organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(3-nitro­phen­yl)isophthalamide tetra­butyl­ammonium chloride

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: light@soton.ac.uk

(Received 7 February 2006; accepted 15 February 2006; online 22 February 2006)

The receptor of the title compound, C14H36N+·Cl·C20H14N4O6, binds a chloride anion via two N—H⋯Cl hydrogen bonds [N⋯Cl = 3.2367 (14) Å and 3.3239 (15)°].

Comment

This work forms part of an ongoing study on the conformational properties of the anion complexes of isophthalamides and their derivatives.

[Scheme 1]

The receptor in the title chloride complex, (I)[link], adopts a similar conformation to that of a bromide–isophthalamide complex reported by Kavallieratos et al. (1997[Kavallieratos, K., de Gale, S. R., Austin, D. J. & Crabtree, R. H. (1997). J. Am. Chem. Soc. 119, 2325-2326.]). In both cases, the anion lies above the least-squares plane through the central aromatic ring. In the case of the chloride complex, the angle between the plane through the central aromatic ring and a plane defined by the anion and the amide H atoms is 45.54 (4)°, whilst for the larger bromide anion the angle was found to be 63.63 (6)°. The larger size of the bromide anion is also evident in the hydrogen-bond donor–acceptor distances, which were found to be 3.634 (4) and 3.436 (4) Å for the two H⋯Br inter­actions, and are 3.3239 (15) and 3.2367 (14) Å for the H⋯Cl inter­actions in the structure reported here (Table 1[link]).

It is inter­esting to note that the current chloride structure and the previous bromide structure form discrete 1:1 receptor–anion units, whilst the fluoride complex of a similar compound reported by Coles et al. (2003[Coles, S. J., Frey, G. J., Gale, P. A., Hursthouse, M. B., Light, M. E., Navakhun, K. & Thomas, G. L. (2003). Chem. Commun. pp. 568-569.]) forms a double helix with a 2:2 receptor-to-anion stoichiometry. This double unit is also present in the fluoride complex of a 1,3-diamido­anthraquinone (a `twisted' isophthalamide analogue) reported by Brooks et al. (2005[Brooks, S. J., Evans, L. S., Gale, P. A., Hursthouse, M. B. & Light, M. E. (2005). Chem. Commun. pp. 734-736.])

[Figure 1]
Figure 1
View of the asymmetric unit of (I)[link], showing the atom labelling and the hydrogen-bonded chloride anion. Displacement ellipsoids are drawn at the 50% probability level and hydrogen bonds are shown as dashed lines.

Experimental

The title compound was prepared as reported previously by Moore et al. (1997[Moore, J. A. & Kaur, S. (1997). Macromolecules, 30, 3427-3438.]) and Coles et al. (2003[Coles, S. J., Frey, G. J., Gale, P. A., Hursthouse, M. B., Light, M. E., Navakhun, K. & Thomas, G. L. (2003). Chem. Commun. pp. 568-569.]) Crystals were obtained by slow evaporation of a solution of the receptor in the presence of excess tetra­butyl­ammonium chloride.

Crystal data
  • C16H36N+·Cl·C20H14N4O6

  • Mr = 684.26

  • Monoclinic, P 21 /n

  • a = 11.6508 (2) Å

  • b = 26.0390 (4) Å

  • c = 12.0569 (2) Å

  • β = 96.753 (1)°

  • V = 3632.39 (10) Å3

  • Z = 4

  • Dx = 1.251 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 24972 reflections

  • θ = 2.9–27.5°

  • μ = 0.16 mm−1

  • T = 120 (2) K

  • Slab, colourless

  • 0.60 × 0.60 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])Tmin = 0.902, Tmax = 0.985

  • 20923 measured reflections

  • 8136 independent reflections

  • 6851 reflections with I > 2σ(I)

  • Rint = 0.078

  • θmax = 27.5°

  • h = −15 → 14

  • k = −31 → 33

  • l = −14 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.149

  • S = 0.99

  • 8136 reflections

  • 438 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0795P)2 + 1.9526P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.004

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0057 (16)

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.88 2.38 3.2367 (14) 163
N3—H3A⋯Cl1 0.88 2.46 3.3239 (15) 166

All H atoms were positioned with ideal geometry and allowed to ride on their parent atoms, with C—H = 0.95 (aromatic), 0.96 (methyl­ene), 0.98 (meth­yl) and 0.88 Å (N—H), and with Uiso(H) = 1.2Ueq(aromatic, methyl­ene and NH H atoms) or 1.5Ueq(methyl C).

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

N,N'-Bis(3-nitrophenyl)isophthalamide tetrabutylammonium chloride top
Crystal data top
C16H36N+·Cl·C20H14N4O6F(000) = 1464
Mr = 684.26Dx = 1.251 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 24972 reflections
a = 11.6508 (2) Åθ = 2.9–27.5°
b = 26.0390 (4) ŵ = 0.16 mm1
c = 12.0569 (2) ÅT = 120 K
β = 96.753 (1)°Rod, colourless
V = 3632.39 (10) Å30.60 × 0.60 × 0.10 mm
Z = 4
Data collection top
Bruker–Nonius CCD camera on κ-goniostat
diffractometer
8136 independent reflections
Radiation source: Bruker Nonius FR591 Rotating Anode6851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
φ and ω scansh = 1514
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 3133
Tmin = 0.902, Tmax = 0.985l = 1415
20923 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0795P)2 + 1.9526P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.004
8136 reflectionsΔρmax = 0.43 e Å3
438 parametersΔρmin = 0.31 e Å3
288 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0057 (16)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å (Caromatic), 0.96 (Cmethylene), 0.98 (methyl) and 0.88 (N—H) with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene and N—H) or 1.5Ueq(Cmethyl).

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84106 (3)0.239970 (16)0.68422 (3)0.02238 (13)
C10.66025 (16)0.45752 (7)0.71558 (14)0.0243 (4)
C20.77063 (17)0.46541 (7)0.68776 (15)0.0281 (4)
H20.79490.49820.66490.034*
C30.84463 (17)0.42344 (8)0.69460 (16)0.0291 (4)
H30.92170.42760.67780.035*
C40.80711 (15)0.37543 (7)0.72582 (14)0.0240 (4)
H40.85840.34700.72890.029*
C50.69425 (14)0.36863 (6)0.75282 (13)0.0196 (3)
C60.61969 (15)0.41058 (7)0.74947 (14)0.0220 (3)
H60.54370.40720.76970.026*
C70.57944 (14)0.30687 (7)0.84893 (14)0.0212 (3)
C80.57061 (14)0.25100 (6)0.87738 (14)0.0189 (3)
C90.60390 (13)0.21178 (6)0.80876 (13)0.0188 (3)
H90.62980.21990.73900.023*
C100.59913 (13)0.16064 (6)0.84253 (14)0.0192 (3)
C110.56073 (14)0.14881 (7)0.94520 (14)0.0217 (3)
H110.55880.11410.96910.026*
C120.52536 (14)0.18790 (7)1.01235 (14)0.0222 (3)
H120.49870.17981.08170.027*
C130.52900 (14)0.23845 (7)0.97825 (14)0.0212 (3)
H130.50310.26491.02360.025*
C140.63103 (15)0.11653 (7)0.77184 (14)0.0217 (3)
C150.75027 (15)0.09243 (6)0.62296 (14)0.0211 (3)
C160.85457 (15)0.10464 (7)0.58215 (15)0.0240 (4)
H160.89340.13570.60450.029*
C170.90159 (17)0.07147 (7)0.50890 (16)0.0297 (4)
H170.97250.08000.48180.036*
C180.84591 (19)0.02603 (7)0.47510 (16)0.0313 (4)
H180.87790.00310.42580.038*
C190.74235 (18)0.01530 (7)0.51560 (15)0.0281 (4)
C200.69181 (16)0.04725 (7)0.58902 (15)0.0245 (4)
H200.62040.03860.61490.029*
N10.57972 (15)0.50147 (6)0.70908 (14)0.0312 (4)
N20.66191 (12)0.31854 (5)0.78099 (12)0.0202 (3)
H2A0.69760.29270.75260.024*
N30.70663 (12)0.12787 (5)0.69629 (12)0.0208 (3)
H3A0.73000.15990.69320.025*
N40.68118 (18)0.03238 (6)0.47957 (15)0.0387 (4)
O10.60268 (15)0.53933 (6)0.65573 (15)0.0474 (4)
O20.49396 (14)0.49842 (6)0.75905 (15)0.0458 (4)
O30.51966 (12)0.33909 (5)0.88865 (12)0.0320 (3)
O40.59087 (13)0.07377 (5)0.78344 (12)0.0328 (3)
O50.7175 (2)0.05704 (7)0.40400 (17)0.0684 (6)
O60.59797 (16)0.04552 (6)0.52535 (15)0.0501 (4)
C210.22245 (14)0.21926 (6)0.88104 (13)0.0190 (3)
H21A0.21080.22050.96100.023*
H21B0.30660.22170.87660.023*
C220.16391 (15)0.26590 (6)0.82291 (14)0.0221 (3)
H22A0.07910.26310.82260.027*
H22B0.18100.26710.74440.027*
C230.20702 (16)0.31501 (7)0.88303 (15)0.0252 (4)
H23A0.18910.31370.96120.030*
H23B0.29200.31720.88450.030*
C240.15184 (17)0.36281 (7)0.82650 (16)0.0289 (4)
H24A0.16960.36430.74910.043*
H24B0.18260.39350.86680.043*
H24C0.06790.36140.82730.043*
C250.18847 (14)0.16516 (7)0.70861 (13)0.0192 (3)
H25A0.13750.19200.67140.023*
H25B0.15890.13150.67980.023*
C260.31027 (14)0.17269 (7)0.67593 (14)0.0219 (3)
H26A0.34720.20250.71680.026*
H26B0.35760.14190.69720.026*
C270.30582 (16)0.18169 (8)0.55045 (14)0.0263 (4)
H27A0.26270.15320.51010.032*
H27B0.26340.21400.53060.032*
C280.42588 (17)0.18511 (9)0.51296 (16)0.0343 (5)
H28A0.47070.21170.55640.051*
H28B0.41910.19390.43340.051*
H28C0.46510.15190.52490.051*
C290.25648 (14)0.12629 (7)0.89477 (14)0.0205 (3)
H29A0.33650.13140.87690.025*
H29B0.25710.13170.97610.025*
C300.22193 (16)0.07086 (7)0.86828 (16)0.0262 (4)
H30A0.19110.06790.78840.031*
H30B0.16010.06050.91350.031*
C310.32561 (17)0.03500 (8)0.89341 (17)0.0316 (4)
H31A0.38400.04340.84290.038*
H31B0.36120.04080.97110.038*
C320.2923 (2)0.02112 (9)0.8791 (2)0.0516 (6)
H32A0.23860.03030.93270.077*
H32B0.36180.04250.89230.077*
H32C0.25490.02690.80300.077*
C330.05375 (13)0.15878 (7)0.84952 (13)0.0186 (3)
H33A0.02960.12480.81790.022*
H33B0.00670.18520.80590.022*
C340.02629 (15)0.16085 (8)0.97008 (15)0.0266 (4)
H34A0.06010.19231.00660.032*
H34B0.06100.13081.01170.032*
C350.10470 (15)0.16081 (8)0.97318 (15)0.0275 (4)
H35A0.13920.19000.92830.033*
H35B0.13760.12870.93880.033*
C360.13702 (17)0.16509 (10)1.09185 (17)0.0383 (5)
H36A0.11100.13431.13420.058*
H36B0.22110.16831.08930.058*
H36C0.09980.19541.12820.058*
N50.17984 (11)0.16721 (5)0.83367 (11)0.0175 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0200 (2)0.0217 (2)0.0268 (2)0.00065 (15)0.00836 (15)0.00045 (15)
C10.0297 (9)0.0193 (8)0.0231 (8)0.0020 (7)0.0001 (7)0.0013 (6)
C20.0354 (10)0.0213 (8)0.0280 (9)0.0039 (7)0.0056 (7)0.0019 (7)
C30.0276 (9)0.0286 (9)0.0325 (9)0.0043 (7)0.0095 (7)0.0003 (7)
C40.0240 (8)0.0235 (9)0.0252 (8)0.0028 (7)0.0062 (7)0.0011 (7)
C50.0224 (8)0.0189 (8)0.0173 (7)0.0004 (6)0.0017 (6)0.0014 (6)
C60.0213 (8)0.0212 (8)0.0230 (8)0.0011 (7)0.0008 (6)0.0018 (6)
C70.0172 (7)0.0211 (8)0.0257 (8)0.0004 (6)0.0039 (6)0.0031 (6)
C80.0123 (7)0.0211 (8)0.0232 (8)0.0006 (6)0.0022 (6)0.0023 (6)
C90.0143 (7)0.0217 (8)0.0210 (7)0.0003 (6)0.0045 (6)0.0013 (6)
C100.0126 (7)0.0215 (8)0.0239 (8)0.0005 (6)0.0037 (6)0.0004 (6)
C110.0162 (7)0.0238 (8)0.0251 (8)0.0003 (6)0.0029 (6)0.0037 (6)
C120.0166 (7)0.0302 (9)0.0202 (7)0.0019 (7)0.0038 (6)0.0006 (7)
C130.0135 (7)0.0269 (9)0.0237 (8)0.0022 (6)0.0034 (6)0.0058 (6)
C140.0201 (8)0.0200 (8)0.0257 (8)0.0024 (6)0.0052 (6)0.0004 (6)
C150.0244 (8)0.0183 (8)0.0211 (7)0.0039 (6)0.0046 (6)0.0024 (6)
C160.0249 (8)0.0207 (8)0.0272 (8)0.0028 (7)0.0058 (7)0.0034 (7)
C170.0320 (9)0.0271 (9)0.0324 (9)0.0074 (8)0.0144 (8)0.0049 (7)
C180.0437 (11)0.0244 (9)0.0280 (9)0.0099 (8)0.0143 (8)0.0018 (7)
C190.0412 (10)0.0184 (8)0.0253 (8)0.0016 (7)0.0054 (7)0.0003 (7)
C200.0291 (9)0.0198 (8)0.0254 (8)0.0004 (7)0.0058 (7)0.0002 (7)
N10.0369 (9)0.0227 (8)0.0331 (8)0.0051 (7)0.0003 (7)0.0010 (6)
N20.0197 (7)0.0172 (7)0.0247 (7)0.0017 (5)0.0069 (5)0.0016 (5)
N30.0211 (7)0.0174 (7)0.0251 (7)0.0011 (5)0.0075 (6)0.0010 (5)
N40.0596 (12)0.0230 (8)0.0346 (9)0.0039 (8)0.0098 (8)0.0068 (7)
O10.0552 (10)0.0256 (8)0.0617 (10)0.0064 (7)0.0088 (8)0.0160 (7)
O20.0430 (9)0.0374 (9)0.0597 (10)0.0161 (7)0.0179 (8)0.0103 (7)
O30.0300 (7)0.0228 (7)0.0466 (8)0.0043 (6)0.0191 (6)0.0027 (6)
O40.0383 (8)0.0203 (7)0.0438 (8)0.0041 (6)0.0213 (6)0.0020 (6)
O50.1113 (17)0.0391 (10)0.0619 (12)0.0173 (11)0.0402 (12)0.0280 (9)
O60.0586 (11)0.0344 (9)0.0589 (10)0.0178 (8)0.0135 (9)0.0135 (7)
C210.0178 (7)0.0209 (8)0.0178 (7)0.0026 (6)0.0007 (6)0.0032 (6)
C220.0205 (8)0.0202 (8)0.0250 (8)0.0010 (6)0.0002 (6)0.0019 (6)
C230.0249 (8)0.0226 (9)0.0277 (8)0.0035 (7)0.0009 (7)0.0048 (7)
C240.0327 (10)0.0228 (9)0.0315 (9)0.0032 (8)0.0046 (8)0.0034 (7)
C250.0185 (7)0.0230 (8)0.0156 (7)0.0006 (6)0.0007 (6)0.0027 (6)
C260.0175 (8)0.0280 (9)0.0201 (8)0.0005 (7)0.0016 (6)0.0021 (6)
C270.0230 (8)0.0356 (10)0.0204 (8)0.0018 (7)0.0031 (7)0.0003 (7)
C280.0285 (10)0.0484 (12)0.0277 (9)0.0010 (9)0.0101 (8)0.0010 (9)
C290.0163 (7)0.0236 (8)0.0211 (7)0.0030 (6)0.0004 (6)0.0019 (6)
C300.0232 (8)0.0241 (9)0.0310 (9)0.0027 (7)0.0018 (7)0.0001 (7)
C310.0309 (10)0.0312 (10)0.0330 (10)0.0114 (8)0.0050 (8)0.0034 (8)
C320.0627 (16)0.0269 (11)0.0639 (15)0.0154 (11)0.0012 (13)0.0013 (10)
C330.0126 (7)0.0233 (8)0.0195 (7)0.0004 (6)0.0003 (6)0.0000 (6)
C340.0171 (8)0.0409 (10)0.0218 (8)0.0019 (7)0.0014 (6)0.0013 (7)
C350.0169 (8)0.0383 (10)0.0276 (9)0.0001 (7)0.0034 (7)0.0006 (7)
C360.0220 (9)0.0644 (15)0.0298 (10)0.0037 (9)0.0076 (8)0.0037 (9)
N50.0146 (6)0.0204 (7)0.0172 (6)0.0002 (5)0.0004 (5)0.0006 (5)
Geometric parameters (Å, º) top
C1—C21.382 (3)C21—H21B0.9900
C1—C61.389 (2)C22—C231.525 (2)
C1—N11.476 (2)C22—H22A0.9900
C2—C31.389 (3)C22—H22B0.9900
C2—H20.9500C23—C241.524 (3)
C3—C41.391 (3)C23—H23A0.9900
C3—H30.9500C23—H23B0.9900
C4—C51.402 (2)C24—H24A0.9800
C4—H40.9500C24—H24B0.9800
C5—C61.393 (2)C24—H24C0.9800
C5—N21.410 (2)C25—N51.5239 (19)
C6—H60.9500C25—C261.529 (2)
C7—O31.223 (2)C25—H25A0.9900
C7—N21.368 (2)C25—H25B0.9900
C7—C81.501 (2)C26—C271.526 (2)
C8—C91.398 (2)C26—H26A0.9900
C8—C131.400 (2)C26—H26B0.9900
C9—C101.395 (2)C27—C281.522 (2)
C9—H90.9500C27—H27A0.9900
C10—C111.399 (2)C27—H27B0.9900
C10—C141.503 (2)C28—H28A0.9800
C11—C121.393 (2)C28—H28B0.9800
C11—H110.9500C28—H28C0.9800
C12—C131.381 (3)C29—C301.522 (2)
C12—H120.9500C29—N51.523 (2)
C13—H130.9500C29—H29A0.9900
C14—O41.222 (2)C29—H29B0.9900
C14—N31.372 (2)C30—C311.529 (3)
C15—C201.396 (2)C30—H30A0.9900
C15—C161.400 (2)C30—H30B0.9900
C15—N31.413 (2)C31—C321.517 (3)
C16—C171.393 (2)C31—H31A0.9900
C16—H160.9500C31—H31B0.9900
C17—C181.387 (3)C32—H32A0.9800
C17—H170.9500C32—H32B0.9800
C18—C191.382 (3)C32—H32C0.9800
C18—H180.9500C33—N51.520 (2)
C19—C201.395 (2)C33—C341.526 (2)
C19—N41.472 (3)C33—H33A0.9900
C20—H200.9500C33—H33B0.9900
N1—O11.224 (2)C34—C351.531 (2)
N1—O21.228 (2)C34—H34A0.9900
N2—H2A0.8800C34—H34B0.9900
N3—H3A0.8800C35—C361.526 (3)
N4—O61.220 (2)C35—H35A0.9900
N4—O51.230 (2)C35—H35B0.9900
C21—C221.523 (2)C36—H36A0.9800
C21—N51.531 (2)C36—H36B0.9800
C21—H21A0.9900C36—H36C0.9800
C2—C1—C6124.10 (17)C24—C23—H23B109.2
C2—C1—N1118.40 (16)C22—C23—H23B109.2
C6—C1—N1117.50 (16)H23A—C23—H23B107.9
C1—C2—C3117.22 (17)C23—C24—H24A109.5
C1—C2—H2121.4C23—C24—H24B109.5
C3—C2—H2121.4H24A—C24—H24B109.5
C2—C3—C4120.73 (17)C23—C24—H24C109.5
C2—C3—H3119.6H24A—C24—H24C109.5
C4—C3—H3119.6H24B—C24—H24C109.5
C3—C4—C5120.62 (17)N5—C25—C26114.93 (13)
C3—C4—H4119.7N5—C25—H25A108.5
C5—C4—H4119.7C26—C25—H25A108.5
C6—C5—C4119.52 (16)N5—C25—H25B108.5
C6—C5—N2123.28 (15)C26—C25—H25B108.5
C4—C5—N2117.19 (15)H25A—C25—H25B107.5
C1—C6—C5117.76 (16)C27—C26—C25110.53 (14)
C1—C6—H6121.1C27—C26—H26A109.5
C5—C6—H6121.1C25—C26—H26A109.5
O3—C7—N2123.66 (16)C27—C26—H26B109.5
O3—C7—C8121.18 (15)C25—C26—H26B109.5
N2—C7—C8115.08 (14)H26A—C26—H26B108.1
C9—C8—C13119.49 (16)C28—C27—C26112.22 (15)
C9—C8—C7122.80 (15)C28—C27—H27A109.2
C13—C8—C7117.70 (15)C26—C27—H27A109.2
C10—C9—C8120.08 (15)C28—C27—H27B109.2
C10—C9—H9120.0C26—C27—H27B109.2
C8—C9—H9120.0H27A—C27—H27B107.9
C9—C10—C11119.75 (15)C27—C28—H28A109.5
C9—C10—C14122.87 (15)C27—C28—H28B109.5
C11—C10—C14117.37 (15)H28A—C28—H28B109.5
C12—C11—C10120.04 (16)C27—C28—H28C109.5
C12—C11—H11120.0H28A—C28—H28C109.5
C10—C11—H11120.0H28B—C28—H28C109.5
C13—C12—C11120.13 (15)C30—C29—N5115.87 (13)
C13—C12—H12119.9C30—C29—H29A108.3
C11—C12—H12119.9N5—C29—H29A108.3
C12—C13—C8120.46 (16)C30—C29—H29B108.3
C12—C13—H13119.8N5—C29—H29B108.3
C8—C13—H13119.8H29A—C29—H29B107.4
O4—C14—N3123.81 (16)C29—C30—C31110.76 (15)
O4—C14—C10120.52 (15)C29—C30—H30A109.5
N3—C14—C10115.67 (15)C31—C30—H30A109.5
C20—C15—C16120.12 (16)C29—C30—H30B109.5
C20—C15—N3122.31 (15)C31—C30—H30B109.5
C16—C15—N3117.55 (15)H30A—C30—H30B108.1
C17—C16—C15120.29 (17)C32—C31—C30112.35 (18)
C17—C16—H16119.9C32—C31—H31A109.1
C15—C16—H16119.9C30—C31—H31A109.1
C18—C17—C16120.66 (17)C32—C31—H31B109.1
C18—C17—H17119.7C30—C31—H31B109.1
C16—C17—H17119.7H31A—C31—H31B107.9
C19—C18—C17117.77 (17)C31—C32—H32A109.5
C19—C18—H18121.1C31—C32—H32B109.5
C17—C18—H18121.1H32A—C32—H32B109.5
C18—C19—C20123.70 (18)C31—C32—H32C109.5
C18—C19—N4118.60 (17)H32A—C32—H32C109.5
C20—C19—N4117.69 (17)H32B—C32—H32C109.5
C19—C20—C15117.44 (17)N5—C33—C34115.40 (13)
C19—C20—H20121.3N5—C33—H33A108.4
C15—C20—H20121.3C34—C33—H33A108.4
O1—N1—O2123.41 (17)N5—C33—H33B108.4
O1—N1—C1118.40 (17)C34—C33—H33B108.4
O2—N1—C1118.18 (16)H33A—C33—H33B107.5
C7—N2—C5125.17 (14)C33—C34—C35110.15 (14)
C7—N2—H2A117.4C33—C34—H34A109.6
C5—N2—H2A117.4C35—C34—H34A109.6
C14—N3—C15125.54 (14)C33—C34—H34B109.6
C14—N3—H3A117.2C35—C34—H34B109.6
C15—N3—H3A117.2H34A—C34—H34B108.1
O6—N4—O5123.38 (19)C36—C35—C34112.30 (15)
O6—N4—C19119.10 (16)C36—C35—H35A109.1
O5—N4—C19117.52 (19)C34—C35—H35A109.1
C22—C21—N5115.24 (13)C36—C35—H35B109.1
C22—C21—H21A108.5C34—C35—H35B109.1
N5—C21—H21A108.5H35A—C35—H35B107.9
C22—C21—H21B108.5C35—C36—H36A109.5
N5—C21—H21B108.5C35—C36—H36B109.5
H21A—C21—H21B107.5H36A—C36—H36B109.5
C21—C22—C23110.19 (14)C35—C36—H36C109.5
C21—C22—H22A109.6H36A—C36—H36C109.5
C23—C22—H22A109.6H36B—C36—H36C109.5
C21—C22—H22B109.6C33—N5—C29111.01 (12)
C23—C22—H22B109.6C33—N5—C25107.26 (12)
H22A—C22—H22B108.1C29—N5—C25110.54 (12)
C24—C23—C22111.96 (15)C33—N5—C21110.91 (12)
C24—C23—H23A109.2C29—N5—C21107.03 (12)
C22—C23—H23A109.2C25—N5—C21110.12 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.882.383.2367 (14)163
N3—H3A···Cl10.882.463.3239 (15)166
 

Acknowledgements

The authors thank the EPSRC for funding the crystallographic facilities.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrooks, S. J., Evans, L. S., Gale, P. A., Hursthouse, M. B. & Light, M. E. (2005). Chem. Commun. pp. 734–736.  CrossRef Google Scholar
First citationColes, S. J., Frey, G. J., Gale, P. A., Hursthouse, M. B., Light, M. E., Navakhun, K. & Thomas, G. L. (2003). Chem. Commun. pp. 568–569.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKavallieratos, K., de Gale, S. R., Austin, D. J. & Crabtree, R. H. (1997). J. Am. Chem. Soc. 119, 2325–2326.  CSD CrossRef CAS Web of Science Google Scholar
First citationMoore, J. A. & Kaur, S. (1997). Macromolecules, 30, 3427–3438.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds