organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4:5,6-Di-O-iso­propyl­­idene-3-C-hy­droxy­methyl-D-altrono-1,3′-lactone

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography, Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, England, and bDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, England
*Correspondence e-mail: george.fleet@chem.ox.ac.uk

(Received 12 April 2006; accepted 29 April 2006; online 18 August 2006)

The title compound, C13H20O7, a rare example of a sugar with a carbon branch at C-3, is one of the major products isolated from the treatment of D-hamamelose with cyanide (the Kiliani reaction), followed by protection as a diacetonide. The material crystallizes with two mol­ecules in the asymmetric unit, related to each other by a non-crystallographic twofold axis.

Comment

The value of the Kiliani reaction of cyanide with ketoses (Hotchkiss et al., 2004[Hotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]; Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]) and 1-deoxy­ketoses (Hotchkiss et al., 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]) has been recognized for the easy synthesis of carbohydrate scaffolds with branched carbon chains at C-2 of the sugar. Such branched sugars are powerful inter­mediates for the synthesis of enanti­omerically pure bioactive compounds (Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]).

[Scheme 1]

Examples of carbohydrates with a carbon branch at C-3 are very rare, although the synthesis of a crystalline derivative of 3-C-methyl-D-lyxono-1,4-lactone from the Kiliani reaction on 2-C-methyl-D-threose has been reported (Bream et al., 2006[Bream, R., Watkin, D. J., Soengas, R., Eastwick-Field, V. & Fleet, G. W. J. (2006). Acta Cryst. E62, o977-o979.]). This paper reports a short synthesis of two carbohydrates with a branch at C-3 of a hexose from the Kiliani reaction of D-hamamelose, (1), which may be prepared in two steps from D-ribose (Ho, 1978[Ho, P.-T. (1978). Tetrahedron Lett. 19, 1623-1624.]; Hricoviniova-Bilikovaa et al., 1999[Hricoviniova-Bilikovaa, Z., Hricovinia, M., Petruova, M., Serianni, A. S. & Petru, L. (1999). Carbohydr. Res. 319, 38-46.]; Hricoviniova et al., 2005[Hricoviniova, Z., Lamba, D. & Hricovini, M. (2005). Carbohydr. Res. 340, 55-458.]). Thus, treatment of (1) with sodium cyanide in water gives a mixture of the diastereomeric 3-C-hydr­oxy-methyl­hexonic acids, (2) and (5). Treatment of the crude reaction mixture of (2) and (5) with acid in dimethoxy­propane induces cyclization to the respective lactones, (3) and (6), together with subsequent formation of the diacetonides, (4) and (7); experimental details for the procedure are given below.

The possible combinations for the formation of different diacetonides from acids (2) and (5) are numerous. Thus, it is seen that 1,4-lactones can be formed from either the C-4 hydroxyl group of the sugar [to give (3)] or the C-3′ hydroxyl group [to give (6)], and from each of these products several different diacetonides may arise. Only X-ray crystallographic analysis can resolve the structural ambiguities that arise in this reaction. This paper firmly identifies the relative configuration of the four stereocentres in the altrono-diacetonide, (7). The absolute configuration of (7) is determined by the use of D-ribose as the starting material for the synthesis. The crystal structure of the allono-lactone, (4), is reported in a subsequent paper (Cowley et al., 2006[Bream, R., Cowley, A. R., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62. In preparation.]).

Compound (7) crystallizes with two mol­ecules in the asymmetric unit, related by a well-defined non-crystallographic twofold axis. After mapping the mol­ecules together by least-squares, the r.m.s. positional deviation of the non-H atoms is 0.378 Å, and the r.m.s. deviation in equivalent bond lengths is 0.009 Å. The major difference between the two mol­ecules is at O5 and O105, where the envelope flap is on opposite sides of the plane of the rest of the ring.

The crystal structure of (7) is built up of infinite columns, two mol­ecules wide, connected by hydrogen bonds (Table 1[link]). Note that atom O105 is not involved in the network, and is thus free to adopt a different comformation from O5.

[Figure 1]
Figure 1
One of the two independent mol­ecules of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radii. The second mol­ecule has a similar geometry and is numbered by adding 100 to equivalent atoms in the first mol­ecule.
[Figure 2]
Figure 2
Part of the hydrogen-bonding network, showing the formation of columns, two mol­ecules wide, linking the two independent mol­ecules. Hydrogen bonds are shown as dotted lines. The columns run parallel to the b axis and there are no inter­actions between columns. Note that atom O5 is involved in the hydrogen bonding but atom O105 is not.

Experimental

The synthesis of 3,4:5,6-di-O-isopropyl­idene-3-C-hydroxy­methyl-D-altrono-1,3′-lactone, (7), and 3,3′:5,6-di-O-isopropyl­idene-3-C-hydroxy­methyl-D-allono-1,4-lactone, (4), was carried out as follows. Sodium cyanide (1.04 g, 21.184 mmol) was added to a solution of D-hamamelose, (1) (1.26 g, 7.007 mmol), in water (80 ml). The reaction mixture was stirred at room temperature for 24 h and then heated to reflux for a further 24 h. The solution was then passed through an ion-exchange resin [Amberlite IR-120 (H+)]. The water was removed in vacuo to give a dark-yellow oily residue (1.32 g), which was then treated with dimethoxy­propane (18 ml) and para-toluene­sulfonic acid monohydrate (119 mg, catalyst). The reaction mixture was stirred at room temperature for 36 h, quenched with solid sodium bicarbonate and concentrated in vacuo. The residue was partitioned between dichloro­methane (200 ml) and water (40 ml). The aqueous phase was washed twice with dichloro­methane (2 × 160 ml). The organic layers were combined, dried (magnesium sulfate) and concentrated in vacuo to give a residue which was purified by flash chromatography (ethyl acetate-hexane, 1:3 to 1:2 to 1:1) to give 3,4:5,6-di-O-isopropyl­idene-3-C-hydroxy­methyl-D-altrono-1,3′-lactone, (7) (Rf 0.56) (254 mg), and 3-C-hydroxy­methyl-3,3′:5,6-di-O-isopropyl­idene-D-allono-1,4-lactone, (4) (Rf 0.44) (251 mg) (25% combined yield, 1.75 mmol). Data for (7): m.p. 321–323 K (dichloro­methane–cyclo­hexane as colourless chunky crystals); m/z (MS ES): 287.2 [M−H], 100%); HRMS (MS ES+), found: 311.1101 [M+Na]+; C13H20NaO7 requires 311.1101; [α]D23: 5.8 (c, 0.23 in acetone); IR (νmax, thin film, cm−1): 3439 (br, OH), 2989 (CH), 1797 (sh, C=O); 1H NMR (CDCl3, 400 MHz, δ, p.p.m.): 1.35, 1.43, 1.44, 1.50 [12H, 4s, 2 C(CH3)2], 2.60–2.70 (1H, br s, OH2), 3.87 (1H, d, JH4,H5 = 9.3 Hz, H4), 4.00 (1H, dd, JH6,H6′ = 9.0 Hz, JH6,H5 = 4.4 Hz, H6), 4.21 (1H, dd, JH6′,H6 = 9.0 Hz, JH6′,H5 = 6.1 Hz, H6′), 4.32 (2H, 2s, H3′ and H3′′), 4.31–4.39 (1H, m, H5), 4.75–4.80 (1H, br s, H2); 13C NMR (CDCl3, 100 MHz, δ, p.p.m.): 25.0, 25.4, 26.8, 26.9 [2 C(CH3)2], 67.9 (C6), 68.5 (C2), 73.1 (C5), 74.3 (C3′), 77.7 (C4), 85.8 (C3), 110.3, 111.1 [2 C(CH3)2], 174.7 (C=O).

The sample for X-ray crystallographic analysis of (7) was grown by vapour diffusion of cyclohexane into a saturated solution of the material in dichlorormethane until crystals formed. Data for the allono-lactone, (4), are given in Bream et al. (2006[Bream, R., Cowley, A. R., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62. In preparation.]).

Crystal data
  • C13H20O7

  • Mr = 288.30

  • Monoclinic, P 21

  • a = 11.5720 (2) Å

  • b = 9.2793 (2) Å

  • c = 13.1937 (3) Å

  • β = 90.5971 (8)°

  • V = 1416.66 (5) Å3

  • Z = 4

  • Dx = 1.352 Mg m−3

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • Block, colourless

  • 0.55 × 0.50 × 0.45 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.73, Tmax = 0.95

  • 17056 measured reflections

  • 3374 independent reflections

  • 2956 reflections with I > 3σ(I)

  • Rint = 0.028

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 0.97

  • 2956 reflections

  • 361 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.03P)2 + 0.33P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H121⋯O112i 0.84 1.98 2.813 (2) 170
O112—H1121⋯O5i 0.83 1.98 2.806 (2) 169
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+1].

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the known configuration of the starting materials. The values of Tmin and Tmax were computed by the multi-scan inter-frame scaling, and take into account factors other than simple absorption (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]). The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

3,4:5,6-Di-O-isopropylidene-3-C-hydroxymethyl-D-altrono-1,3'-lactone top
Crystal data top
C13H20O7F(000) = 616
Mr = 288.30Dx = 1.352 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2974 reflections
a = 11.5720 (2) Åθ = 1–27°
b = 9.2793 (2) ŵ = 0.11 mm1
c = 13.1937 (3) ÅT = 150 K
β = 90.5971 (8)°Block, colourless
V = 1416.66 (5) Å30.55 × 0.50 × 0.45 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2956 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1415
Tmin = 0.73, Tmax = 0.95k = 1210
17056 measured reflectionsl = 1616
3374 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.070 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.03P)2 + 0.33P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.97(Δ/σ)max = 0.000313
2956 reflectionsΔρmax = 0.19 e Å3
361 parametersΔρmin = 0.16 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44755 (15)0.7690 (2)0.28314 (14)0.0217
C20.41152 (16)0.9276 (2)0.29530 (14)0.0222
C30.29565 (16)0.9692 (2)0.24929 (14)0.0223
C40.26104 (17)1.1237 (2)0.27130 (14)0.0257
O50.19260 (11)1.16063 (16)0.18344 (10)0.0267
O60.30920 (11)0.97016 (17)0.14152 (9)0.0275
O70.40438 (11)0.94553 (16)0.40241 (10)0.0258
C80.48830 (17)0.8519 (2)0.44709 (15)0.0271
O90.49147 (11)0.72881 (17)0.38093 (10)0.0275
C100.60708 (18)0.9206 (3)0.4514 (2)0.0435
C110.35681 (15)0.6579 (2)0.25106 (14)0.0216
O120.28235 (11)0.61758 (18)0.32832 (11)0.0301
C130.53828 (18)0.7441 (2)0.20166 (17)0.0305
O140.53436 (12)0.58976 (17)0.18066 (12)0.0335
H210.47150.99000.26690.0268*
H310.23660.89900.26900.0255*
O340.40973 (14)0.40971 (18)0.20661 (13)0.0395
C350.30089 (19)1.1675 (3)0.02637 (17)0.0349
C360.12885 (17)1.0048 (2)0.05030 (16)0.0315
C370.43223 (17)0.5359 (3)0.21210 (15)0.0274
C380.4456 (2)0.8060 (3)0.54949 (17)0.0427
C390.23279 (16)1.0761 (2)0.09879 (14)0.0228
H410.32891.18710.27470.0305*
H420.21431.13310.33240.0311*
C1010.08842 (15)0.9233 (2)0.70134 (14)0.0231
H1010.66030.84610.46890.0653*
C1020.12099 (15)0.7655 (2)0.68734 (14)0.0223
H1020.60840.99620.50290.0654*
C1030.10873 (17)0.6687 (2)0.77894 (15)0.0234
H1030.62800.95900.38530.0640*
C1040.16111 (18)0.5186 (2)0.76614 (17)0.0307
O1050.27298 (12)0.53161 (19)0.81266 (11)0.0344
O1060.17451 (12)0.73092 (17)0.86006 (10)0.0305
O1070.04067 (12)0.71858 (18)0.61155 (10)0.0293
C1080.01997 (17)0.8379 (3)0.54473 (14)0.0279
O1090.04252 (12)0.96432 (17)0.60534 (10)0.0287
C1100.1011 (2)0.8372 (4)0.45547 (17)0.0454
C1110.00104 (16)0.9631 (2)0.78410 (15)0.0231
H1110.31460.69700.19190.0264*
O1120.11611 (10)0.93697 (16)0.76295 (10)0.0267
C1130.18790 (18)1.0229 (3)0.73016 (17)0.0323
O1140.13331 (13)1.15310 (18)0.76873 (13)0.0376
H1210.22710.56840.30580.0454*
H1310.61590.77090.22690.0364*
H1320.51620.79850.13880.0368*
O1340.04290 (15)1.21648 (19)0.81995 (14)0.0461
C1350.3715 (2)0.7065 (4)0.9153 (2)0.0541
C1360.2135 (2)0.5534 (3)0.98838 (17)0.0401
C1370.02296 (19)1.1247 (2)0.79402 (16)0.0314
C1380.10483 (18)0.8358 (3)0.51261 (17)0.0363
C1390.25957 (17)0.6287 (3)0.89522 (16)0.0291
H3510.33841.10360.02030.0526*
H3520.35851.22430.06460.0505*
H3530.24981.23270.01060.0517*
H3610.15400.94490.00680.0463*
H3620.07671.07950.02510.0460*
H3630.09130.94410.10090.0464*
H3810.50240.74040.58070.0632*
H3820.43680.89050.59180.0634*
H3830.37100.75580.54050.0627*
H10210.20030.75980.66190.0266*
H10310.02750.66110.79810.0274*
H10410.11450.44350.79990.0373*
H10420.16940.49400.69470.0369*
H11010.08240.91940.41090.0677*
H11020.18160.84320.47800.0660*
H11030.08870.75010.41530.0671*
H11110.02300.91920.84940.0266*
H11210.13420.85670.78630.0411*
H11310.23820.98020.78520.0377*
H11320.23501.04550.67200.0386*
H13510.42910.63670.93600.0807*
H13520.36180.77870.96870.0806*
H13530.39480.75320.85370.0799*
H13610.27580.49271.01430.0593*
H13620.19230.62601.03830.0598*
H13630.14870.49270.96860.0595*
H13810.11960.91700.46940.0537*
H13820.15330.84160.57140.0535*
H13830.12220.74900.47720.0542*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0207 (8)0.0216 (10)0.0228 (9)0.0013 (8)0.0020 (7)0.0005 (8)
C20.0217 (8)0.0221 (10)0.0228 (9)0.0010 (8)0.0004 (7)0.0015 (8)
C30.0235 (8)0.0211 (10)0.0224 (9)0.0014 (8)0.0002 (7)0.0009 (8)
C40.0310 (9)0.0234 (10)0.0228 (9)0.0054 (8)0.0029 (7)0.0008 (8)
O50.0289 (7)0.0268 (8)0.0244 (7)0.0094 (6)0.0021 (5)0.0034 (6)
O60.0326 (7)0.0288 (8)0.0210 (7)0.0126 (7)0.0012 (5)0.0007 (6)
O70.0276 (6)0.0274 (8)0.0223 (7)0.0044 (6)0.0043 (5)0.0035 (6)
C80.0259 (9)0.0269 (11)0.0283 (10)0.0015 (9)0.0081 (8)0.0032 (9)
O90.0296 (7)0.0247 (7)0.0281 (7)0.0023 (6)0.0115 (6)0.0020 (6)
C100.0302 (11)0.0437 (15)0.0562 (15)0.0043 (11)0.0163 (10)0.0093 (12)
C110.0211 (8)0.0208 (10)0.0228 (9)0.0001 (8)0.0021 (7)0.0017 (8)
O120.0245 (6)0.0319 (8)0.0341 (8)0.0082 (6)0.0054 (5)0.0035 (7)
C130.0284 (10)0.0249 (11)0.0385 (12)0.0006 (9)0.0087 (9)0.0020 (9)
O140.0326 (8)0.0256 (8)0.0426 (9)0.0031 (6)0.0119 (6)0.0051 (7)
O340.0435 (9)0.0228 (8)0.0524 (10)0.0006 (7)0.0015 (7)0.0077 (8)
C350.0356 (11)0.0328 (13)0.0363 (11)0.0001 (10)0.0063 (9)0.0044 (10)
C360.0293 (10)0.0289 (12)0.0361 (11)0.0006 (9)0.0050 (8)0.0033 (9)
C370.0287 (10)0.0273 (11)0.0263 (10)0.0027 (9)0.0004 (8)0.0025 (9)
C380.0454 (13)0.0539 (17)0.0286 (11)0.0118 (12)0.0041 (10)0.0034 (11)
C390.0246 (9)0.0199 (10)0.0238 (9)0.0042 (8)0.0006 (7)0.0000 (8)
C1010.0211 (8)0.0244 (10)0.0237 (9)0.0025 (8)0.0023 (7)0.0045 (8)
C1020.0184 (8)0.0273 (11)0.0211 (9)0.0025 (8)0.0018 (7)0.0026 (8)
C1030.0239 (8)0.0210 (10)0.0252 (9)0.0018 (8)0.0016 (7)0.0031 (8)
C1040.0340 (11)0.0232 (11)0.0349 (11)0.0061 (9)0.0069 (9)0.0051 (9)
O1050.0292 (7)0.0346 (9)0.0393 (8)0.0101 (7)0.0037 (6)0.0078 (7)
O1060.0423 (8)0.0231 (8)0.0259 (7)0.0090 (7)0.0117 (6)0.0036 (6)
O1070.0341 (7)0.0283 (8)0.0253 (7)0.0022 (7)0.0081 (6)0.0027 (6)
C1080.0290 (10)0.0340 (12)0.0206 (9)0.0038 (9)0.0013 (7)0.0010 (9)
O1090.0335 (7)0.0291 (8)0.0235 (7)0.0011 (7)0.0032 (6)0.0062 (6)
C1100.0404 (13)0.0674 (19)0.0285 (11)0.0068 (13)0.0051 (9)0.0020 (13)
C1110.0239 (9)0.0196 (10)0.0257 (9)0.0002 (8)0.0013 (7)0.0011 (8)
O1120.0212 (6)0.0223 (8)0.0365 (8)0.0007 (6)0.0016 (5)0.0058 (6)
C1130.0281 (10)0.0278 (12)0.0408 (12)0.0041 (9)0.0024 (9)0.0022 (10)
O1140.0376 (8)0.0239 (8)0.0513 (10)0.0084 (7)0.0039 (7)0.0012 (8)
O1340.0565 (10)0.0236 (8)0.0585 (11)0.0053 (8)0.0080 (8)0.0077 (8)
C1350.0344 (12)0.0558 (18)0.0719 (19)0.0060 (13)0.0106 (12)0.0082 (16)
C1360.0522 (13)0.0326 (13)0.0353 (12)0.0049 (11)0.0094 (10)0.0057 (10)
C1370.0388 (11)0.0216 (11)0.0337 (11)0.0018 (9)0.0029 (9)0.0019 (9)
C1380.0298 (10)0.0479 (14)0.0309 (11)0.0017 (11)0.0059 (9)0.0049 (11)
C1390.0275 (9)0.0251 (11)0.0345 (11)0.0053 (9)0.0066 (8)0.0016 (9)
Geometric parameters (Å, º) top
C1—C21.539 (3)C101—C1021.524 (3)
C1—O91.431 (2)C101—O1091.420 (2)
C1—C111.528 (3)C101—C1111.541 (3)
C1—C131.528 (3)C101—C1131.521 (3)
C2—C31.516 (2)C102—C1031.514 (3)
C2—O71.426 (2)C102—O1071.426 (2)
C2—H210.981C102—H10210.982
C3—C41.517 (3)C103—C1041.529 (3)
C3—O61.432 (2)C103—O1061.429 (2)
C3—H310.980C103—H10310.979
C4—O51.439 (2)C104—O1051.432 (2)
C4—H410.982C104—H10410.990
C4—H420.979C104—H10420.975
O5—C391.446 (2)O105—C1391.423 (3)
O6—C391.434 (2)O106—C1391.440 (2)
O7—C81.426 (2)O107—C1081.434 (3)
C8—O91.438 (3)C108—O1091.442 (3)
C8—C101.516 (3)C108—C1101.514 (3)
C8—C381.505 (3)C108—C1381.501 (3)
C10—H1010.952C110—H11010.986
C10—H1020.976C110—H11020.977
C10—H1030.975C110—H11030.976
C11—O121.393 (2)C111—O1121.402 (2)
C11—C371.522 (3)C111—C1371.527 (3)
C11—H1110.986C111—H11110.984
O12—H1210.837O112—H11210.834
C13—O141.460 (3)C113—O1141.458 (3)
C13—H1310.986C113—H11311.007
C13—H1321.002C113—H11320.969
O14—C371.353 (3)O114—C1371.349 (3)
O34—C371.201 (3)O134—C1371.195 (3)
C35—C391.506 (3)C135—C1391.503 (3)
C35—H3510.961C135—H13510.967
C35—H3520.984C135—H13520.979
C35—H3530.974C135—H13530.962
C36—C391.509 (3)C136—C1391.516 (3)
C36—H3610.983C136—H13610.974
C36—H3620.974C136—H13620.975
C36—H3630.979C136—H13630.972
C38—H3810.984C138—H13810.959
C38—H3820.969C138—H13820.964
C38—H3830.987C138—H13830.951
C2—C1—O9104.43 (16)C102—C101—O109103.91 (16)
C2—C1—C11119.21 (15)C102—C101—C111118.76 (17)
O9—C1—C11108.09 (16)O109—C101—C111109.00 (15)
C2—C1—C13114.00 (17)C102—C101—C113115.24 (16)
O9—C1—C13110.78 (15)O109—C101—C113109.56 (16)
C11—C1—C13100.29 (16)C111—C101—C113100.24 (16)
C1—C2—C3116.18 (16)C101—C102—C103116.63 (16)
C1—C2—O7103.50 (16)C101—C102—O107102.58 (15)
C3—C2—O7107.88 (14)C103—C102—O107108.24 (16)
C1—C2—H21109.3C101—C102—H1021109.1
C3—C2—H21108.9C103—C102—H1021109.6
O7—C2—H21111.0O107—C102—H1021110.4
C2—C3—C4113.45 (16)C102—C103—C104114.32 (17)
C2—C3—O6107.07 (14)C102—C103—O106107.72 (16)
C4—C3—O6102.47 (16)C104—C103—O106104.02 (15)
C2—C3—H31109.9C102—C103—H1031110.3
C4—C3—H31113.0C104—C103—H1031110.2
O6—C3—H31110.6O106—C103—H1031110.0
C3—C4—O5102.43 (15)C103—C104—O105103.49 (16)
C3—C4—H41111.2C103—C104—H1041111.9
O5—C4—H41109.1O105—C104—H1041111.2
C3—C4—H42113.0C103—C104—H1042111.3
O5—C4—H42109.7O105—C104—H1042109.6
H41—C4—H42111.0H1041—C104—H1042109.3
C4—O5—C39108.32 (14)C104—O105—C139106.04 (14)
C3—O6—C39108.74 (14)C103—O106—C139109.39 (15)
C2—O7—C8107.00 (14)C102—O107—C108107.39 (16)
O7—C8—O9104.75 (14)O107—C108—O109105.02 (13)
O7—C8—C10111.89 (19)O107—C108—C110111.94 (19)
O9—C8—C10109.14 (18)O109—C108—C110108.98 (19)
O7—C8—C38108.36 (18)O107—C108—C138108.52 (18)
O9—C8—C38109.30 (19)O109—C108—C138109.59 (18)
C10—C8—C38113.05 (19)C110—C108—C138112.51 (17)
C8—O9—C1109.22 (15)C108—O109—C101109.89 (15)
C8—C10—H101106.7C108—C110—H1101109.1
C8—C10—H102109.7C108—C110—H1102111.1
H101—C10—H102110.4H1101—C110—H1102109.9
C8—C10—H103110.7C108—C110—H1103109.7
H101—C10—H103108.4H1101—C110—H1103106.6
H102—C10—H103110.9H1102—C110—H1103110.3
C1—C11—O12114.02 (16)C101—C111—O112117.24 (16)
C1—C11—C37101.57 (15)C101—C111—C137100.75 (17)
O12—C11—C37114.12 (17)O112—C111—C137110.25 (17)
C1—C11—H111107.8C101—C111—H1111110.9
O12—C11—H111111.9O112—C111—H1111110.1
C37—C11—H111106.7C137—C111—H1111106.8
C11—O12—H121111.3C111—O112—H1121109.1
C1—C13—O14105.16 (17)C101—C113—O114105.14 (16)
C1—C13—H131110.7C101—C113—H1131111.8
O14—C13—H131109.8O114—C113—H1131108.8
C1—C13—H132109.6C101—C113—H1132111.4
O14—C13—H132109.3O114—C113—H1132110.2
H131—C13—H132112.1H1131—C113—H1132109.3
C13—O14—C37109.28 (16)C113—O114—C137109.82 (16)
C39—C35—H351107.5C139—C135—H1351108.6
C39—C35—H352109.4C139—C135—H1352110.5
H351—C35—H352110.5H1351—C135—H1352109.8
C39—C35—H353110.4C139—C135—H1353108.4
H351—C35—H353109.8H1351—C135—H1353110.0
H352—C35—H353109.2H1352—C135—H1353109.6
C39—C36—H361109.4C139—C136—H1361106.6
C39—C36—H362108.7C139—C136—H1362108.9
H361—C36—H362109.2H1361—C136—H1362110.6
C39—C36—H363108.7C139—C136—H1363109.0
H361—C36—H363109.5H1361—C136—H1363109.0
H362—C36—H363111.3H1362—C136—H1363112.6
C11—C37—O14109.54 (18)C111—C137—O114109.12 (18)
C11—C37—O34128.4 (2)C111—C137—O134128.2 (2)
O14—C37—O34122.1 (2)O114—C137—O134122.7 (2)
C8—C38—H381109.1C108—C138—H1381108.9
C8—C38—H382109.0C108—C138—H1382109.8
H381—C38—H382109.5H1381—C138—H1382109.4
C8—C38—H383108.7C108—C138—H1383110.3
H381—C38—H383109.8H1381—C138—H1383109.8
H382—C38—H383110.8H1382—C138—H1383108.7
C36—C39—C35113.44 (17)C136—C139—C135112.83 (19)
C36—C39—O5107.69 (15)C136—C139—O106108.64 (17)
C35—C39—O5111.06 (17)C135—C139—O106109.0 (2)
C36—C39—O6110.60 (17)C136—C139—O105111.78 (19)
C35—C39—O6108.11 (15)C135—C139—O105109.76 (19)
O5—C39—O6105.68 (14)O106—C139—O105104.48 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H121···O112i0.841.982.813 (2)170
O112—H1121···O5i0.831.982.806 (2)169
Symmetry code: (i) x, y1/2, z+1.
 

Acknowledgements

Financial support (to MIS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002–00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBream, R., Watkin, D. J., Soengas, R., Eastwick-Field, V. & Fleet, G. W. J. (2006). Acta Cryst. E62, o977–o979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBream, R., Cowley, A. R., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62. In preparation.  Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHo, P.-T. (1978). Tetrahedron Lett. 19, 1623–1624.  CrossRef Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationHricoviniova-Bilikovaa, Z., Hricovinia, M., Petruova, M., Serianni, A. S. & Petru, L. (1999). Carbohydr. Res. 319, 38–46.  Web of Science CrossRef Google Scholar
First citationHricoviniova, Z., Lamba, D. & Hricovini, M. (2005). Carbohydr. Res. 340, 55–458.  Web of Science CSD CrossRef Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds