.9 (9)C2—C6—H62111.3
C2—N1—H12106.9 (14)C5—C6—H62109.7
C2—N1—H11110.4 (14)C2—C6—H61111.4
H12—N1—H11109.4 (19)C5—C6—H61110.9
N1—C2—C3113.65 (16)H62—C6—H61108.3
N1—C2—C6117.06 (16)C3—C4—C5105.72 (16)
C3—C2—C6102.50 (17)C3—C4—H42111.0
N1—C2—H21106.4C5—C4—H42111.8
C3—C2—H21107.4C3—C4—H41109.8
C6—C2—H21109.4C5—C4—H41110.0
C2—C3—C4104.77 (17)H42—C4—H41108.4
C2—C3—H32109.5C4—C5—C6106.34 (16)
C4—C3—H32109.5C4—C5—H52112.7
C2—C3—H31111.9C6—C5—H52109.8
C4—C3—H31112.3C4—C5—H51112.1
H32—C3—H31108.9C6—C5—H51108.7
C2—C6—C5105.32 (17)H52—C5—H51107.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (1)2.01 (1)2.821 (2)172 (2)
O1—H2···O1i0.82 (1)2.00 (1)2.820 (1)178 (3)
N1—H11···O1ii0.89 (1)2.35 (1)3.137 (2)148 (2)
N1—H12···O1iii0.89 (1)2.55 (1)3.426 (2)166 (2)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y, z+2; (iii) x+2, y+1, z+2.
 

Acknowledgements

We thank Dr T. Prior of Daresbury Laboratory for his help during the experiment on station 9.8 at SRS. We also thank the EPSRC for funding both this project and DRA's Advanced Research Fellowship.

References

First citationAltomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435–436.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds