organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A thio­phene-based aza­cryptand Mannich base: 18,24-bis­­(p-tolyl­sulfonamido)-2,5,8,11,21-penta­oxa-15,27-di­thia-18,24-di­aza­tri­cyclo­[24.3.0.0]nona­cosa-1(26),12(16),13,28-tetra­ene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, England, and bDepartment of Chemistry and Physics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, England
*Correspondence e-mail: gael.labat@liv.ac.uk

(Received 7 June 2006; accepted 24 June 2006; online 30 June 2006)

The title compound, C34H42N2O9S4, is composed of two thio­phene rings bridged by an —O—(CH2)2—O—(CH2)2—O— chain and a tri­substitued diamine with pendent tosyl rings. In the crystal structure, the mol­ecules are stabilized by several intra- and inter­molecular C—H⋯O inter­actions, forming a two-dimensional network arranged in the ac plane.

Comment

The title compound, (I)[link], is similar to the macrocycle reported by Halfpenny & Sloman (2000[Halfpenny, J. & Sloman, Z. S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1877-1879.]), in that the bulky tosyl substituents may have a major effect on the macrocyclic ring geometry. Considering the important steric restrictions imposed in (I)[link] by the thio­phene and the tosyl rings, the flexibility must be even lower and the selectivity of this macrocycle higher than the benzyl analogue reported by Halfpenny & Sloman (2000[Halfpenny, J. & Sloman, Z. S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1877-1879.]) and Barker et al. (1993[Barker, J. M., Chaffin, J. D. E., Halfpenny, J., Huddeston, P. R. & Tseki, P. F. (1993). J. Chem. Soc. Chem. Commun. pp. 1733-1734.]).

[Scheme 1]

The mol­ecule (I)[link] can be divided into two similar parts through a local approximate C2 axis passing through atom O5 and the mid-point of the C7—C8 bond (Fig. 1[link]). The macrocyclic ring shows a non-planar conformation; the longest intramolecular distance between the two thiophene rings is 13.479 (4) Å for C4⋯C14 and the longest between the two tosyl rings is 9.983 (3) Å for C25⋯C29. The large separation of the two tosyl rings influences the geometry of the macrocyclic cavity by ensuring that the thio­phene rings and therefore the O and N atoms do not lie in the same plane. The largest cross-cavity distances are N1⋯O1 = 7.472 (3) Å, N2⋯O4 = 7.458 (3) Å and O1⋯O4 = 7.798 (3) Å. The macrocyclic cavity can be divided in two smaller distorted tetra­hedral cavities, defined by the potential donor atoms O5/N1/O4/O3 and O5/N2/O1/O2. Their largest cross-cavity distances are N1⋯O3 = 5.085 (3) Å, O4⋯O5 = 4.619 (3) Å, N2⋯O2 = 5.304 (3) Å and O1⋯O5 = 4.597 (2) Å. The macrocycle conformation of (I)[link] is stabilized by intra­molecular C—H⋯O inter­actions (Table 2[link]). The mol­ecules are linked by C—H⋯O inter­actions, forming a two-dimensional network in the ac plane (Fig. 2[link]).

[Figure 1]
Figure 1
A view of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular packing of (I)[link], viewed down the b axis. H atoms have been omitted unless these are involved in C—H⋯O inter­actions (dashed lines). [Symmetry codes: (i) x, 1 + y, z; (ii) −x, y − [{1\over 2}], [{3\over 2}] − z; (iii) 1 − x, −y, 2 − z.]

Experimental

Compound (I)[link] was synthesized according to the procedure described by Chaffin et al. (2002[Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717-724.]). Crystals suitable for X-ray analysis were grown from a cyclo­hexane/methanol solution (1:1 v/v) by slow evaporation at 278 K.

Crystal data
  • C34H42N2O9S4

  • Mr = 750.94

  • Monoclinic, P 21 /c

  • a = 18.2875 (13) Å

  • b = 9.0910 (5) Å

  • c = 22.6813 (17) Å

  • β = 105.619 (9)°

  • V = 3631.6 (4) Å3

  • Z = 4

  • Dx = 1.373 Mg m−3

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 153 (2) K

  • Block, colourless

  • 0.50 × 0.50 × 0.30 mm

Data collection
  • Stoe IPDS diffractometer

  • φ scans

  • Absorption correction: none

  • 27910 measured reflections

  • 7077 independent reflections

  • 4692 reflections with I > 2σ(I)

  • Rint = 0.116

  • θmax = 26.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.108

  • S = 0.88

  • 7077 reflections

  • 444 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0522P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—C4 1.708 (3)
S1—C1 1.722 (2)
S2—C11 1.712 (3)
S2—C14 1.719 (3)
S3—N1 1.620 (2)
S3—C21 1.762 (2)
S4—N2 1.6200 (19)
S4—C28 1.768 (2)
C4—S1—C1 92.06 (12)
C11—S2—C14 92.06 (14)
C2—C1—C20 126.3 (2)
C20—C1—S1 123.41 (17)
C12—C11—C15 125.9 (2)
C15—C11—S2 123.7 (2)
O1—C5—C6—O2 71.3 (3)
O2—C7—C8—O3 −84.8 (3)
O3—C9—C10—O4 −72.1 (3)
S2—C11—C15—N1 −72.0 (3)
N1—C16—C17—O5 −168.6 (2)
O5—C18—C19—N2 68.5 (2)
S1—C1—C20—N2 92.0 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O4 0.99 2.54 2.941 (3) 104
C15—H15B⋯O6 0.99 2.45 2.914 (4) 108
C16—H16A⋯O7 0.99 2.36 2.828 (4) 108
C19—H19B⋯O8 0.99 2.34 2.859 (3) 112
C26—H26A⋯O6 0.95 2.56 2.923 (3) 103
C29—H29A⋯O9 0.95 2.50 2.885 (3) 104
C32—H32A⋯O7 0.95 2.57 3.386 (3) 145
C33—H33A⋯O5 0.95 2.59 3.450 (3) 151
C13—H13A⋯O6i 0.95 2.53 3.245 (4) 132
C27—H27B⋯O8ii 0.98 2.58 3.463 (3) 149
C29—H29A⋯O9iii 0.95 2.48 3.221 (3) 135
Symmetry codes: (i) x, y+1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+2.

H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl groups.

Data collection: IPDS-I (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS-I. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS-I; data reduction: IPDS-I; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: IPDS-I (Stoe & Cie, 2000); cell refinement: IPDS-I; data reduction: IPDS-I; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

18,24-bis(p-tolylsulfonamide)-2,5,8,11,21-pentaoxa-15,27-dithia-18,24- diazatricyclo[24.3.0.0]nonacosa-1(26),12 (16),13,28-tetraene top
Crystal data top
C34H42N2O9S4F(000) = 1584
Mr = 750.94Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8001 reflections
a = 18.2875 (13) Åθ = 1.7–26.1°
b = 9.0910 (5) ŵ = 0.32 mm1
c = 22.6813 (17) ÅT = 153 K
β = 105.619 (9)°Block, colorless
V = 3631.6 (4) Å30.50 × 0.50 × 0.30 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
4692 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.116
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
Detector resolution: 0.81Å pixels mm-1h = 2222
φ oscillation scansk = 1111
27910 measured reflectionsl = 2727
7077 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0522P)2]
where P = (Fo2 + 2Fc2)/3
7077 reflections(Δ/σ)max = 0.001
444 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63246 (4)0.10947 (9)0.87786 (3)0.03915 (18)
S20.04945 (4)0.11148 (9)0.59600 (4)0.0465 (2)
S30.09481 (3)0.23262 (7)0.66381 (3)0.03410 (16)
S40.40997 (3)0.15930 (6)0.88159 (2)0.02415 (14)
O10.53364 (9)0.0928 (2)0.70555 (7)0.0335 (4)
O20.44238 (10)0.18169 (19)0.58657 (7)0.0329 (4)
O30.27322 (9)0.2796 (2)0.54703 (8)0.0336 (4)
O40.11196 (11)0.2617 (2)0.53383 (9)0.0426 (5)
O50.28638 (8)0.1333 (2)0.71479 (7)0.0303 (4)
O60.07829 (11)0.3366 (2)0.61450 (10)0.0474 (5)
O70.15329 (10)0.2638 (2)0.71908 (9)0.0456 (5)
O80.35785 (10)0.28003 (19)0.87440 (8)0.0323 (4)
O90.47933 (10)0.1675 (2)0.92982 (7)0.0342 (4)
N10.11995 (11)0.0815 (2)0.63687 (9)0.0328 (5)
N20.42678 (10)0.1321 (2)0.81587 (8)0.0237 (4)
C10.55972 (13)0.0801 (3)0.81273 (11)0.0269 (5)
C20.58368 (13)0.1095 (3)0.76200 (11)0.0281 (5)
C30.66082 (14)0.1556 (3)0.77493 (13)0.0351 (6)
H3A0.68580.18180.74470.042*
C40.69394 (15)0.1571 (3)0.83619 (13)0.0414 (7)
H4A0.74570.18180.85390.050*
C50.56219 (14)0.1112 (3)0.65329 (11)0.0315 (5)
H5B0.60670.04660.65660.038*
H5A0.57810.21450.65040.038*
C60.49965 (15)0.0714 (3)0.59777 (12)0.0344 (6)
H6B0.52030.06230.56180.041*
H6A0.47750.02470.60430.041*
C70.38147 (15)0.1422 (3)0.53506 (11)0.0362 (6)
H7A0.35300.05890.54620.043*
H7B0.40230.10960.50120.043*
C80.32842 (15)0.2690 (3)0.51376 (11)0.0347 (6)
H8A0.35800.36150.51870.042*
H8B0.30250.25670.46970.042*
C90.21918 (14)0.3906 (3)0.52223 (12)0.0346 (6)
H9B0.19720.37290.47790.041*
H9A0.24450.48790.52720.041*
C100.15743 (14)0.3907 (3)0.55385 (12)0.0355 (6)
H10B0.17930.38830.59880.043*
H10A0.12600.48050.54310.043*
C110.03290 (14)0.1058 (3)0.57380 (11)0.0356 (6)
C120.05090 (14)0.2431 (3)0.55734 (11)0.0359 (6)
C130.00160 (15)0.3533 (3)0.56282 (12)0.0417 (7)
H13A0.00300.45420.55340.050*
C140.05897 (16)0.2977 (3)0.58306 (14)0.0458 (7)
H14A0.09970.35470.58940.055*
C150.07899 (14)0.0320 (3)0.57464 (11)0.0358 (6)
H15B0.04470.11180.55400.043*
H15A0.11630.01420.55090.043*
C160.16578 (13)0.0277 (3)0.67937 (12)0.0337 (6)
H16A0.17460.00740.72200.040*
H16B0.13780.12200.67550.040*
C170.24085 (13)0.0515 (3)0.66539 (11)0.0320 (6)
H17A0.26510.04410.66150.038*
H17B0.23360.10640.62660.038*
C180.35816 (12)0.1711 (3)0.70649 (10)0.0284 (5)
H18A0.35180.24200.67240.034*
H18B0.38370.08220.69650.034*
C190.40534 (12)0.2390 (3)0.76533 (10)0.0243 (5)
H19A0.45200.28160.75810.029*
H19B0.37620.32000.77740.029*
C200.48397 (12)0.0195 (3)0.81353 (11)0.0261 (5)
H20B0.46440.04130.77640.031*
H20A0.49080.04590.84950.031*
C210.01010 (13)0.2021 (3)0.68490 (11)0.0292 (5)
C220.01297 (14)0.1313 (3)0.73938 (11)0.0356 (6)
H22A0.06050.10290.76600.043*
C230.05321 (14)0.1021 (3)0.75498 (12)0.0371 (6)
H23A0.05070.05400.79260.045*
C240.12381 (14)0.1414 (3)0.71681 (12)0.0321 (6)
C250.12502 (14)0.2143 (3)0.66265 (13)0.0372 (6)
H25A0.17240.24430.63640.045*
C260.05956 (14)0.2442 (3)0.64603 (12)0.0359 (6)
H26A0.06180.29300.60850.043*
C270.19559 (15)0.1047 (3)0.73362 (14)0.0429 (7)
H27C0.18710.11470.77800.064*
H27B0.23600.17220.71250.064*
H27A0.21050.00340.72130.064*
C280.36361 (12)0.0038 (3)0.89398 (10)0.0232 (5)
C290.39360 (13)0.0892 (3)0.94540 (10)0.0259 (5)
H29A0.43950.06100.97420.031*
C300.35604 (13)0.2159 (3)0.95433 (11)0.0276 (5)
H30A0.37620.27360.98990.033*
C310.28951 (13)0.2605 (3)0.91229 (11)0.0279 (5)
C320.26032 (13)0.1730 (3)0.86087 (11)0.0323 (6)
H32A0.21450.20160.83200.039*
C330.29661 (13)0.0453 (3)0.85100 (11)0.0298 (5)
H33A0.27630.01300.81560.036*
C340.25128 (16)0.4027 (3)0.92084 (14)0.0429 (7)
H34C0.24210.40390.96140.064*
H34B0.28410.48560.91730.064*
H34A0.20280.41110.88940.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0286 (3)0.0524 (5)0.0337 (3)0.0024 (3)0.0038 (3)0.0044 (3)
S20.0328 (3)0.0528 (5)0.0558 (5)0.0022 (3)0.0152 (3)0.0148 (4)
S30.0279 (3)0.0323 (4)0.0419 (4)0.0020 (3)0.0092 (3)0.0024 (3)
S40.0272 (3)0.0234 (3)0.0215 (3)0.0020 (2)0.0062 (2)0.0005 (2)
O10.0303 (9)0.0433 (11)0.0295 (9)0.0016 (8)0.0127 (7)0.0032 (8)
O20.0397 (10)0.0302 (10)0.0290 (9)0.0060 (7)0.0099 (7)0.0031 (8)
O30.0358 (9)0.0366 (11)0.0298 (9)0.0036 (8)0.0113 (7)0.0059 (8)
O40.0433 (10)0.0415 (12)0.0466 (11)0.0146 (8)0.0184 (9)0.0138 (9)
O50.0227 (8)0.0421 (11)0.0252 (8)0.0060 (7)0.0047 (6)0.0054 (7)
O60.0498 (11)0.0368 (11)0.0597 (13)0.0017 (9)0.0222 (10)0.0179 (10)
O70.0286 (9)0.0518 (13)0.0529 (12)0.0109 (8)0.0048 (8)0.0113 (10)
O80.0421 (10)0.0248 (9)0.0341 (9)0.0052 (7)0.0173 (8)0.0001 (7)
O90.0373 (10)0.0334 (10)0.0266 (9)0.0105 (8)0.0006 (7)0.0019 (8)
N10.0298 (10)0.0367 (13)0.0286 (11)0.0085 (9)0.0024 (8)0.0053 (9)
N20.0259 (9)0.0220 (11)0.0241 (9)0.0040 (8)0.0083 (7)0.0043 (8)
C10.0268 (12)0.0245 (13)0.0300 (12)0.0019 (9)0.0088 (10)0.0019 (10)
C20.0256 (11)0.0218 (13)0.0372 (13)0.0016 (9)0.0091 (10)0.0020 (11)
C30.0282 (12)0.0324 (15)0.0479 (16)0.0007 (11)0.0159 (11)0.0063 (13)
C40.0253 (13)0.0496 (18)0.0482 (16)0.0038 (12)0.0079 (11)0.0022 (14)
C50.0342 (13)0.0286 (14)0.0365 (13)0.0043 (10)0.0179 (11)0.0022 (11)
C60.0423 (14)0.0297 (15)0.0360 (14)0.0077 (11)0.0185 (12)0.0010 (11)
C70.0415 (14)0.0412 (17)0.0260 (12)0.0033 (12)0.0088 (11)0.0032 (11)
C80.0420 (14)0.0390 (16)0.0254 (12)0.0004 (12)0.0130 (11)0.0058 (11)
C90.0342 (13)0.0304 (15)0.0353 (14)0.0016 (11)0.0027 (11)0.0035 (11)
C100.0318 (13)0.0318 (15)0.0396 (14)0.0060 (11)0.0039 (11)0.0059 (12)
C110.0292 (12)0.0454 (17)0.0296 (13)0.0040 (11)0.0037 (10)0.0007 (12)
C120.0324 (13)0.0455 (18)0.0274 (12)0.0064 (11)0.0042 (10)0.0052 (12)
C130.0411 (15)0.0424 (18)0.0393 (15)0.0028 (12)0.0071 (12)0.0017 (13)
C140.0375 (15)0.0486 (19)0.0514 (17)0.0078 (13)0.0122 (13)0.0115 (14)
C150.0352 (13)0.0421 (16)0.0271 (13)0.0035 (11)0.0033 (11)0.0038 (11)
C160.0277 (12)0.0408 (16)0.0302 (13)0.0071 (11)0.0033 (10)0.0090 (12)
C170.0290 (13)0.0350 (15)0.0292 (13)0.0039 (10)0.0032 (10)0.0059 (11)
C180.0227 (11)0.0359 (14)0.0261 (12)0.0018 (10)0.0056 (9)0.0011 (11)
C190.0245 (11)0.0229 (13)0.0249 (11)0.0010 (9)0.0055 (9)0.0046 (10)
C200.0276 (12)0.0223 (13)0.0295 (12)0.0023 (9)0.0096 (10)0.0026 (10)
C210.0294 (12)0.0234 (14)0.0341 (13)0.0007 (9)0.0072 (10)0.0016 (10)
C220.0323 (13)0.0397 (16)0.0312 (13)0.0022 (11)0.0026 (10)0.0010 (12)
C230.0361 (14)0.0428 (17)0.0325 (13)0.0006 (12)0.0094 (11)0.0051 (12)
C240.0326 (13)0.0248 (14)0.0395 (14)0.0030 (10)0.0110 (11)0.0045 (11)
C250.0275 (13)0.0343 (15)0.0453 (15)0.0079 (11)0.0019 (11)0.0056 (12)
C260.0330 (13)0.0337 (16)0.0394 (14)0.0040 (11)0.0070 (11)0.0088 (12)
C270.0336 (14)0.0433 (17)0.0548 (17)0.0035 (12)0.0171 (13)0.0008 (14)
C280.0231 (11)0.0255 (13)0.0218 (11)0.0018 (9)0.0077 (9)0.0017 (9)
C290.0282 (12)0.0268 (13)0.0215 (11)0.0009 (9)0.0046 (9)0.0013 (10)
C300.0315 (12)0.0266 (13)0.0252 (12)0.0021 (10)0.0085 (10)0.0046 (10)
C310.0278 (12)0.0281 (14)0.0309 (12)0.0002 (10)0.0134 (10)0.0007 (10)
C320.0255 (12)0.0387 (15)0.0304 (13)0.0063 (10)0.0037 (10)0.0008 (11)
C330.0276 (12)0.0359 (15)0.0252 (12)0.0006 (10)0.0059 (10)0.0066 (11)
C340.0395 (15)0.0365 (17)0.0542 (17)0.0084 (12)0.0151 (13)0.0038 (14)
Geometric parameters (Å, º) top
S1—C41.708 (3)C11—C151.507 (4)
S1—C11.722 (2)C12—C131.416 (4)
S2—C111.712 (3)C13—C141.352 (4)
S2—C141.719 (3)C13—H13A0.9500
S3—O61.433 (2)C14—H14A0.9500
S3—O71.4399 (19)C15—H15B0.9900
S3—N11.620 (2)C15—H15A0.9900
S3—C211.762 (2)C16—C171.506 (3)
S4—O81.4339 (17)C16—H16A0.9900
S4—O91.4365 (17)C16—H16B0.9900
S4—N21.6200 (19)C17—H17A0.9900
S4—C281.768 (2)C17—H17B0.9900
O1—C21.367 (3)C18—C191.512 (3)
O1—C51.428 (3)C18—H18A0.9900
O2—C61.423 (3)C18—H18B0.9900
O2—C71.426 (3)C19—H19A0.9900
O3—C81.417 (3)C19—H19B0.9900
O3—C91.419 (3)C20—H20B0.9900
O4—C121.371 (3)C20—H20A0.9900
O4—C101.439 (3)C21—C221.382 (4)
O5—C171.414 (3)C21—C261.394 (3)
O5—C181.418 (3)C22—C231.375 (4)
N1—C161.477 (3)C22—H22A0.9500
N1—C151.479 (3)C23—C241.394 (4)
N2—C191.473 (3)C23—H23A0.9500
N2—C201.475 (3)C24—C251.391 (4)
C1—C21.363 (3)C24—C271.500 (4)
C1—C201.496 (3)C25—C261.375 (4)
C2—C31.424 (3)C25—H25A0.9500
C3—C41.358 (4)C26—H26A0.9500
C3—H3A0.9500C27—H27C0.9800
C4—H4A0.9500C27—H27B0.9800
C5—C61.500 (4)C27—H27A0.9800
C5—H5B0.9900C28—C291.385 (3)
C5—H5A0.9900C28—C331.397 (3)
C6—H6B0.9900C29—C301.384 (3)
C6—H6A0.9900C29—H29A0.9500
C7—C81.500 (4)C30—C311.389 (3)
C7—H7A0.9900C30—H30A0.9500
C7—H7B0.9900C31—C321.394 (3)
C8—H8A0.9900C31—C341.507 (4)
C8—H8B0.9900C32—C331.385 (4)
C9—C101.492 (4)C32—H32A0.9500
C9—H9B0.9900C33—H33A0.9500
C9—H9A0.9900C34—H34C0.9800
C10—H10B0.9900C34—H34B0.9800
C10—H10A0.9900C34—H34A0.9800
C11—C121.368 (4)
C4—S1—C192.06 (12)N1—C15—C11113.8 (2)
C11—S2—C1492.06 (14)N1—C15—H15B108.8
O6—S3—O7120.03 (13)C11—C15—H15B108.8
O6—S3—N1106.67 (12)N1—C15—H15A108.8
O7—S3—N1106.00 (12)C11—C15—H15A108.8
O6—S3—C21107.44 (12)H15B—C15—H15A107.7
O7—S3—C21107.21 (12)N1—C16—C17110.4 (2)
N1—S3—C21109.18 (12)N1—C16—H16A109.6
O8—S4—O9118.07 (11)C17—C16—H16A109.6
O8—S4—N2107.29 (10)N1—C16—H16B109.6
O9—S4—N2111.17 (10)C17—C16—H16B109.6
O8—S4—C28109.12 (11)H16A—C16—H16B108.1
O9—S4—C28106.58 (10)O5—C17—C16106.51 (19)
N2—S4—C28103.66 (10)O5—C17—H17A110.4
C2—O1—C5117.53 (18)C16—C17—H17A110.4
C6—O2—C7110.12 (19)O5—C17—H17B110.4
C8—O3—C9110.92 (19)C16—C17—H17B110.4
C12—O4—C10116.1 (2)H17A—C17—H17B108.6
C17—O5—C18113.02 (17)O5—C18—C19108.10 (18)
C16—N1—C15118.1 (2)O5—C18—H18A110.1
C16—N1—S3119.51 (17)C19—C18—H18A110.1
C15—N1—S3119.73 (17)O5—C18—H18B110.1
C19—N2—C20118.20 (17)C19—C18—H18B110.1
C19—N2—S4122.60 (15)H18A—C18—H18B108.4
C20—N2—S4116.82 (15)N2—C19—C18112.76 (19)
C2—C1—C20126.3 (2)N2—C19—H19A109.0
C2—C1—S1110.14 (17)C18—C19—H19A109.0
C20—C1—S1123.41 (17)N2—C19—H19B109.0
C1—C2—O1118.8 (2)C18—C19—H19B109.0
C1—C2—C3114.2 (2)H19A—C19—H19B107.8
O1—C2—C3127.0 (2)N2—C20—C1114.4 (2)
C4—C3—C2111.0 (2)N2—C20—H20B108.7
C4—C3—H3A124.5C1—C20—H20B108.7
C2—C3—H3A124.5N2—C20—H20A108.7
C3—C4—S1112.64 (19)C1—C20—H20A108.7
C3—C4—H4A123.7H20B—C20—H20A107.6
S1—C4—H4A123.7C22—C21—C26120.1 (2)
O1—C5—C6107.58 (19)C22—C21—S3119.44 (18)
O1—C5—H5B110.2C26—C21—S3120.4 (2)
C6—C5—H5B110.2C23—C22—C21119.7 (2)
O1—C5—H5A110.2C23—C22—H22A120.1
C6—C5—H5A110.2C21—C22—H22A120.1
H5B—C5—H5A108.5C22—C23—C24121.5 (2)
O2—C6—C5109.7 (2)C22—C23—H23A119.2
O2—C6—H6B109.7C24—C23—H23A119.2
C5—C6—H6B109.7C25—C24—C23117.6 (2)
O2—C6—H6A109.7C25—C24—C27121.6 (2)
C5—C6—H6A109.7C23—C24—C27120.9 (2)
H6B—C6—H6A108.2C26—C25—C24121.9 (2)
O2—C7—C8111.4 (2)C26—C25—H25A119.1
O2—C7—H7A109.3C24—C25—H25A119.1
C8—C7—H7A109.3C25—C26—C21119.1 (2)
O2—C7—H7B109.3C25—C26—H26A120.4
C8—C7—H7B109.3C21—C26—H26A120.4
H7A—C7—H7B108.0C24—C27—H27C109.5
O3—C8—C7111.8 (2)C24—C27—H27B109.5
O3—C8—H8A109.2H27C—C27—H27B109.5
C7—C8—H8A109.2C24—C27—H27A109.5
O3—C8—H8B109.2H27C—C27—H27A109.5
C7—C8—H8B109.2H27B—C27—H27A109.5
H8A—C8—H8B107.9C29—C28—C33120.7 (2)
O3—C9—C10110.3 (2)C29—C28—S4120.37 (17)
O3—C9—H9B109.6C33—C28—S4118.95 (18)
C10—C9—H9B109.6C30—C29—C28119.3 (2)
O3—C9—H9A109.6C30—C29—H29A120.3
C10—C9—H9A109.6C28—C29—H29A120.3
H9B—C9—H9A108.1C29—C30—C31121.3 (2)
O4—C10—C9107.2 (2)C29—C30—H30A119.3
O4—C10—H10B110.3C31—C30—H30A119.3
C9—C10—H10B110.3C30—C31—C32118.4 (2)
O4—C10—H10A110.3C30—C31—C34120.9 (2)
C9—C10—H10A110.3C32—C31—C34120.7 (2)
H10B—C10—H10A108.5C33—C32—C31121.4 (2)
C12—C11—C15125.9 (2)C33—C32—H32A119.3
C12—C11—S2110.4 (2)C31—C32—H32A119.3
C15—C11—S2123.7 (2)C32—C33—C28118.8 (2)
C11—C12—O4120.0 (2)C32—C33—H33A120.6
C11—C12—C13113.8 (2)C28—C33—H33A120.6
O4—C12—C13126.1 (3)C31—C34—H34C109.5
C14—C13—C12111.8 (3)C31—C34—H34B109.5
C14—C13—H13A124.1H34C—C34—H34B109.5
C12—C13—H13A124.1C31—C34—H34A109.5
C13—C14—S2112.0 (2)H34C—C34—H34A109.5
C13—C14—H14A124.0H34B—C34—H34A109.5
S2—C14—H14A124.0
O6—S3—N1—C16158.31 (18)C12—C11—C15—N1106.0 (3)
O7—S3—N1—C1629.3 (2)S2—C11—C15—N172.0 (3)
C21—S3—N1—C1685.9 (2)C15—N1—C16—C1779.4 (3)
O6—S3—N1—C1540.5 (2)S3—N1—C16—C17119.1 (2)
O7—S3—N1—C15169.51 (19)C18—O5—C17—C16176.9 (2)
C21—S3—N1—C1575.3 (2)N1—C16—C17—O5168.6 (2)
O8—S4—N2—C1913.3 (2)C17—O5—C18—C19172.3 (2)
O9—S4—N2—C19117.22 (18)C20—N2—C19—C1871.6 (2)
C28—S4—N2—C19128.63 (18)S4—N2—C19—C18126.44 (18)
O8—S4—N2—C20175.43 (16)O5—C18—C19—N268.5 (2)
O9—S4—N2—C2044.96 (19)C19—N2—C20—C160.6 (3)
C28—S4—N2—C2069.19 (18)S4—N2—C20—C1102.4 (2)
C4—S1—C1—C21.1 (2)C2—C1—C20—N293.3 (3)
C4—S1—C1—C20174.4 (2)S1—C1—C20—N292.0 (2)
C20—C1—C2—O14.8 (4)O6—S3—C21—C22166.3 (2)
S1—C1—C2—O1179.89 (17)O7—S3—C21—C2236.0 (2)
C20—C1—C2—C3175.2 (2)N1—S3—C21—C2278.4 (2)
S1—C1—C2—C30.1 (3)O6—S3—C21—C2616.0 (2)
C5—O1—C2—C1174.4 (2)O7—S3—C21—C26146.3 (2)
C5—O1—C2—C35.6 (4)N1—S3—C21—C2699.3 (2)
C1—C2—C3—C41.2 (3)C26—C21—C22—C230.2 (4)
O1—C2—C3—C4178.8 (2)S3—C21—C22—C23177.5 (2)
C2—C3—C4—S12.0 (3)C21—C22—C23—C240.4 (4)
C1—S1—C4—C31.8 (2)C22—C23—C24—C251.3 (4)
C2—O1—C5—C6173.8 (2)C22—C23—C24—C27178.2 (3)
C7—O2—C6—C5178.0 (2)C23—C24—C25—C261.5 (4)
O1—C5—C6—O271.3 (3)C27—C24—C25—C26177.9 (3)
C6—O2—C7—C8167.9 (2)C24—C25—C26—C210.9 (4)
C9—O3—C8—C7174.1 (2)C22—C21—C26—C250.0 (4)
O2—C7—C8—O384.8 (3)S3—C21—C26—C25177.7 (2)
C8—O3—C9—C10174.6 (2)O8—S4—C28—C29124.30 (19)
C12—O4—C10—C9179.0 (2)O9—S4—C28—C294.2 (2)
O3—C9—C10—O472.1 (3)N2—S4—C28—C29121.62 (19)
C14—S2—C11—C120.0 (2)O8—S4—C28—C3356.0 (2)
C14—S2—C11—C15178.3 (2)O9—S4—C28—C33175.48 (19)
C15—C11—C12—O46.4 (4)N2—S4—C28—C3358.1 (2)
S2—C11—C12—O4175.32 (18)C33—C28—C29—C300.7 (3)
C15—C11—C12—C13178.0 (2)S4—C28—C29—C30179.58 (18)
S2—C11—C12—C130.2 (3)C28—C29—C30—C311.0 (4)
C10—O4—C12—C11140.3 (2)C29—C30—C31—C321.0 (4)
C10—O4—C12—C1344.7 (3)C29—C30—C31—C34176.8 (2)
C11—C12—C13—C140.4 (3)C30—C31—C32—C330.7 (4)
O4—C12—C13—C14174.9 (3)C34—C31—C32—C33177.1 (2)
C12—C13—C14—S20.3 (3)C31—C32—C33—C280.4 (4)
C11—S2—C14—C130.2 (2)C29—C28—C33—C320.4 (4)
C16—N1—C15—C1149.6 (3)S4—C28—C33—C32179.87 (19)
S3—N1—C15—C11111.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O40.992.542.941 (3)104
C15—H15B···O60.992.452.914 (4)108
C16—H16A···O70.992.362.828 (4)108
C19—H19B···O80.992.342.859 (3)112
C26—H26A···O60.952.562.923 (3)103
C29—H29A···O90.952.502.885 (3)104
C32—H32A···O70.952.573.386 (3)145
C33—H33A···O50.952.593.450 (3)151
C13—H13A···O6i0.952.533.245 (4)132
C27—H27B···O8ii0.982.583.463 (3)149
C29—H29A···O9iii0.952.483.221 (3)135
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+3/2; (iii) x+1, y, z+2.
 

Acknowledgements

We thank Professor Helen Stoeckli-Evans (Neuchâtel) for making available the Stoe IPDS diffractometer for data collection.

References

First citationBarker, J. M., Chaffin, J. D. E., Halfpenny, J., Huddeston, P. R. & Tseki, P. F. (1993). J. Chem. Soc. Chem. Commun. pp. 1733–1734.  CrossRef Web of Science Google Scholar
First citationChaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717–724.  Web of Science CrossRef Google Scholar
First citationHalfpenny, J. & Sloman, Z. S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1877–1879.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDS-I. Stoe & Cie, Darmstadt, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds