organic compounds
(2S,4S)-4-Azido-1-benzyl-2-[(S)-2,2-dimethyl-1,3-dioxolan-4-yl]pyrrolidine
aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bChemical Crystallography Laboratory, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk
The relative stereochemistry of the title compound, C16H22N4O2, a key intermediate in the synthesis of 3-deoxy imino sugars, was firmly established by X-ray crystallographic analysis. The was inferred from the starting material, D-galactose. There are no unusual crystal packing features.
Comment
The reaction of calcium hydroxide with D-galactose has been shown to generate 3-deoxy-D-galactono-1,4-lactone, (1), directly (Whistler & BeMiller, 1963; Kiliani & Kleeman, 1884), the stereochemistry of which has been determined by X-ray crystallographic analysis (Punzo et al. 2006). The 3-deoxy sugar (1) has great potential as a building block for the synthesis of complex highly functionalized targets. It has been utilized in the synthesis of carnitine (Bols et al., 1992) and hydroxylated azepanes (Anderson et al., 2000) and could prove useful in the synthesis of bulgecinines (Bashyal et al., 1987; Chavan et al., 2005; Khalaf & Datta, 2004) and other highly substituted prolines and pyrrolidines. Polyhydroxylated nitrogen heterocycles, known as imino sugars, are an important class of glycosidase inhibitor (Watson et al., 2001; Asano et al., 2000). The title compound, (4), is a key intermediate in the synthesis of 2-acetamido-3-deoxy imino sugars.
The absolute stereochemistry of (4) was known from the use of D-galactose as the starting material. The conversion of (2) to (4) involved nucleophilic dispacement at both C2 and C4 of the sugar. The X-ray (Fig. 1) showing the of (4) thus establishes that both nucleophilic displacements occurred with inversion of configuration.
There are no unusual bond lengths or angles. As is common with these materials, the azide group is non-linear [N13—N14—N15 = 173.5 (3)°]. There are no short intermolecular contacts (Fig. 2), nor evidence of π–π interactions between the phenyl groups.
Experimental
The side-chain diol in (1) was protected as an acetonide and the remaining free hydroxyl group was esterified with methanesulfonyl chloride. Nucleophilic displacement of the resulting methanesulfonate ester (2) with sodium azide generated the azide (3) in good yield. Reduction of the lactone to the diol with lithium borohydride and activation of both hydroxyl groups with methanesulfonyl chloride followed by a double nucleophilic displacement reaction with benzylamine generated the 3-deoxy imino sugar (4) (Chesterton et al., 2006). The final product was recrystallized from dichloromethane to give colourless needles [m.p. 305–307 K; [α]D18 −48.3 (c 0.76 in acetone)].
Crystal data
|
In the absence of significant ) by the multi-scan inter-frame scaling (DENZO/SCALEPACK; Otwinowski & Minor, 1997). The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(parent atom)], after which the positions were refined with riding constraints.
Friedel pairs were merged and the assigned from the starting material. The relatively large ratio of minimum to maximum corrections applied in the multi-scan process (1:1.45) reflect changes in the illuminated volume of the crystal. These were kept to a minimum and were taken into account (Görbitz, 1999Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536806023105/fl2030sup1.cif
contains datablocks global, 4. DOI:Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S1600536806023105/fl20304sup2.hkl
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C16H22N4O2 | F(000) = 324 |
Mr = 302.38 | Dx = 1.253 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6539 (4) Å | Cell parameters from 1995 reflections |
b = 6.3289 (3) Å | θ = 5–30° |
c = 13.4942 (7) Å | µ = 0.09 mm−1 |
β = 103.577 (2)° | T = 150 K |
V = 801.44 (7) Å3 | Plate, colourless |
Z = 2 | 0.80 × 0.20 × 0.10 mm |
Nonius KappaCCD diffractometer | 1254 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
ω scans | θmax = 30.1°, θmin = 5.3° |
Absorption correction: multi-scan (DENZO/SCALEPACK, Otwinowski & Minor, 1997) | h = −13→13 |
Tmin = 0.71, Tmax = 0.99 | k = −8→8 |
7271 measured reflections | l = −18→18 |
2489 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.100 | Method = Modified Sheldrick w = 1/[σ2(F2) + (0.05P)2 + 0.1P], where P = [max(Fo2,0) + 2Fc2]/3 |
S = 0.86 | (Δ/σ)max = 0.000154 |
1833 reflections | Δρmax = 0.41 e Å−3 |
199 parameters | Δρmin = −0.36 e Å−3 |
1 restraint |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6851 (3) | 0.6747 (5) | 0.76546 (19) | 0.0238 | |
C2 | 0.6720 (3) | 0.4736 (5) | 0.70332 (19) | 0.0276 | |
O3 | 0.80551 (18) | 0.4369 (4) | 0.67623 (13) | 0.0336 | |
C4 | 0.7797 (3) | 0.4069 (5) | 0.5685 (2) | 0.0294 | |
O5 | 0.6470 (2) | 0.5082 (4) | 0.52745 (14) | 0.0367 | |
C6 | 0.5632 (3) | 0.4806 (6) | 0.6004 (2) | 0.0399 | |
C7 | 0.7737 (3) | 0.1746 (5) | 0.5447 (2) | 0.0376 | |
C8 | 0.8935 (3) | 0.5214 (6) | 0.5299 (2) | 0.0467 | |
N9 | 0.5465 (2) | 0.7252 (4) | 0.79036 (16) | 0.0255 | |
C10 | 0.5668 (3) | 0.7219 (5) | 0.9024 (2) | 0.0344 | |
C11 | 0.7025 (3) | 0.5979 (5) | 0.9430 (2) | 0.0328 | |
C12 | 0.7931 (3) | 0.6543 (5) | 0.8683 (2) | 0.0305 | |
N13 | 0.6655 (3) | 0.3690 (5) | 0.94096 (19) | 0.0387 | |
N14 | 0.7675 (3) | 0.2518 (5) | 0.97347 (19) | 0.0425 | |
N15 | 0.8531 (4) | 0.1274 (5) | 1.0014 (3) | 0.0697 | |
C16 | 0.4857 (3) | 0.9242 (5) | 0.7467 (2) | 0.0327 | |
C17 | 0.3358 (3) | 0.9657 (5) | 0.7593 (2) | 0.0265 | |
C18 | 0.2372 (3) | 0.8035 (5) | 0.7527 (2) | 0.0313 | |
C19 | 0.0989 (3) | 0.8455 (5) | 0.7596 (2) | 0.0318 | |
C20 | 0.0578 (3) | 1.0514 (5) | 0.7727 (2) | 0.0324 | |
C21 | 0.1543 (3) | 1.2138 (5) | 0.7796 (2) | 0.0368 | |
C22 | 0.2932 (3) | 1.1712 (5) | 0.7730 (2) | 0.0315 | |
H11 | 0.7118 | 0.7893 | 0.7249 | 0.0294* | |
H21 | 0.6511 | 0.3568 | 0.7451 | 0.0325* | |
H61 | 0.4993 | 0.6005 | 0.5966 | 0.0480* | |
H62 | 0.5096 | 0.3487 | 0.5873 | 0.0477* | |
H71 | 0.7592 | 0.1557 | 0.4722 | 0.0539* | |
H72 | 0.8620 | 0.1103 | 0.5796 | 0.0542* | |
H73 | 0.6959 | 0.1128 | 0.5676 | 0.0539* | |
H81 | 0.8755 | 0.5077 | 0.4564 | 0.0718* | |
H82 | 0.9844 | 0.4598 | 0.5621 | 0.0717* | |
H83 | 0.8921 | 0.6690 | 0.5482 | 0.0717* | |
H101 | 0.5772 | 0.8658 | 0.9293 | 0.0421* | |
H102 | 0.4850 | 0.6537 | 0.9204 | 0.0423* | |
H111 | 0.7489 | 0.6418 | 1.0138 | 0.0388* | |
H121 | 0.8433 | 0.7879 | 0.8886 | 0.0336* | |
H122 | 0.8610 | 0.5430 | 0.8661 | 0.0339* | |
H161 | 0.5465 | 1.0401 | 0.7806 | 0.0430* | |
H162 | 0.4829 | 0.9236 | 0.6747 | 0.0430* | |
H181 | 0.2654 | 0.6646 | 0.7440 | 0.0374* | |
H191 | 0.0335 | 0.7340 | 0.7563 | 0.0371* | |
H201 | −0.0360 | 1.0805 | 0.7765 | 0.0373* | |
H211 | 0.1275 | 1.3523 | 0.7907 | 0.0440* | |
H221 | 0.3584 | 1.2813 | 0.7781 | 0.0392* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0183 (14) | 0.0288 (16) | 0.0269 (14) | 0.0004 (13) | 0.0103 (11) | 0.0020 (13) |
C2 | 0.0222 (16) | 0.0362 (17) | 0.0263 (14) | 0.0041 (14) | 0.0095 (12) | −0.0022 (15) |
O3 | 0.0201 (11) | 0.0552 (14) | 0.0252 (10) | 0.0104 (10) | 0.0048 (8) | −0.0065 (10) |
C4 | 0.0233 (16) | 0.0396 (18) | 0.0250 (15) | 0.0041 (15) | 0.0053 (12) | −0.0030 (15) |
O5 | 0.0286 (12) | 0.0536 (15) | 0.0272 (10) | 0.0136 (11) | 0.0051 (9) | 0.0042 (11) |
C6 | 0.0230 (17) | 0.064 (2) | 0.0302 (15) | 0.0077 (17) | 0.0021 (13) | −0.0097 (18) |
C7 | 0.0276 (17) | 0.046 (2) | 0.0374 (18) | 0.0021 (17) | 0.0031 (14) | −0.0048 (16) |
C8 | 0.043 (2) | 0.057 (2) | 0.0445 (19) | −0.0071 (19) | 0.0189 (15) | −0.0064 (19) |
N9 | 0.0248 (13) | 0.0282 (14) | 0.0272 (12) | 0.0031 (11) | 0.0132 (10) | 0.0020 (12) |
C10 | 0.0335 (17) | 0.044 (2) | 0.0278 (15) | 0.0061 (16) | 0.0122 (13) | −0.0021 (16) |
C11 | 0.0321 (18) | 0.045 (2) | 0.0211 (16) | 0.0035 (15) | 0.0049 (14) | −0.0036 (14) |
C12 | 0.0271 (16) | 0.0321 (17) | 0.0330 (15) | −0.0004 (14) | 0.0087 (13) | −0.0034 (15) |
N13 | 0.0337 (16) | 0.0479 (18) | 0.0344 (15) | 0.0019 (15) | 0.0081 (12) | 0.0153 (14) |
N14 | 0.0500 (19) | 0.0412 (17) | 0.0327 (15) | 0.0001 (17) | 0.0024 (14) | −0.0039 (14) |
N15 | 0.070 (2) | 0.049 (2) | 0.073 (2) | 0.0144 (19) | −0.0167 (19) | −0.0150 (19) |
C16 | 0.0327 (18) | 0.0283 (17) | 0.0409 (17) | 0.0017 (15) | 0.0163 (14) | 0.0069 (15) |
C17 | 0.0253 (16) | 0.0293 (17) | 0.0253 (14) | 0.0044 (14) | 0.0069 (12) | 0.0036 (14) |
C18 | 0.0321 (18) | 0.0260 (16) | 0.0381 (18) | 0.0029 (14) | 0.0129 (15) | 0.0035 (14) |
C19 | 0.0239 (17) | 0.0352 (18) | 0.0371 (18) | −0.0049 (15) | 0.0090 (13) | 0.0054 (15) |
C20 | 0.0250 (17) | 0.0407 (19) | 0.0333 (17) | 0.0109 (15) | 0.0106 (13) | 0.0084 (15) |
C21 | 0.041 (2) | 0.0312 (18) | 0.0392 (18) | 0.0092 (17) | 0.0106 (15) | 0.0021 (16) |
C22 | 0.0275 (17) | 0.0278 (17) | 0.0391 (17) | 0.0012 (15) | 0.0076 (14) | 0.0033 (15) |
C1—C2 | 1.513 (4) | C10—H101 | 0.977 |
C1—N9 | 1.488 (3) | C10—H102 | 0.979 |
C1—C12 | 1.533 (4) | C11—C12 | 1.524 (4) |
C1—H11 | 0.980 | C11—N13 | 1.491 (4) |
C2—O3 | 1.439 (3) | C11—H111 | 0.995 |
C2—C6 | 1.533 (3) | C12—H121 | 0.981 |
C2—H21 | 0.979 | C12—H122 | 0.968 |
O3—C4 | 1.429 (3) | N13—N14 | 1.228 (4) |
C4—O5 | 1.423 (3) | N14—N15 | 1.140 (4) |
C4—C7 | 1.502 (5) | C16—C17 | 1.519 (4) |
C4—C8 | 1.507 (4) | C16—H161 | 0.982 |
O5—C6 | 1.424 (3) | C16—H162 | 0.965 |
C6—H61 | 0.971 | C17—C18 | 1.389 (4) |
C6—H62 | 0.976 | C17—C22 | 1.389 (4) |
C7—H71 | 0.964 | C18—C19 | 1.385 (4) |
C7—H72 | 0.962 | C18—H181 | 0.936 |
C7—H73 | 0.960 | C19—C20 | 1.386 (5) |
C8—H81 | 0.970 | C19—H191 | 0.941 |
C8—H82 | 0.965 | C20—C21 | 1.376 (4) |
C8—H83 | 0.967 | C20—H201 | 0.938 |
N9—C10 | 1.479 (3) | C21—C22 | 1.391 (4) |
N9—C16 | 1.455 (4) | C21—H211 | 0.936 |
C10—C11 | 1.514 (4) | C22—H221 | 0.931 |
C2—C1—N9 | 110.1 (2) | C11—C10—H101 | 110.1 |
C2—C1—C12 | 112.4 (2) | N9—C10—H102 | 109.8 |
N9—C1—C12 | 105.7 (2) | C11—C10—H102 | 111.2 |
C2—C1—H11 | 108.2 | H101—C10—H102 | 109.7 |
N9—C1—H11 | 109.6 | C10—C11—C12 | 102.8 (2) |
C12—C1—H11 | 110.8 | C10—C11—N13 | 108.3 (3) |
C1—C2—O3 | 108.3 (2) | C12—C11—N13 | 112.8 (3) |
C1—C2—C6 | 115.3 (3) | C10—C11—H111 | 111.1 |
O3—C2—C6 | 103.8 (2) | C12—C11—H111 | 111.7 |
C1—C2—H21 | 108.5 | N13—C11—H111 | 109.9 |
O3—C2—H21 | 110.0 | C1—C12—C11 | 104.1 (2) |
C6—C2—H21 | 110.7 | C1—C12—H121 | 111.5 |
C2—O3—C4 | 109.12 (18) | C11—C12—H121 | 109.8 |
O3—C4—O5 | 105.2 (2) | C1—C12—H122 | 110.8 |
O3—C4—C7 | 109.6 (3) | C11—C12—H122 | 110.4 |
O5—C4—C7 | 111.8 (3) | H121—C12—H122 | 110.0 |
O3—C4—C8 | 108.7 (2) | C11—N13—N14 | 114.4 (3) |
O5—C4—C8 | 108.1 (3) | N13—N14—N15 | 173.5 (3) |
C7—C4—C8 | 113.0 (3) | N9—C16—C17 | 114.1 (2) |
C4—O5—C6 | 106.4 (2) | N9—C16—H161 | 108.5 |
C2—C6—O5 | 104.5 (2) | C17—C16—H161 | 107.5 |
C2—C6—H61 | 111.2 | N9—C16—H162 | 108.5 |
O5—C6—H61 | 108.9 | C17—C16—H162 | 108.1 |
C2—C6—H62 | 111.2 | H161—C16—H162 | 110.1 |
O5—C6—H62 | 110.0 | C16—C17—C18 | 121.5 (3) |
H61—C6—H62 | 110.8 | C16—C17—C22 | 119.7 (3) |
C4—C7—H71 | 109.1 | C18—C17—C22 | 118.7 (3) |
C4—C7—H72 | 109.0 | C17—C18—C19 | 120.7 (3) |
H71—C7—H72 | 110.2 | C17—C18—H181 | 119.2 |
C4—C7—H73 | 108.9 | C19—C18—H181 | 120.1 |
H71—C7—H73 | 109.8 | C18—C19—C20 | 119.9 (3) |
H72—C7—H73 | 109.9 | C18—C19—H191 | 120.0 |
C4—C8—H81 | 109.9 | C20—C19—H191 | 120.1 |
C4—C8—H82 | 108.0 | C19—C20—C21 | 120.1 (3) |
H81—C8—H82 | 110.5 | C19—C20—H201 | 120.1 |
C4—C8—H83 | 108.8 | C21—C20—H201 | 119.8 |
H81—C8—H83 | 109.7 | C20—C21—C22 | 119.9 (3) |
H82—C8—H83 | 109.9 | C20—C21—H211 | 120.2 |
C1—N9—C10 | 108.5 (2) | C22—C21—H211 | 119.9 |
C1—N9—C16 | 113.2 (2) | C21—C22—C17 | 120.7 (3) |
C10—N9—C16 | 111.8 (2) | C21—C22—H221 | 119.7 |
N9—C10—C11 | 105.8 (2) | C17—C22—H221 | 119.6 |
N9—C10—H101 | 110.1 |
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436. CrossRef Web of Science IUCr Journals Google Scholar
Anderson, S. M., Ekhart, C., Lundt, I. & Stutz, A. E. (2000). Carbohydr. Res. 326, 22–33. Web of Science CrossRef PubMed Google Scholar
Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680. Web of Science CrossRef CAS Google Scholar
Bashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1987). Tetrahedron, 43, 423–430. CrossRef CAS Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bols, M., Lundt, I. & Pedersen, C. (1992). Tetrahedron, 48, 319–324. CrossRef CAS Web of Science Google Scholar
Chavan, S. P., Praveen, C., Sharma, P. & Kalkote, U. (2005). Tetrahedron Lett. 46, 439–441. CrossRef CAS Google Scholar
Chesterton, A. K. S., Jenkinson, S. F., Jones, N. A., Watkin, D. J. & Fleet, G. W. J. (2006). In preparation. Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalaf, J. K. & Datta, A. (2004). J. Org. Chem. 69, 387–390. CSD CrossRef PubMed CAS Google Scholar
Kiliani, H. & Kleeman, S. (1884). Berichte, 17, 1296-1310. Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Punzo, F., Watkin, D. J., Hotchkiss, D. & Fleet, G. W. J. (2006). Acta Cryst. E62, o1344–o1346. CSD CrossRef IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. Web of Science CrossRef PubMed CAS Google Scholar
Whistler, R. L. & BeMiller, J. N. (1963). Method Carbohydr. Chem. 2, 483–484. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.