metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(dipicolinato-κ3O,N,O′)(1,10-phenanthroline-κ2N,N′)zinc(II) monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bDepartment of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamilnadu, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 1 February 2006; accepted 3 February 2006; online 15 February 2006)

The title compound, [Zn(C7H3NO4)(C12H8N2)(H2O)]·H2O, is isostructural with the manganese(II) analogue. The Zn atom is coordinated by a tridentate dipicolinate dianion, a bidentate 1,10-phenanthroline mol­ecule and a water mol­ecule, resulting in a substanti­ally distorted ZnO3N3 octa­hedral grouping. The crystal packing is consolidated by O—H⋯O hydrogen bonds and probable ππ stacking.

Comment

The title compound, (I)[link], arose during our exploratory synthetic studies of coordination polymers containing divalent cations, the dipicolinate (dipic) dianion and multi-functional nitro­gen-containing ligands such as 4,4-bipyridine (bipy) and 1,10-phenanthroline (phen). Compound (I)[link] is isostructural with the manganese(II) analogue (Ma et al., 2002[Ma, C., Fan, C., Chen, C. & Liu, Q. (2002). Acta Cryst. C58, m553-m555.]).

[Scheme 1]

The asymmetric unit of (I)[link] contains a neutral aqua­(di­pico­linato)(1,10-phenanthroline)zinc(II) molecule accompanied by one water mol­ecule of crystallization (Fig. 1[link]). The dipic dianion bonds to zinc in an O,N,O′-tridentate mode and the phen is N,N′-bidentate. The distorted octa­hedral ZnO3N3 coordination (Table 1[link]) is completed by a water mol­ecule. The substantial deviations of the bond angles from ideal octa­hedral values [range of cis angles = 73.99 (4)–122.56 (4)° and range of trans angles = 150.12 (4)–161.00 (5)°] may be correlated with the geometrical constraints imposed by the chelating ligands. The Zn—Od (d = dipic) bond lengths are distinctly different; both are substanti­ally longer than the Zn—Ow (w = water) bond. Very similar equivalent geometric values arose for the isostructural manganese complex (Ma et al., 2002[Ma, C., Fan, C., Chen, C. & Liu, Q. (2002). Acta Cryst. C58, m553-m555.]). Considered in isolation, the ZnO3N3 grouping in (I)[link] adopts the mer geometric isomer. The dipic dianion is close to planar (for the non-H atoms, r.m.s. deviation from the mean plane = 0.028 Å) and the bipy mol­ecule, as expected, is essentially flat (r.m.s. deviation from the mean plane = 0.036 Å). The zinc cation deviates from the dipic and bipy mean planes by 0.0828 (9) and 0.0232 (11) Å, respectively. The dihedral angle between the dipic and bipy planes is 80.08 (2)° [equivalent value for the Mn congener = 81.5 (1)°].

The packing in (I)[link] involves a network of O—H⋯O hydrogen bonds (Table 2[link]) and probable ππ stacking inter­actions (Fig. 2[link]) involving the phen ring systems. The shortest ππ ring-centroid separation of 3.4981 (9) Å involves the centroid, Cg1, of the N1/C1–C4/C12 phen ring and its inversion-generated partner, Cg1i [symmetry code: (i) 1 − x, 1 − y, z]. In the crystal structure, the solvent water mol­ecules connect complex mol­ecules via O—H⋯O hydrogen bonds, forming centrosymmetric clusters (Fig. 3[link]). In addition, inter­molecular O—H⋯O hydrogen bonds involving the coordinated water mol­ecules connect these clusters into a three-dimensional network (Fig. 4[link] and Table 2[link]), as in the Mn analogue (Ma et al., 2002[Ma, C., Fan, C., Chen, C. & Liu, Q. (2002). Acta Cryst. C58, m553-m555.]).

Compound (I)[link] complements a number of previously described dipicolinate complexes of zinc which show a wide variety of metal–ligand binding modes. For example, in (C3H5N2)2[Zn(dipic)2]·2H2O (MacDonald et al., 2000[MacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundberg, J. L., Henning, R. W., Schultz, A. J. & Manson , J. L. (2000). J. Am. Chem. Soc. 122, 11692-11702.]), two dipic dianions bond to zinc and the resulting overall dianion is charge-balanced by two imidazolinium cations. In Zn(Hdipic)2·3H2O (Håkansson et al., 1993[Håkansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449-455.]), two Hdipic monoanions chelate the zinc cation, resulting in a neutral mol­ecule. In Zn2(dipic)2(H2O)5·2H2O (Håkansson et al., 1993[Håkansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449-455.]), a dipic ligand acts as a bridge between two Zn centres (one coordinated by two tridentate dipic anions and one coordinated by a monodentate dipic O atom and five water mol­ecules). In (C5H8N3)[Zn(dipic)(Hdipic)]·3H2O (Ranjbar et al., 2002[Ranjbar, M., Moghimi, A., Aghabozorg, H. & Yap, G. Y. A. (2002). Anal. Sci. 18, 219-220.]), one dipic dianion and one Hdipic anion bind to zinc, with 2,6-diamino­pyridinium serving as the charge-balancing cation. The complex formula of [Zn(phen)3]4(NO3)7·Hdipic·26H2O (Moghimi et al., 2005[Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 160-169.]) corresponds to a crystal structure in which the Hdipic anion does not bond to Zn. Finally, a novel variant to (I)[link] is provided by [Zn(bipy)2(H2O)2][Zn(dipic)2]·7H2O (Moghimi et al., 2005[Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 160-169.]), in which the bipy mol­ecules and dipic dianions complex separate zinc centres, resulting in a mol­ecular salt.

[Figure 1]
Figure 1
View of (I)[link], showing 50% displacement ellipsoids and arbitrary spheres for the H atoms. The hydrogen bond is indicated by a dashed line.
[Figure 2]
Figure 2
Detail of (I)[link] showing probable ππ stacking inter­actions shorter than 3.8 Å (as dashed lines) linking the centroids (pink circles) of the phen rings. The Zn1* mol­ecule is generated by the symmetry operation (1 − x, 1 − y, z) and Zn1% by (1 + x, y, z). H atoms have been omitted.
[Figure 3]
Figure 3
Detail of (I)[link] showing the water-bridged dimeric entity. All H atoms except those of the non-coordinated water mol­ecule have been omitted for clarity. The symmetry code is as in Table 2[link]. Dashed lines indicate hydrogen bonds.
[Figure 4]
Figure 4
The packing of (I)[link], viewed along [100]. Only H atoms involved in hydrogen bonds (dashed lines) are shown.

Experimental

A mixture of Zn(OAc)2·2H2O (27 mg), pyridine-2,6-dicarboxylic acid (20 mg), 1,10-phenanthroline monohydrate (24 mg) and water (2.0 ml) (molar ratio = ca 1:1:1:9300) was sealed in a 23 ml Teflon-lined stainless steel bomb and kept at 423 K under autogenous pressure for 72 h. After slowly cooling (10 K h−1) to room temperature, needle-shaped colourless crystals of (I)[link] were obtained by filtration and rinsing with water and diethyl ether (yield 72%). Analysis calculated for C19H17N3O7Zn: C 49.6, H 2.71, N 9.16%; found: C 50.71, H 2.72, N 9.46%. Thermogravimetric analysis for (I)[link] (ramp at 10 K min−1 under N2) revealed a weight loss of 6.7% between 463 and 468 K, probably corresponding to the loss of both coordinated and non-coordinated water mol­ecules (calculated 8.5%). The dipic and phen ligands decompose slowly (weight loss = 44.8%) over the broad temperature range 493–1173 K. IR (KBr, cm−1): 3445, 1637, 1583, 640, 430.

Crystal data
  • [Zn(C7H3NO4)(C12H8N2)(H2O)]·H2O

  • Mr = 446.71

  • Monoclinic, P 21 /c

  • a = 7.5199 (3) Å

  • b = 20.9079 (8) Å

  • c = 11.5755 (4) Å

  • β = 100.135 (1)°

  • V = 1791.56 (12) Å3

  • Z = 4

  • Dx = 1.656 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7488 reflections

  • θ = 2.7–32.0°

  • μ = 1.42 mm−1

  • T = 293 (2) K

  • Block, colourless

  • 0.21 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.747, Tmax = 0.757

  • 21156 measured reflections

  • 6439 independent reflections

  • 4678 reflections with I > 2σ(I)

  • Rint = 0.025

  • θmax = 32.5°

  • h = −10 → 11

  • k = −31 → 31

  • l = −13 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 0.97

  • 6439 reflections

  • 263 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0439P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.003

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0020 (5)

Table 1
Selected bond lengths (Å)

Zn1—O5 2.0513 (11)
Zn1—N3 2.0540 (11)
Zn1—N2 2.1168 (11)
Zn1—O3 2.1941 (11)
Zn1—N1 2.2071 (12)
Zn1—O1 2.2651 (10)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O4i 0.84 1.79 2.6058 (17) 162
O5—H52⋯O2ii 0.83 1.90 2.7162 (15) 167
O6—H61⋯O2iii 0.90 1.98 2.8461 (18) 161
O6—H62⋯O1 0.83 2.14 2.9356 (16) 160
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x, -y+1, -z+1.

The water H atoms were located in difference maps and refined as riding in their as-found relative positions. The C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. App. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Aqua(dipicolinato-κ3O,N,O')(1,10-phenanthroline-κ2N,N)zinc(II) monohydrate top
Crystal data top
[Zn(C7H3NO4)(C12H8N2)(H2O)]·H2OF(000) = 912
Mr = 446.71Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7488 reflections
a = 7.5199 (3) Åθ = 2.7–32.0°
b = 20.9079 (8) ŵ = 1.42 mm1
c = 11.5755 (4) ÅT = 293 K
β = 100.135 (1)°Block, colourless
V = 1791.56 (12) Å30.21 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART1000 CCD
diffractometer
6439 independent reflections
Radiation source: fine-focus sealed tube4678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 32.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1011
Tmin = 0.747, Tmax = 0.757k = 3131
21156 measured reflectionsl = 1317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.003
6439 reflectionsΔρmax = 0.33 e Å3
263 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.33893 (2)0.623507 (7)0.237913 (15)0.03005 (6)
C10.1319 (2)0.60512 (7)0.02782 (14)0.0364 (3)
H10.09610.64760.02440.044*
C20.0793 (2)0.57113 (8)0.13292 (14)0.0403 (4)
H20.01020.59090.19760.048*
C30.1306 (2)0.50902 (8)0.13923 (14)0.0404 (4)
H30.09680.48610.20850.049*
C40.2347 (2)0.47943 (7)0.04095 (14)0.0334 (3)
C50.2931 (2)0.41444 (8)0.03885 (16)0.0427 (4)
H50.26460.38970.10640.051*
C60.3888 (2)0.38816 (7)0.05892 (17)0.0431 (4)
H60.42170.34530.05860.052*
C70.4409 (2)0.42541 (7)0.16389 (15)0.0358 (3)
C80.5440 (2)0.40106 (8)0.26720 (17)0.0450 (4)
H80.57730.35820.27170.054*
C90.5954 (2)0.44054 (9)0.36141 (16)0.0459 (4)
H90.66350.42480.43040.055*
C100.5442 (2)0.50485 (8)0.35248 (14)0.0379 (3)
H100.58130.53150.41650.046*
C110.39179 (18)0.49022 (6)0.16361 (13)0.0286 (3)
C120.28227 (18)0.51734 (6)0.06063 (12)0.0279 (3)
N10.23076 (16)0.57902 (5)0.06708 (11)0.0301 (2)
N20.44485 (15)0.52953 (5)0.25652 (11)0.0303 (2)
C130.00108 (18)0.62823 (6)0.34393 (12)0.0277 (3)
C140.00259 (18)0.68935 (6)0.27386 (12)0.0275 (3)
C150.1326 (2)0.73519 (7)0.25645 (16)0.0410 (4)
H150.23440.73110.29130.049*
C160.1125 (2)0.78746 (8)0.18575 (18)0.0504 (4)
H160.20170.81870.17220.061*
C170.0402 (3)0.79284 (7)0.13578 (16)0.0455 (4)
H170.05620.82800.08940.055*
C180.1689 (2)0.74519 (7)0.15580 (13)0.0331 (3)
C190.3407 (2)0.74316 (7)0.10289 (15)0.0403 (4)
N30.14862 (15)0.69489 (5)0.22351 (11)0.0270 (2)
O10.13117 (14)0.59104 (5)0.34531 (10)0.0343 (2)
O20.13240 (14)0.61879 (5)0.39422 (11)0.0406 (3)
O30.44372 (15)0.69665 (5)0.13165 (11)0.0438 (3)
O40.3601 (2)0.78820 (7)0.03632 (14)0.0706 (4)
O50.51776 (15)0.65501 (7)0.38119 (11)0.0517 (3)
H510.48900.67650.43690.062*
H520.62930.64960.38950.062*
O60.1270 (2)0.45365 (6)0.39703 (12)0.0675 (4)
H610.11220.43820.46760.081*
H620.12290.49330.39960.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02840 (9)0.02932 (9)0.03322 (10)0.00121 (6)0.00758 (6)0.00367 (6)
C10.0365 (8)0.0359 (7)0.0356 (8)0.0011 (6)0.0026 (6)0.0014 (6)
C20.0397 (8)0.0489 (9)0.0304 (8)0.0058 (7)0.0009 (6)0.0023 (6)
C30.0398 (8)0.0518 (9)0.0299 (8)0.0124 (7)0.0066 (6)0.0098 (7)
C40.0307 (7)0.0372 (7)0.0343 (8)0.0080 (5)0.0115 (6)0.0084 (6)
C50.0448 (9)0.0384 (8)0.0478 (10)0.0078 (7)0.0159 (7)0.0168 (7)
C60.0452 (9)0.0294 (7)0.0584 (12)0.0002 (6)0.0191 (8)0.0088 (7)
C70.0331 (7)0.0308 (7)0.0466 (9)0.0018 (5)0.0154 (6)0.0011 (6)
C80.0435 (9)0.0368 (8)0.0570 (11)0.0098 (7)0.0153 (8)0.0104 (7)
C90.0425 (9)0.0519 (9)0.0435 (10)0.0109 (7)0.0082 (7)0.0154 (8)
C100.0349 (8)0.0462 (8)0.0323 (8)0.0029 (6)0.0044 (6)0.0031 (6)
C110.0258 (6)0.0300 (6)0.0320 (7)0.0007 (5)0.0108 (5)0.0010 (5)
C120.0261 (6)0.0297 (6)0.0295 (7)0.0038 (5)0.0098 (5)0.0030 (5)
N10.0303 (6)0.0293 (5)0.0306 (6)0.0012 (4)0.0053 (5)0.0013 (4)
N20.0284 (6)0.0336 (6)0.0294 (6)0.0014 (4)0.0067 (5)0.0007 (5)
C130.0253 (6)0.0286 (6)0.0296 (7)0.0032 (5)0.0059 (5)0.0008 (5)
C140.0266 (6)0.0261 (6)0.0302 (7)0.0011 (5)0.0061 (5)0.0001 (5)
C150.0320 (8)0.0363 (8)0.0562 (11)0.0061 (6)0.0115 (7)0.0057 (7)
C160.0444 (9)0.0373 (8)0.0687 (13)0.0108 (7)0.0074 (9)0.0118 (8)
C170.0581 (10)0.0305 (7)0.0473 (10)0.0015 (7)0.0079 (8)0.0118 (7)
C180.0424 (8)0.0281 (6)0.0301 (8)0.0053 (5)0.0101 (6)0.0003 (5)
C190.0545 (10)0.0337 (7)0.0378 (9)0.0149 (7)0.0220 (7)0.0065 (6)
N30.0304 (6)0.0245 (5)0.0275 (6)0.0028 (4)0.0085 (4)0.0001 (4)
O10.0318 (5)0.0315 (5)0.0415 (6)0.0048 (4)0.0116 (4)0.0084 (4)
O20.0311 (5)0.0464 (6)0.0479 (7)0.0020 (4)0.0172 (5)0.0117 (5)
O30.0432 (6)0.0425 (6)0.0522 (7)0.0105 (5)0.0261 (6)0.0087 (5)
O40.0981 (12)0.0538 (8)0.0732 (10)0.0133 (8)0.0514 (9)0.0159 (7)
O50.0281 (5)0.0790 (9)0.0480 (7)0.0034 (5)0.0072 (5)0.0315 (6)
O60.1085 (12)0.0482 (7)0.0422 (8)0.0068 (8)0.0035 (8)0.0062 (6)
Geometric parameters (Å, º) top
Zn1—O52.0513 (11)C10—N21.3290 (19)
Zn1—N32.0540 (11)C10—H100.9300
Zn1—N22.1168 (11)C11—N21.3566 (18)
Zn1—O32.1941 (11)C11—C121.441 (2)
Zn1—N12.2071 (12)C12—N11.3522 (17)
Zn1—O12.2651 (10)C13—O21.2471 (17)
C1—N11.3304 (19)C13—O11.2602 (16)
C1—C21.404 (2)C13—C141.5165 (18)
C1—H10.9300C14—N31.3357 (17)
C2—C31.360 (2)C14—C151.3857 (19)
C2—H20.9300C15—C161.389 (2)
C3—C41.406 (2)C15—H150.9300
C3—H30.9300C16—C171.378 (3)
C4—C121.411 (2)C16—H160.9300
C4—C51.427 (2)C17—C181.380 (2)
C5—C61.347 (3)C17—H170.9300
C5—H50.9300C18—N31.3364 (18)
C6—C71.438 (2)C18—C191.524 (2)
C6—H60.9300C19—O41.241 (2)
C7—C81.402 (2)C19—O31.251 (2)
C7—C111.4043 (19)O5—H510.8444
C8—C91.368 (3)O5—H520.8348
C8—H80.9300O6—H610.9036
C9—C101.397 (2)O6—H620.8296
C9—H90.9300
O5—Zn1—N3100.40 (5)C9—C10—H10118.6
O5—Zn1—N291.97 (5)N2—C11—C7122.84 (13)
N3—Zn1—N2157.96 (5)N2—C11—C12117.59 (12)
O5—Zn1—O388.88 (5)C7—C11—C12119.57 (13)
N3—Zn1—O376.23 (4)N1—C12—C4123.27 (13)
N2—Zn1—O3122.56 (4)N1—C12—C11117.21 (12)
O5—Zn1—N1161.00 (5)C4—C12—C11119.52 (13)
N3—Zn1—N195.27 (5)C1—N1—C12118.00 (13)
N2—Zn1—N176.86 (4)C1—N1—Zn1129.14 (10)
O3—Zn1—N184.46 (4)C12—N1—Zn1112.79 (9)
O5—Zn1—O194.01 (5)C10—N2—C11118.10 (13)
N3—Zn1—O173.99 (4)C10—N2—Zn1126.27 (10)
N2—Zn1—O187.11 (4)C11—N2—Zn1115.39 (9)
O3—Zn1—O1150.12 (4)O2—C13—O1125.76 (13)
N1—Zn1—O1100.63 (4)O2—C13—C14118.26 (12)
N1—C1—C2122.61 (14)O1—C13—C14115.98 (12)
N1—C1—H1118.7N3—C14—C15120.99 (13)
C2—C1—H1118.7N3—C14—C13113.59 (11)
C3—C2—C1119.37 (15)C15—C14—C13125.36 (13)
C3—C2—H2120.3C14—C15—C16118.47 (15)
C1—C2—H2120.3C14—C15—H15120.8
C2—C3—C4119.96 (14)C16—C15—H15120.8
C2—C3—H3120.0C17—C16—C15119.76 (15)
C4—C3—H3120.0C17—C16—H16120.1
C3—C4—C12116.78 (14)C15—C16—H16120.1
C3—C4—C5123.97 (14)C16—C17—C18118.83 (15)
C12—C4—C5119.24 (15)C16—C17—H17120.6
C6—C5—C4121.35 (15)C18—C17—H17120.6
C6—C5—H5119.3N3—C18—C17121.16 (14)
C4—C5—H5119.3N3—C18—C19113.96 (13)
C5—C6—C7120.97 (14)C17—C18—C19124.86 (14)
C5—C6—H6119.5O4—C19—O3128.30 (16)
C7—C6—H6119.5O4—C19—C18115.38 (16)
C8—C7—C11117.27 (15)O3—C19—C18116.32 (13)
C8—C7—C6123.47 (14)C14—N3—C18120.77 (12)
C11—C7—C6119.23 (15)C14—N3—Zn1121.07 (9)
C9—C8—C7119.82 (15)C18—N3—Zn1118.01 (10)
C9—C8—H8120.1C13—O1—Zn1115.29 (9)
C7—C8—H8120.1C19—O3—Zn1115.10 (9)
C8—C9—C10119.08 (16)Zn1—O5—H51124.6
C8—C9—H9120.5Zn1—O5—H52123.5
C10—C9—H9120.5H51—O5—H52111.8
N2—C10—C9122.86 (16)H61—O6—H62108.3
N2—C10—H10118.6
N1—C1—C2—C30.0 (3)O5—Zn1—N2—C11167.15 (10)
C1—C2—C3—C40.2 (2)N3—Zn1—N2—C1168.34 (17)
C2—C3—C4—C120.6 (2)O3—Zn1—N2—C1177.22 (11)
C2—C3—C4—C5179.33 (15)N1—Zn1—N2—C112.68 (9)
C3—C4—C5—C6178.27 (16)O1—Zn1—N2—C1198.94 (10)
C12—C4—C5—C61.7 (2)O2—C13—C14—N3179.99 (13)
C4—C5—C6—C72.1 (3)O1—C13—C14—N30.28 (18)
C5—C6—C7—C8178.44 (16)O2—C13—C14—C152.8 (2)
C5—C6—C7—C110.4 (2)O1—C13—C14—C15176.89 (14)
C11—C7—C8—C91.3 (2)N3—C14—C15—C160.4 (2)
C6—C7—C8—C9176.75 (16)C13—C14—C15—C16177.33 (15)
C7—C8—C9—C100.2 (3)C14—C15—C16—C170.5 (3)
C8—C9—C10—N21.0 (3)C15—C16—C17—C181.1 (3)
C8—C7—C11—N22.2 (2)C16—C17—C18—N30.8 (3)
C6—C7—C11—N2175.90 (14)C16—C17—C18—C19177.52 (16)
C8—C7—C11—C12178.55 (13)N3—C18—C19—O4177.62 (15)
C6—C7—C11—C123.3 (2)C17—C18—C19—O40.8 (2)
C3—C4—C12—N10.9 (2)N3—C18—C19—O32.3 (2)
C5—C4—C12—N1179.06 (13)C17—C18—C19—O3179.21 (15)
C3—C4—C12—C11178.80 (13)C15—C14—N3—C180.6 (2)
C5—C4—C12—C111.2 (2)C13—C14—N3—C18177.94 (12)
N2—C11—C12—N14.18 (18)C15—C14—N3—Zn1174.88 (11)
C7—C11—C12—N1176.57 (13)C13—C14—N3—Zn12.42 (16)
N2—C11—C12—C4175.54 (12)C17—C18—N3—C140.0 (2)
C7—C11—C12—C43.7 (2)C19—C18—N3—C14178.55 (12)
C2—C1—N1—C120.2 (2)C17—C18—N3—Zn1175.63 (12)
C2—C1—N1—Zn1177.03 (11)C19—C18—N3—Zn12.91 (16)
C4—C12—N1—C10.7 (2)O5—Zn1—N3—C1493.69 (11)
C11—C12—N1—C1179.00 (13)N2—Zn1—N3—C1429.46 (19)
C4—C12—N1—Zn1178.02 (11)O3—Zn1—N3—C14179.93 (11)
C11—C12—N1—Zn11.69 (15)N1—Zn1—N3—C1497.10 (11)
O5—Zn1—N1—C1121.17 (18)O1—Zn1—N3—C142.47 (10)
N3—Zn1—N1—C124.41 (13)O5—Zn1—N3—C1890.68 (11)
N2—Zn1—N1—C1176.46 (14)N2—Zn1—N3—C18146.17 (12)
O3—Zn1—N1—C151.16 (13)O3—Zn1—N3—C184.44 (10)
O1—Zn1—N1—C199.07 (13)N1—Zn1—N3—C1878.54 (11)
O5—Zn1—N1—C1255.8 (2)O1—Zn1—N3—C18178.10 (11)
N3—Zn1—N1—C12158.65 (9)O2—C13—O1—Zn1178.00 (12)
N2—Zn1—N1—C120.48 (9)C14—C13—O1—Zn11.69 (15)
O3—Zn1—N1—C12125.78 (10)O5—Zn1—O1—C13101.89 (10)
O1—Zn1—N1—C1283.98 (9)N3—Zn1—O1—C132.21 (10)
C9—C10—N2—C110.1 (2)N2—Zn1—O1—C13166.33 (10)
C9—C10—N2—Zn1173.96 (12)O3—Zn1—O1—C137.16 (15)
C7—C11—N2—C101.5 (2)N1—Zn1—O1—C1390.28 (10)
C12—C11—N2—C10179.24 (13)O4—C19—O3—Zn1173.96 (16)
C7—C11—N2—Zn1176.25 (11)C18—C19—O3—Zn15.98 (17)
C12—C11—N2—Zn14.53 (16)O5—Zn1—O3—C19106.75 (11)
O5—Zn1—N2—C1018.64 (13)N3—Zn1—O3—C195.75 (11)
N3—Zn1—N2—C10105.88 (16)N2—Zn1—O3—C19161.63 (11)
O3—Zn1—N2—C10108.56 (12)N1—Zn1—O3—C1991.06 (11)
N1—Zn1—N2—C10176.90 (13)O1—Zn1—O3—C1910.66 (16)
O1—Zn1—N2—C1075.28 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O4i0.841.792.6058 (17)162
O5—H52···O2ii0.831.902.7162 (15)167
O6—H61···O2iii0.901.982.8461 (18)161
O6—H62···O10.832.142.9356 (16)160
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1, z+1.
 

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. App. Cryst. 30, 565.  CrossRef Google Scholar
First citationHåkansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449–455.  Google Scholar
First citationMacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundberg, J. L., Henning, R. W., Schultz, A. J. & Manson , J. L. (2000). J. Am. Chem. Soc. 122, 11692–11702.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, C., Fan, C., Chen, C. & Liu, Q. (2002). Acta Cryst. C58, m553–m555.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 160–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationRanjbar, M., Moghimi, A., Aghabozorg, H. & Yap, G. Y. A. (2002). Anal. Sci. 18, 219–220.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds