metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Amino-4-chloro­benzoato)tri­methyl­tin(IV)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bSchool of Chemistry, University of Manchester, Manchester, M13 9PL, England
*Correspondence e-mail: drsa54@yahoo.com

(Received 23 June 2006; accepted 3 July 2006; online 12 July 2006)

In the title compound, [Sn(CH3)3(C7H5ClNO2)], the Sn atom is bonded to three methyl groups and one O atom in a distorted tetra­hedral geometry, with Sn—C bond lengths of 2.118 (2)–2.119 (2) Å and an Sn—O bond length of 2.0804 (12) Å.

Comment

In view of our inter­est in the synthesis, characterization, biological applications and crystal structures of organotin carboxyl­ates (Danish et al., 1995[Danish, M., Ali, S., Mazhar, M., Badshah, A., Masood, T. & Tiekink, E. R. T. (1995). Main Group Met. Chem. 18, 27-34.]; Parvez et al., 2002[Parvez, M., Ali, S., Ahmad, S., Bhatti, M. H. & Mazhar, M. (2002). Acta Cryst. C58, m334-m335.]; Sadiq-ur-Rehman et al., 2006[Sadiq-ur-Rehman, Ali, S., Shahzadi, S. & Parvez, M. (2006). Acta Cryst. E62, m910-m911.]), we have synthesized a new organotin(IV) carboxyl­ate of 4-chloro-3-amino­benzoic acid, the title compound, (I)[link].

[Scheme 1]

In compound (I)[link] (Fig. 1[link]), atom Sn1 is bonded to three methyl groups with essentially identical Sn—C distances, comparable with the values reported for the related structure (C16H13O3)Sn(CH3)3 (Tahir et al., 1997[Tahir, M. N., Ülkü, D., Ali, S., Masood, T., Danish, M. & Mazhar, M. (1997). Acta Cryst. C53, 1574-1576.]). The coordination geometry around Sn1 is distorted tetra­hedral (Table 1[link]).

The crystal structure of (I)[link] contains centrosymmetric dimers formed via inter­molecular N—H⋯O hydrogen bonds (Fig. 2[link], Table 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 2]
Figure 2
Centrosymmetric dimers formed through inter­molecular hydrogen bonding (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Experimental

The sodium salt of 4-chloro-3-amino­benzoic acid (0.194 g, 1 mmol) and trimethyl­tin chloride (0.199 g, 1 mmol) were suspended in dry toluene (150 ml) in a two-necked round-bottomed flask equipped with a water condenser. The mixture was refluxed for 8–10 h, the NaCl formed was filtered off, and the solvent was removed on a rotary evaporator under reduced pressure. The solid product was recrystallized from chloro­form to obtain colourless crystals of (I)[link] (yield 70%; m.p. 403–406 K).

Crystal data
  • [Sn(CH3)3(C7H5ClNO2)]

  • Mr = 334.36

  • Monoclinic, P 21 /c

  • a = 11.9077 (7) Å

  • b = 9.1237 (5) Å

  • c = 12.6554 (7) Å

  • β = 113.086 (1)°

  • V = 1264.80 (12) Å3

  • Z = 4

  • Dx = 1.756 Mg m−3

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 100 (2) K

  • Block, colourless

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.435, Tmax = 0.515

  • 9722 measured reflections

  • 2586 independent reflections

  • 2528 reflections with I > 2σ(I)

  • Rint = 0.017

  • θmax = 26.4°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.038

  • S = 1.11

  • 2586 reflections

  • 147 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0146P)2 + 0.9615P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.005

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.0804 (12)
Sn1—C8 2.118 (2)
Sn1—C9 2.119 (2)
Sn1—C10 2.119 (2)
O1—Sn1—C8 102.26 (7)
O1—Sn1—C10 96.02 (6)
C8—Sn1—C10 115.55 (9)
O1—Sn1—C9 106.60 (6)
C8—Sn1—C9 118.66 (9)
C10—Sn1—C9 113.69 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N⋯O2i 0.83 (2) 2.14 (2) 2.947 (2) 166 (2)
Symmetry code: (i) -x+2, -y+2, -z+1.

H atoms bound to C atoms were included in calculated positions and allowed to ride during subsequent refinement, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for Csp2, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl groups. The methyl groups were allowed to rotate about their local threefold axes. H atoms bound to N1 were located in a difference Fourier map and refined isotropically, with final N—H distances of 0.80 (2) and 0.83 (2) Å.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.625) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

(3-Amino-4-chlorobenzoato)trimethyltin(IV) top
Crystal data top
[Sn(CH3)3(C7H5ClNO2)]F(000) = 656
Mr = 334.36Dx = 1.756 Mg m3
Monoclinic, P21/cMelting point = 403–406 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.9077 (7) ÅCell parameters from 8154 reflections
b = 9.1237 (5) Åθ = 2.8–26.4°
c = 12.6554 (7) ŵ = 2.21 mm1
β = 113.086 (1)°T = 100 K
V = 1264.80 (12) Å3Block, colourless
Z = 40.40 × 0.30 × 0.30 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2586 independent reflections
Radiation source: fine-focus sealed tube2528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.435, Tmax = 0.515k = 1111
9722 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0146P)2 + 0.9615P]
where P = (Fo2 + 2Fc2)/3
2586 reflections(Δ/σ)max = 0.005
147 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.758545 (10)0.680159 (12)0.129024 (9)0.01696 (5)
Cl10.63628 (4)1.43820 (4)0.49036 (3)0.02033 (9)
O10.70022 (11)0.85101 (13)0.20397 (10)0.0173 (2)
O20.89305 (11)0.87859 (15)0.32613 (11)0.0269 (3)
N10.87650 (15)1.28807 (19)0.59015 (14)0.0252 (3)
C10.78575 (15)0.91776 (18)0.28834 (14)0.0164 (3)
C20.74554 (14)1.04716 (18)0.33707 (14)0.0150 (3)
C30.82684 (14)1.10631 (18)0.43995 (14)0.0156 (3)
H30.90531.06330.47700.019*
C40.79528 (15)1.22799 (19)0.48994 (14)0.0163 (3)
C50.67799 (15)1.28591 (18)0.43147 (14)0.0155 (3)
C60.59600 (15)1.22758 (19)0.32933 (14)0.0169 (3)
H60.51731.26980.29240.020*
C70.62928 (15)1.10714 (18)0.28108 (14)0.0161 (3)
H70.57381.06620.21110.019*
C80.7946 (2)0.5117 (2)0.25317 (19)0.0388 (5)
H8A0.86680.53740.32160.058*
H8B0.80950.41940.22110.058*
H8C0.72420.50010.27420.058*
C90.90513 (18)0.7631 (2)0.09166 (17)0.0291 (4)
H9A0.90510.87040.09490.044*
H9B0.89560.73150.01460.044*
H9C0.98250.72570.14820.044*
C100.59313 (17)0.6591 (2)0.01744 (17)0.0269 (4)
H10A0.52400.67610.00460.040*
H10B0.58750.56010.04920.040*
H10C0.59140.73120.07540.040*
H1N0.855 (2)1.355 (3)0.6190 (18)0.021 (5)*
H2N0.943 (2)1.248 (3)0.6245 (18)0.025 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01860 (7)0.01495 (7)0.01740 (7)0.00233 (4)0.00713 (5)0.00167 (4)
Cl10.01977 (19)0.01832 (19)0.0220 (2)0.00442 (15)0.00727 (16)0.00461 (15)
O10.0180 (6)0.0170 (6)0.0170 (6)0.0001 (5)0.0069 (5)0.0036 (5)
O20.0193 (6)0.0336 (7)0.0231 (7)0.0098 (5)0.0031 (5)0.0086 (6)
N10.0176 (8)0.0267 (8)0.0245 (8)0.0061 (7)0.0007 (7)0.0108 (7)
C10.0188 (8)0.0173 (8)0.0138 (7)0.0020 (6)0.0071 (6)0.0016 (6)
C20.0168 (8)0.0147 (8)0.0153 (7)0.0000 (6)0.0084 (6)0.0010 (6)
C30.0122 (7)0.0169 (8)0.0176 (8)0.0012 (6)0.0058 (6)0.0000 (6)
C40.0161 (8)0.0168 (8)0.0165 (8)0.0003 (6)0.0070 (6)0.0004 (6)
C50.0183 (8)0.0132 (7)0.0175 (8)0.0013 (6)0.0098 (7)0.0005 (6)
C60.0145 (7)0.0184 (8)0.0174 (8)0.0031 (6)0.0058 (6)0.0026 (6)
C70.0155 (8)0.0181 (8)0.0137 (7)0.0009 (6)0.0048 (6)0.0003 (6)
C80.0566 (14)0.0229 (10)0.0363 (12)0.0075 (10)0.0177 (11)0.0083 (9)
C90.0251 (9)0.0346 (11)0.0324 (10)0.0037 (8)0.0163 (8)0.0112 (8)
C100.0232 (9)0.0283 (10)0.0253 (9)0.0000 (7)0.0054 (8)0.0097 (8)
Geometric parameters (Å, º) top
Sn1—O12.0804 (12)C4—C51.402 (2)
Sn1—C82.118 (2)C5—C61.385 (2)
Sn1—C92.119 (2)C6—C71.388 (2)
Sn1—C102.119 (2)C6—H60.950
Cl1—C51.7387 (16)C7—H70.950
O1—C11.302 (2)C8—H8A0.980
O2—C11.229 (2)C8—H8B0.980
N1—C41.372 (2)C8—H8C0.980
N1—H1N0.80 (2)C9—H9A0.980
N1—H2N0.83 (2)C9—H9B0.980
C1—C21.495 (2)C9—H9C0.980
C2—C31.391 (2)C10—H10A0.980
C2—C71.396 (2)C10—H10B0.980
C3—C41.400 (2)C10—H10C0.980
C3—H30.950
O1—Sn1—C8102.26 (7)C5—C6—C7119.77 (15)
O1—Sn1—C1096.02 (6)C5—C6—H6120.1
C8—Sn1—C10115.55 (9)C7—C6—H6120.1
O1—Sn1—C9106.60 (6)C6—C7—C2118.97 (15)
C8—Sn1—C9118.66 (9)C6—C7—H7120.5
C10—Sn1—C9113.69 (8)C2—C7—H7120.5
C1—O1—Sn1115.51 (10)Sn1—C8—H8A109.5
C4—N1—H1N119.1 (16)Sn1—C8—H8B109.5
C4—N1—H2N119.6 (16)H8A—C8—H8B109.5
H1N—N1—H2N121 (2)Sn1—C8—H8C109.5
O2—C1—O1122.87 (15)H8A—C8—H8C109.5
O2—C1—C2121.43 (15)H8B—C8—H8C109.5
O1—C1—C2115.70 (14)Sn1—C9—H9A109.5
C3—C2—C7120.71 (15)Sn1—C9—H9B109.5
C3—C2—C1118.33 (14)H9A—C9—H9B109.5
C7—C2—C1120.96 (15)Sn1—C9—H9C109.5
C2—C3—C4121.26 (15)H9A—C9—H9C109.5
C2—C3—H3119.4H9B—C9—H9C109.5
C4—C3—H3119.4Sn1—C10—H10A109.5
N1—C4—C3121.18 (15)Sn1—C10—H10B109.5
N1—C4—C5122.16 (16)H10A—C10—H10B109.5
C3—C4—C5116.65 (15)Sn1—C10—H10C109.5
C6—C5—C4122.64 (15)H10A—C10—H10C109.5
C6—C5—Cl1119.47 (13)H10B—C10—H10C109.5
C4—C5—Cl1117.89 (13)
C8—Sn1—O1—C175.15 (13)C2—C3—C4—N1178.61 (16)
C10—Sn1—O1—C1167.03 (12)C2—C3—C4—C50.4 (2)
C9—Sn1—O1—C150.09 (13)N1—C4—C5—C6178.94 (17)
Sn1—O1—C1—O23.8 (2)C3—C4—C5—C60.0 (2)
Sn1—O1—C1—C2175.90 (10)N1—C4—C5—Cl10.4 (2)
O2—C1—C2—C312.0 (2)C3—C4—C5—Cl1179.37 (12)
O1—C1—C2—C3168.30 (14)C4—C5—C6—C70.2 (3)
O2—C1—C2—C7168.20 (16)Cl1—C5—C6—C7179.18 (13)
O1—C1—C2—C711.5 (2)C5—C6—C7—C20.0 (2)
C7—C2—C3—C40.5 (2)C3—C2—C7—C60.4 (2)
C1—C2—C3—C4179.62 (15)C1—C2—C7—C6179.81 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N···O2i0.83 (2)2.14 (2)2.947 (2)166 (2)
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

AR is grateful to the HEC (Higher Education Commision, Islamabad, Pakistan) for financial support under the PhD Fellowship Scheme Batch-II (PIN Code 042-111621-PS2-179).

References

First citationBruker (2001). SMART (Version 5.625) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanish, M., Ali, S., Mazhar, M., Badshah, A., Masood, T. & Tiekink, E. R. T. (1995). Main Group Met. Chem. 18, 27–34.  CrossRef CAS Google Scholar
First citationParvez, M., Ali, S., Ahmad, S., Bhatti, M. H. & Mazhar, M. (2002). Acta Cryst. C58, m334–m335.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSadiq-ur-Rehman, Ali, S., Shahzadi, S. & Parvez, M. (2006). Acta Cryst. E62, m910–m911.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTahir, M. N., Ülkü, D., Ali, S., Masood, T., Danish, M. & Mazhar, M. (1997). Acta Cryst. C53, 1574–1576.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds