organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,7,7a-Tri-epi-casuarine penta­acetate

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, dMNLPharma Limited, Institute of Grassland and Environmental Research, Aberystwyth SY23 3EB, Dyfed, Wales, and eGlycobiology Institute, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, England
*Correspondence e-mail: fpunzo@unict.it

(Received 25 January 2006; accepted 31 January 2006; online 8 February 2006)

The relative stereochemistry at six contiguous centres in an analogue of the natural product casuarine, viz. 3,7,7a-tri-epi-casuarine penta­acetate, C18H25NO10, has been established by an analysis of a crystalline penta­acetate.

Comment

The structure of casuarine, (1) (see scheme) (Nash et al., 1994[Nash, R. J., Thomas, P. I., Waigh, R. D., Fleet, G. W. J., Wormald, M. R., Lilley, P. M. Q. & Watkin, D. J. (1994). Tetrahedron Lett. 35, 7849-7852.]), also isolated as its 6-α-D-glucoside (Wormald et al., 1996[Wormald, M. R., Nash, R. J., Watson, A. A., Bhadoria, B. K., Langford, R., Sim, M. & Fleet, G. W. J. (1996). Carbohydr. Lett. 2, 169-174.]), has been determined by X-ray crystallography. The crystal structure of 3-epi-casuarine, (2), has also been reported (Newton et al., 2004[Newton, C., van Ameijde, J., Fleet, G. W. J., Nash, R. J. & Watkin, D. J. (2004). Acta Cryst. E60, o1463-o1464.]). Only two syntheses of casuarine have been published to date (Denmark & Hurd, 2000[Denmark, S. E. & Hurd, A. R. (2000). J. Org. Chem. 65, 2875-2886.]; Izquierdo et al., 2005[Izquierdo, I., Plaza, M. T., Juan, A. & Tamayo, J. A. (2005). Tetrahedron, 61, 6527-6533.]). Casuarine, with six contiguous stereogenic centres, is a potent α-glucosidase inhibitor and is the most heavily oxygen­ated of the polyhydroxy­lated alkaloids which can be viewed as sugar mimics (Asano et al., 2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]; Winchester & Fleet, 1992[Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199-210.]). Synthetic studies on the epimers of casuarine are scant, and none of the stereoisomers reported significantly inhibited any glycosidase (Bell et al., 1997[Bell, A. A., Pickering, L., Watson, A. A., Nash, R. J., Pan, Y. T., Elbein, A. D. & Fleet, G. W. J. (1997). Tetrahedron Lett. 38, 5869-5872.]). Nonetheless, some casuarine analogues have promise as vaccine adjuvants and as potential candidates for viral disease and non-cytotoxic cancer therapies (Nash et al., 2004[Nash, R. J., Watson, A. A. & Evinson, E. L. (2004). PCT Int. Appl. 2004, WO2004064715.]).

[Scheme 1]

As part of a structure–activity investigation of the stereoisomers of casuarine, the tri-epi casuarine (3) was prepared by a route which did not define the relative configuration at two centres. Although (3) has not been crystallized, peracetyl­ation by acetic anhydride in pyridine gave the crystalline penta­acetate, (4), the crystal structure of which is reported in this paper (Fig. 1[link] and Table 1[link]).

This study firmly establishes the relative configuration at all six stereogenic centres. The absolute configuration of (4) is determined by the use of D-glucose as the starting material in the synthesis. A combination of crystal structures and NMR studies have established solid-state and solution conformations of a number of stereoisomers of the less oxygenated alexines (Wormald et al., 1998[Wormald, M. R., Nash, R. J., Hrnicar, P., White, J. D., Molyneux, R. J. & Fleet, G. W. J. (1998). Tetrahedron Asymmetry, 9, 2549-2558.]; Kato et al., 2003[Kato, A., Kano, E., Adachi, I., Molyneux, R. J., Watson, A. A., Nash, R. J., Fleet, G. W. J., Wormald, M. R., Kizu, H., Ikeda, K. & Asano, N. (2003). Tetrahedron Asymmetry, 14, 325-331.]) which may be used to rationalize their biological activity. Similar structural studies on the stereoisomers of casuarine may permit the development of rationales for their novel biological activities. The crystal packing, represented in Fig. 2[link], highlights long-range inter­actions between the acetate fragments that are both non-polar, i.e. between methyl groups, and polar, i.e. between O atoms.

[Figure 1]
Figure 1
The molecular structure of (4), showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram of (4), viewed down the b axis.

Experimental

Compound (4) was crystallized by dissolving it in cyclo­hexane, adding ethanol (in an approximate ratio of 9:1), and allowing slow competitive evaporation of the two solvents until clear colourless crystals formed.

Crystal data
  • C18H25NO10

  • Mr = 415.40

  • Monoclinic, P 21

  • a = 9.8357 (3) Å

  • b = 5.9443 (2) Å

  • c = 17.2146 (6) Å

  • β = 97.6513 (12)°

  • V = 997.51 (6) Å3

  • Z = 2

  • Dx = 1.383 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2338 reflections

  • θ = 5–30°

  • μ = 0.11 mm−1

  • T = 120 K

  • Needle, colourless

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.99, Tmax = 0.99

  • 5106 measured reflections

  • 3067 independent reflections

  • 2513 reflections with I > 2σ(I)

  • Rint = 0.017

  • θmax = 30.0°

  • h = −13 → 13

  • k = −8 → 7

  • l = −24 → 24

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.091

  • S = 0.94

  • 3067 reflections

  • 263 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.04P)2 + 0.2P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max <0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]), equation 22

  • Extinction coefficient: 1.8 (4) × 102

Table 1
Selected geometric parameters (Å, °)

C1—N2 1.486 (2)
C1—C5 1.540 (3)
C1—C21 1.517 (3)
N2—C3 1.466 (2)
N2—C19 1.477 (2)
C3—C4 1.528 (3)
C3—C14 1.508 (3)
C4—C5 1.525 (3)
C4—O10 1.448 (2)
C5—O6 1.453 (2)
O6—C7 1.357 (3)
C7—O8 1.197 (3)
C7—C9 1.493 (4)
O10—C11 1.355 (2)
C11—O12 1.200 (3)
C11—C13 1.491 (3)
C14—O15 1.448 (2)
O15—C16 1.351 (2)
C16—O17 1.208 (3)
C16—C18 1.483 (3)
C19—C20 1.513 (3)
C20—C21 1.523 (3)
C20—O26 1.456 (2)
C21—O22 1.432 (2)
O22—C23 1.363 (2)
C23—O24 1.197 (3)
C23—C25 1.490 (3)
O26—C27 1.355 (2)
C27—O28 1.193 (3)
C27—C29 1.482 (3)
N2—C1—C5 106.11 (15)
N2—C1—C21 104.58 (15)
C5—C1—C21 118.30 (16)
C1—N2—C3 108.97 (14)
C1—N2—C19 108.76 (15)
C3—N2—C19 116.67 (16)
N2—C3—C4 103.27 (16)
N2—C3—C14 113.92 (16)
C4—C3—C14 112.75 (15)
C3—C4—C5 103.33 (15)
C3—C4—O10 111.18 (15)
C5—C4—O10 106.33 (16)
C1—C5—C4 103.08 (15)
C1—C5—O6 111.65 (15)
C4—C5—O6 104.60 (16)
C5—O6—C7 116.67 (17)
O6—C7—O8 123.5 (2)
O6—C7—C9 110.9 (2)
O8—C7—C9 125.6 (2)
C4—O10—C11 116.98 (16)
O10—C11—O12 122.9 (2)
O10—C11—C13 110.71 (19)
O12—C11—C13 126.35 (19)
C3—C14—O15 107.24 (15)
C14—O15—C16 114.62 (16)
O15—C16—O17 122.2 (2)
O15—C16—C18 112.17 (18)
O17—C16—C18 125.6 (2)
N2—C19—C20 105.06 (17)
C19—C20—C21 101.52 (15)
C19—C20—O26 108.48 (16)
C21—C20—O26 109.03 (16)
C20—C21—C1 103.69 (16)
C20—C21—O22 114.18 (16)
C1—C21—O22 110.11 (16)
C21—O22—C23 117.04 (16)
O22—C23—O24 122.9 (2)
O22—C23—C25 110.27 (19)
O24—C23—C25 126.8 (2)
C20—O26—C27 117.07 (16)
O26—C27—O28 122.8 (2)
O26—C27—C29 112.16 (18)
O28—C27—C29 125.1 (2)

In the absence of significant anomalous scattering effects, Friedel pairs were merged, and the absolute configuration was assigned from the known configuration of the starting material. H atoms were seen in a difference density synthesis. Those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry, after which they were included with riding constraints, with C—H = 0.93–0.98 Å and with Uiso(H) values in the range 1.2–1.5Ueq of the carrier atom.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement and data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

3,7,7a-triepi-Casuarine pentaacetate top
Crystal data top
C18H25NO10F(000) = 440
Mr = 415.40Dx = 1.383 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2338 reflections
a = 9.8357 (3) Åθ = 5–30°
b = 5.9443 (2) ŵ = 0.11 mm1
c = 17.2146 (6) ÅT = 120 K
β = 97.6513 (12)°Plate, colourless
V = 997.51 (6) Å30.30 × 0.10 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 30.0°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.99, Tmax = 0.99k = 87
5106 measured reflectionsl = 2424
3067 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(F2) + (0.04P)2 + 0.2P],
where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 0.94Δρmax = 0.33 e Å3
3067 reflectionsΔρmin = 0.35 e Å3
263 parametersExtinction correction: Larson (1970), equation 22
1 restraintExtinction coefficient: 180 (40)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25143 (19)0.1388 (3)0.23642 (10)0.0187
N20.33807 (16)0.3266 (3)0.21412 (9)0.0193
C30.2539 (2)0.4752 (3)0.15921 (11)0.0201
C40.1427 (2)0.3181 (4)0.11951 (11)0.0219
C50.1107 (2)0.1667 (4)0.18624 (11)0.0212
O60.01706 (14)0.2978 (3)0.22668 (8)0.0255
C70.0695 (2)0.1806 (5)0.26674 (13)0.0297
O80.07114 (18)0.0205 (3)0.27014 (10)0.0399
C90.1587 (2)0.3359 (5)0.30573 (15)0.0419
O100.19617 (14)0.1727 (3)0.06328 (7)0.0237
C110.1557 (2)0.2161 (4)0.01361 (12)0.0286
O120.0866 (2)0.3756 (4)0.03595 (9)0.0480
C130.2093 (2)0.0416 (4)0.06385 (12)0.0333
C140.3328 (2)0.5918 (4)0.10152 (12)0.0252
O150.42996 (15)0.7417 (3)0.14594 (8)0.0262
C160.5080 (2)0.8625 (4)0.10221 (13)0.0279
O170.49969 (18)0.8407 (3)0.03195 (9)0.0368
C180.6021 (3)1.0182 (4)0.15052 (15)0.0370
C190.4086 (2)0.4316 (4)0.28622 (11)0.0240
C200.3997 (2)0.2597 (3)0.35015 (11)0.0217
C210.2588 (2)0.1574 (3)0.32480 (11)0.0197
O220.23933 (14)0.0592 (2)0.35803 (8)0.0226
C230.1593 (2)0.0686 (4)0.41678 (12)0.0253
O240.11413 (18)0.0956 (3)0.44445 (10)0.0387
C250.1360 (3)0.3071 (4)0.43825 (15)0.0405
O260.50414 (14)0.0887 (3)0.34492 (8)0.0244
C270.5616 (2)0.0068 (4)0.41296 (12)0.0293
O280.5325 (2)0.0480 (4)0.47537 (9)0.0593
C290.6623 (2)0.1838 (4)0.39999 (13)0.0326
H110.29250.00320.22340.0223*
H310.20600.59040.18750.0248*
H410.06090.40450.09410.0275*
H510.07060.02000.16890.0255*
H910.25070.27400.30100.0636*
H920.15710.48350.28190.0633*
H930.12310.34610.35990.0636*
H1310.18510.08410.11880.0471*
H1320.17200.10380.05430.0467*
H1330.30780.03840.05150.0471*
H1410.26860.67930.06400.0318*
H1420.38090.48330.07250.0319*
H1810.66241.08800.11720.0567*
H1820.54931.13060.17290.0568*
H1830.65480.93550.19160.0567*
H1910.36290.57020.29970.0295*
H1920.50520.46340.27950.0288*
H2010.40910.32280.40300.0262*
H2110.18770.26190.33820.0231*
H2510.07360.31050.47830.0641*
H2520.09470.38750.39250.0643*
H2530.22240.37630.45830.0642*
H2910.71950.22300.44660.0486*
H2920.62000.31700.37720.0491*
H2930.72170.12920.36400.0489*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0188 (9)0.0192 (9)0.0185 (9)0.0001 (7)0.0039 (7)0.0001 (7)
N20.0206 (8)0.0185 (8)0.0186 (7)0.0027 (7)0.0019 (6)0.0008 (7)
C30.0225 (10)0.0193 (9)0.0190 (9)0.0011 (8)0.0046 (8)0.0002 (8)
C40.0223 (10)0.0254 (10)0.0179 (9)0.0034 (9)0.0027 (7)0.0003 (8)
C50.0206 (9)0.0238 (9)0.0200 (9)0.0014 (8)0.0050 (7)0.0014 (8)
O60.0186 (7)0.0320 (8)0.0268 (7)0.0007 (6)0.0061 (6)0.0013 (6)
C70.0168 (10)0.0447 (14)0.0277 (11)0.0037 (10)0.0028 (8)0.0057 (11)
O80.0318 (9)0.0436 (10)0.0464 (10)0.0063 (8)0.0132 (8)0.0078 (9)
C90.0269 (12)0.0608 (18)0.0406 (13)0.0054 (13)0.0141 (10)0.0000 (14)
O100.0255 (7)0.0282 (7)0.0175 (6)0.0002 (6)0.0028 (5)0.0013 (6)
C110.0257 (11)0.0404 (13)0.0190 (10)0.0031 (10)0.0007 (8)0.0007 (9)
O120.0587 (12)0.0609 (13)0.0228 (8)0.0217 (11)0.0005 (8)0.0080 (9)
C130.0285 (11)0.0487 (15)0.0228 (10)0.0068 (11)0.0028 (9)0.0075 (11)
C140.0314 (11)0.0233 (10)0.0219 (10)0.0036 (9)0.0072 (8)0.0001 (9)
O150.0310 (8)0.0242 (7)0.0251 (7)0.0069 (6)0.0099 (6)0.0022 (6)
C160.0286 (11)0.0220 (10)0.0365 (12)0.0012 (9)0.0169 (9)0.0012 (9)
O170.0489 (10)0.0343 (9)0.0309 (8)0.0048 (8)0.0194 (7)0.0041 (8)
C180.0356 (13)0.0320 (12)0.0469 (14)0.0081 (11)0.0185 (11)0.0050 (11)
C190.0242 (10)0.0239 (10)0.0234 (10)0.0037 (8)0.0015 (8)0.0019 (8)
C200.0230 (10)0.0223 (9)0.0196 (9)0.0028 (8)0.0022 (8)0.0021 (8)
C210.0230 (9)0.0193 (9)0.0170 (9)0.0023 (8)0.0038 (7)0.0011 (8)
O220.0265 (8)0.0212 (7)0.0214 (7)0.0015 (6)0.0079 (6)0.0033 (6)
C230.0253 (10)0.0322 (12)0.0193 (9)0.0023 (9)0.0066 (8)0.0013 (9)
O240.0484 (10)0.0351 (9)0.0377 (9)0.0026 (9)0.0239 (8)0.0063 (8)
C250.0505 (16)0.0342 (13)0.0408 (14)0.0034 (12)0.0212 (12)0.0090 (11)
O260.0220 (7)0.0304 (8)0.0203 (7)0.0037 (7)0.0011 (6)0.0005 (6)
C270.0324 (12)0.0323 (11)0.0229 (10)0.0036 (10)0.0030 (9)0.0032 (9)
O280.0895 (16)0.0656 (15)0.0238 (9)0.0433 (13)0.0116 (9)0.0103 (9)
C290.0326 (12)0.0351 (12)0.0292 (11)0.0086 (11)0.0001 (9)0.0005 (10)
Geometric parameters (Å, º) top
C1—N21.486 (2)C14—H1420.975
C1—C51.540 (3)O15—C161.351 (2)
C1—C211.517 (3)C16—O171.208 (3)
C1—H110.974C16—C181.483 (3)
N2—C31.466 (2)C18—H1810.972
N2—C191.477 (2)C18—H1820.958
C3—C41.528 (3)C18—H1830.956
C3—C141.508 (3)C19—C201.513 (3)
C3—H310.994C19—H1910.981
C4—C51.525 (3)C19—H1920.991
C4—O101.448 (2)C20—C211.523 (3)
C4—H411.004C20—O261.456 (2)
C5—O61.453 (2)C20—H2010.976
C5—H510.987C21—O221.432 (2)
O6—C71.357 (3)C21—H2110.986
C7—O81.197 (3)O22—C231.363 (2)
C7—C91.493 (4)C23—O241.197 (3)
C9—H910.970C23—C251.490 (3)
C9—H920.969C25—H2510.982
C9—H930.954C25—H2520.964
O10—C111.355 (2)C25—H2530.966
C11—O121.200 (3)O26—C271.355 (2)
C11—C131.491 (3)C27—O281.193 (3)
C13—H1310.977C27—C291.482 (3)
C13—H1320.962C29—H2910.946
C13—H1330.964C29—H2920.954
C14—O151.448 (2)C29—H2930.963
C14—H1410.989
N2—C1—C5106.11 (15)O15—C14—H142110.3
N2—C1—C21104.58 (15)H141—C14—H142109.0
C5—C1—C21118.30 (16)C14—O15—C16114.62 (16)
N2—C1—H11108.8O15—C16—O17122.2 (2)
C5—C1—H11109.5O15—C16—C18112.17 (18)
C21—C1—H11109.1O17—C16—C18125.6 (2)
C1—N2—C3108.97 (14)C16—C18—H181108.6
C1—N2—C19108.76 (15)C16—C18—H182109.2
C3—N2—C19116.67 (16)H181—C18—H182110.2
N2—C3—C4103.27 (16)C16—C18—H183109.3
N2—C3—C14113.92 (16)H181—C18—H183110.1
C4—C3—C14112.75 (15)H182—C18—H183109.3
N2—C3—H31111.3N2—C19—C20105.06 (17)
C4—C3—H31106.4N2—C19—H191112.1
C14—C3—H31108.9C20—C19—H191108.8
C3—C4—C5103.33 (15)N2—C19—H192109.5
C3—C4—O10111.18 (15)C20—C19—H192111.2
C5—C4—O10106.33 (16)H191—C19—H192110.1
C3—C4—H41111.5C19—C20—C21101.52 (15)
C5—C4—H41113.3C19—C20—O26108.48 (16)
O10—C4—H41110.8C21—C20—O26109.03 (16)
C1—C5—C4103.08 (15)C19—C20—H201114.2
C1—C5—O6111.65 (15)C21—C20—H201113.0
C4—C5—O6104.60 (16)O26—C20—H201110.2
C1—C5—H51111.6C20—C21—C1103.69 (16)
C4—C5—H51114.1C20—C21—O22114.18 (16)
O6—C5—H51111.4C1—C21—O22110.11 (16)
C5—O6—C7116.67 (17)C20—C21—H211109.2
O6—C7—O8123.5 (2)C1—C21—H211109.9
O6—C7—C9110.9 (2)O22—C21—H211109.6
O8—C7—C9125.6 (2)C21—O22—C23117.04 (16)
C7—C9—H91109.0O22—C23—O24122.9 (2)
C7—C9—H92109.0O22—C23—C25110.27 (19)
H91—C9—H92112.0O24—C23—C25126.8 (2)
C7—C9—H93108.5C23—C25—H251109.0
H91—C9—H93108.8C23—C25—H252109.3
H92—C9—H93109.4H251—C25—H252109.2
C4—O10—C11116.98 (16)C23—C25—H253109.7
O10—C11—O12122.9 (2)H251—C25—H253110.1
O10—C11—C13110.71 (19)H252—C25—H253109.6
O12—C11—C13126.35 (19)C20—O26—C27117.07 (16)
C11—C13—H131108.8O26—C27—O28122.8 (2)
C11—C13—H132110.7O26—C27—C29112.16 (18)
H131—C13—H132110.5O28—C27—C29125.1 (2)
C11—C13—H133107.9C27—C29—H291112.4
H131—C13—H133109.0C27—C29—H292112.8
H132—C13—H133109.8H291—C29—H292108.8
C3—C14—O15107.24 (15)C27—C29—H293109.4
C3—C14—H141109.4H291—C29—H293106.6
O15—C14—H141109.9H292—C29—H293106.6
C3—C14—H142111.1
 

Footnotes

Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England

References

First citationAltomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef IUCr Journals Google Scholar
First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationBell, A. A., Pickering, L., Watson, A. A., Nash, R. J., Pan, Y. T., Elbein, A. D. & Fleet, G. W. J. (1997). Tetrahedron Lett. 38, 5869–5872.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDenmark, S. E. & Hurd, A. R. (2000). J. Org. Chem. 65, 2875–2886.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIzquierdo, I., Plaza, M. T., Juan, A. & Tamayo, J. A. (2005). Tetrahedron, 61, 6527–6533.  Web of Science CrossRef CAS Google Scholar
First citationKato, A., Kano, E., Adachi, I., Molyneux, R. J., Watson, A. A., Nash, R. J., Fleet, G. W. J., Wormald, M. R., Kizu, H., Ikeda, K. & Asano, N. (2003). Tetrahedron Asymmetry, 14, 325–331.  Web of Science CrossRef CAS Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationNash, R. J., Thomas, P. I., Waigh, R. D., Fleet, G. W. J., Wormald, M. R., Lilley, P. M. Q. & Watkin, D. J. (1994). Tetrahedron Lett. 35, 7849–7852.  CSD CrossRef CAS Google Scholar
First citationNash, R. J., Watson, A. A. & Evinson, E. L. (2004). PCT Int. Appl. 2004, WO2004064715.  Google Scholar
First citationNewton, C., van Ameijde, J., Fleet, G. W. J., Nash, R. J. & Watkin, D. J. (2004). Acta Cryst. E60, o1463–o1464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWinchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199–210.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWormald, M. R., Nash, R. J., Hrnicar, P., White, J. D., Molyneux, R. J. & Fleet, G. W. J. (1998). Tetrahedron Asymmetry, 9, 2549–2558.  Web of Science CrossRef CAS Google Scholar
First citationWormald, M. R., Nash, R. J., Watson, A. A., Bhadoria, B. K., Langford, R., Sim, M. & Fleet, G. W. J. (1996). Carbohydr. Lett. 2, 169–174.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds