metal-organic compounds
Diaquabis(ethylenediamine)copper(II) bis(4-nitrobenzoate)
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, and cPanjab University, Department of Chemistry, Chandigarh 160 014, India
*Correspondence e-mail: w.harrison@abdn.ac.uk, rpsharma@yahoo.co.in
In the title compound, [Cu(C2H8N2)2(H2O)2](C7H4NO4)2, the component complex cations and organic anions interact by way of N—H⋯O and O—H⋯O hydrogen bonds, leading to a layered structure. The Cu atom has .
Comment
The title compound, (I), was prepared as part of our ongoing studies of second-sphere hydrogen-bonding interactions in compounds containing cationic metal complexes and organic counter-anions (Sharma, Bala et al., 2006; Sharma, Sharma et al., 2006).
The geometrical parameters for the component species in (I) fall within their expected ranges (Allen et al., 1987). The well known [Cu(C2N2H8)2(H2O)2]2+ complex cation in (I) is built up from a central copper(II) ion (site symmetry ) chelated by two ethylenediamine molecules to form an approximate CuN4 square. The Jahn–Teller distorted copper coordination is completed by two trans water molecules (Table 1). The Cu—N and Cu—O bond lengths in (I) are very similar to the equivalent values observed for the same complex cation in its bis(naphthalene-2-sulfonate) (Sharma et al., 2005) and bis(4-fluorobenzoate) (Liu et al., 2004) salts.
The 4-nitrobenzoate anion in (I) is almost planar, the dihedral angles between the mean plane of the C3–C8 benzene ring and the planes of its attached C9/O2/O3 carboxylate and N3/O4/O5 nitro groups being 2.14 (17) and 1.9 (2)°, respectively. The carboxylate C—O bond lengths are almost equal, suggesting charge delocalization.
As well as electrostatic forces, the component species in (I) interact by way of O—H⋯O and N—H⋯O hydrogen bonds (Table 2). Firstly, adjacent complex cations are linked into chains propagating along [100] by way of translation-related pairs of N1—H1⋯O1i bonds (see Table 2 for symmetry code). A bridging carboxylate atom O3 also helps to consolidate the chains (Fig. 2). Then, adjacent cations and anions form a distinctive bridged chain propagating along [010] (Fig. 3), where each carboxylate group in the chain accepts no fewer than four hydrogen bonds from its two adjoining cations. Combining these hydrogen-bonding motifs results in (001) sheets of tightly bound cations and anions. It is notable that the nitro O atoms do not serve as acceptors for any of the hydrogen bonds.
Experimental
Compound (I) was prepared by taking a suspension of [Cu(H2O)6](C7H4NO4)2 [obtained by reacting basic copper(II) carbonate with p-nitrobenzoic acid in water] and adding a methanol solution of ethylenediamine dropwise until a slight excess of a 1:2 Cu–en stoichiometry was achieved, resulting in a deep-blue solution, which was allowed to evaporate at room temperature to obtain purple crystals of (I) after a few days. Crystals were filtered off and dried in air.
Crystal data
|
Refinement
|
|
The O-bound H atoms were located in a difference map and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O). The C- and N-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å, N—H = 0.92 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N).
Data collection: CrystalClear (Rigaku, 2004); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536806052901/cf2072sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806052901/cf2072Isup2.hkl
Data collection: CrystalClear (Rigaku, 2004); cell
CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.[Cu(C2H8N2)2(H2O)2](C7H4NO4)2 | Z = 1 |
Mr = 552.00 | F(000) = 287 |
Triclinic, P1 | Dx = 1.570 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.0019 (5) Å | Cell parameters from 2340 reflections |
b = 7.1230 (4) Å | θ = 2.7–28.2° |
c = 15.370 (2) Å | µ = 1.00 mm−1 |
α = 95.48 (2)° | T = 93 K |
β = 98.43 (2)° | Cube, purple |
γ = 114.26 (2)° | 0.10 × 0.10 × 0.10 mm |
V = 583.69 (15) Å3 |
Rigaku Mercury CCD diffractometer | 2005 independent reflections |
Radiation source: rotating anode | 1930 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.015 |
Detector resolution: 0.83 pixels mm-1 | θmax = 25.3°, θmin = 2.7° |
φ and ω scans | h = −5→7 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −6→8 |
Tmin = 0.856, Tmax = 1.000 | l = −18→18 |
3754 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0337P)2 + 0.5044P] where P = (Fo2 + 2Fc2)/3 |
2005 reflections | (Δ/σ)max = 0.002 |
160 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.01301 (14) | |
C1 | 0.3527 (4) | 0.4877 (4) | 0.66944 (15) | 0.0177 (5) | |
H1A | 0.2872 | 0.4000 | 0.7143 | 0.021* | |
H1B | 0.2922 | 0.5978 | 0.6710 | 0.021* | |
C2 | 0.6352 (4) | 0.5864 (4) | 0.69053 (15) | 0.0177 (5) | |
H2A | 0.6998 | 0.6899 | 0.7465 | 0.021* | |
H2B | 0.6960 | 0.4780 | 0.6983 | 0.021* | |
N1 | 0.2647 (3) | 0.3572 (3) | 0.57892 (12) | 0.0131 (4) | |
H1 | 0.1061 | 0.3396 | 0.5551 | 0.016* | |
H2 | 0.2599 | 0.2274 | 0.5826 | 0.016* | |
N2 | 0.7230 (3) | 0.6905 (3) | 0.61493 (12) | 0.0138 (4) | |
H3 | 0.8861 | 0.7141 | 0.6160 | 0.017* | |
H4 | 0.7145 | 0.8170 | 0.6191 | 0.017* | |
O1 | 0.7238 (3) | 0.2674 (2) | 0.51837 (10) | 0.0158 (4) | |
H5 | 0.7064 | 0.1756 | 0.4710 | 0.019* | |
H6 | 0.6952 | 0.1896 | 0.5589 | 0.019* | |
C3 | 0.4867 (4) | 0.1037 (3) | 0.78913 (14) | 0.0139 (5) | |
C4 | 0.7093 (5) | 0.2037 (5) | 0.85044 (17) | 0.0297 (6) | |
H4A | 0.8620 | 0.2341 | 0.8313 | 0.036* | |
C5 | 0.7131 (5) | 0.2603 (5) | 0.93950 (17) | 0.0354 (7) | |
H5A | 0.8666 | 0.3270 | 0.9818 | 0.042* | |
C6 | 0.4916 (4) | 0.2183 (3) | 0.96539 (15) | 0.0167 (5) | |
C7 | 0.2672 (5) | 0.1185 (5) | 0.90654 (17) | 0.0350 (7) | |
H7 | 0.1152 | 0.0891 | 0.9262 | 0.042* | |
C8 | 0.2663 (5) | 0.0614 (5) | 0.81761 (17) | 0.0330 (7) | |
H8 | 0.1120 | −0.0078 | 0.7759 | 0.040* | |
C9 | 0.4873 (4) | 0.0454 (3) | 0.69155 (14) | 0.0136 (5) | |
N3 | 0.4942 (4) | 0.2855 (3) | 1.05959 (13) | 0.0222 (5) | |
O2 | 0.6956 (3) | 0.0885 (2) | 0.67087 (10) | 0.0171 (4) | |
O3 | 0.2795 (3) | −0.0400 (2) | 0.63757 (10) | 0.0183 (4) | |
O4 | 0.6929 (4) | 0.3750 (4) | 1.11118 (13) | 0.0516 (6) | |
O5 | 0.2963 (4) | 0.2486 (4) | 1.08147 (13) | 0.0499 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0109 (2) | 0.0139 (2) | 0.0121 (2) | 0.00344 (16) | 0.00238 (15) | 0.00153 (15) |
C1 | 0.0215 (13) | 0.0168 (13) | 0.0140 (11) | 0.0066 (10) | 0.0070 (10) | 0.0020 (9) |
C2 | 0.0204 (13) | 0.0176 (13) | 0.0124 (11) | 0.0065 (10) | 0.0012 (10) | 0.0017 (9) |
N1 | 0.0124 (9) | 0.0120 (10) | 0.0152 (9) | 0.0059 (8) | 0.0019 (8) | 0.0018 (7) |
N2 | 0.0111 (9) | 0.0127 (10) | 0.0172 (10) | 0.0048 (8) | 0.0037 (8) | 0.0017 (8) |
O1 | 0.0175 (8) | 0.0155 (8) | 0.0158 (8) | 0.0080 (7) | 0.0046 (7) | 0.0032 (6) |
C3 | 0.0172 (12) | 0.0093 (12) | 0.0164 (11) | 0.0067 (9) | 0.0034 (9) | 0.0025 (9) |
C4 | 0.0155 (13) | 0.0513 (18) | 0.0181 (13) | 0.0107 (12) | 0.0046 (10) | 0.0028 (12) |
C5 | 0.0165 (14) | 0.0567 (19) | 0.0168 (13) | 0.0039 (13) | −0.0026 (11) | −0.0018 (12) |
C6 | 0.0261 (13) | 0.0135 (12) | 0.0118 (11) | 0.0096 (10) | 0.0050 (10) | 0.0015 (9) |
C7 | 0.0181 (14) | 0.063 (2) | 0.0184 (13) | 0.0124 (13) | 0.0080 (11) | −0.0036 (13) |
C8 | 0.0153 (13) | 0.0508 (18) | 0.0197 (13) | 0.0038 (12) | 0.0034 (11) | −0.0050 (12) |
C9 | 0.0191 (12) | 0.0086 (11) | 0.0152 (11) | 0.0073 (9) | 0.0047 (10) | 0.0037 (9) |
N3 | 0.0327 (13) | 0.0195 (11) | 0.0138 (10) | 0.0106 (10) | 0.0052 (10) | 0.0020 (8) |
O2 | 0.0167 (8) | 0.0188 (9) | 0.0183 (8) | 0.0086 (7) | 0.0075 (7) | 0.0038 (7) |
O3 | 0.0162 (9) | 0.0215 (9) | 0.0135 (8) | 0.0054 (7) | 0.0027 (7) | −0.0005 (6) |
O4 | 0.0385 (13) | 0.0721 (16) | 0.0171 (10) | 0.0033 (11) | 0.0003 (10) | −0.0118 (10) |
O5 | 0.0417 (13) | 0.0851 (18) | 0.0219 (11) | 0.0273 (12) | 0.0131 (10) | −0.0052 (11) |
Cu1—N1i | 2.0146 (18) | O1—H6 | 0.8625 |
Cu1—N1 | 2.0146 (18) | C3—C8 | 1.378 (3) |
Cu1—N2 | 2.0272 (19) | C3—C4 | 1.379 (3) |
Cu1—N2i | 2.0272 (19) | C3—C9 | 1.519 (3) |
Cu1—O1 | 2.5369 (17) | C4—C5 | 1.384 (4) |
Cu1—O1i | 2.5369 (17) | C4—H4A | 0.950 |
C1—N1 | 1.488 (3) | C5—C6 | 1.366 (4) |
C1—C2 | 1.513 (3) | C5—H5A | 0.950 |
C1—H1A | 0.990 | C6—C7 | 1.368 (4) |
C1—H1B | 0.990 | C6—N3 | 1.477 (3) |
C2—N2 | 1.483 (3) | C7—C8 | 1.387 (4) |
C2—H2A | 0.990 | C7—H7 | 0.950 |
C2—H2B | 0.990 | C8—H8 | 0.950 |
N1—H1 | 0.920 | C9—O2 | 1.256 (3) |
N1—H2 | 0.920 | C9—O3 | 1.261 (3) |
N2—H3 | 0.920 | N3—O4 | 1.208 (3) |
N2—H4 | 0.920 | N3—O5 | 1.212 (3) |
O1—H5 | 0.8941 | ||
N1i—Cu1—N1 | 180.0 | H1—N1—H2 | 108.3 |
N1i—Cu1—N2 | 95.08 (7) | C2—N2—Cu1 | 107.93 (14) |
N1—Cu1—N2 | 84.92 (7) | C2—N2—H3 | 110.1 |
N1i—Cu1—N2i | 84.92 (7) | Cu1—N2—H3 | 110.1 |
N1—Cu1—N2i | 95.08 (7) | C2—N2—H4 | 110.1 |
N2—Cu1—N2i | 180.0 | Cu1—N2—H4 | 110.1 |
O1—Cu1—N1 | 92.58 (7) | H3—N2—H4 | 108.4 |
O1—Cu1—N2 | 89.44 (7) | H5—O1—H6 | 101.3 |
O1—Cu1—N1i | 87.42 (7) | C8—C3—C4 | 119.0 (2) |
O1—Cu1—N2i | 90.56 (7) | C8—C3—C9 | 121.0 (2) |
O1i—Cu1—N1i | 92.58 (7) | C4—C3—C9 | 119.9 (2) |
O1i—Cu1—N2i | 89.44 (7) | C3—C4—C5 | 120.9 (2) |
O1i—Cu1—N1 | 87.42 (7) | C3—C4—H4A | 119.6 |
O1i—Cu1—N2 | 90.56 (7) | C5—C4—H4A | 119.6 |
O1—Cu1—O1i | 180.0 | C6—C5—C4 | 118.6 (2) |
N1—C1—C2 | 108.30 (18) | C6—C5—H5A | 120.7 |
N1—C1—H1A | 110.0 | C4—C5—H5A | 120.7 |
C2—C1—H1A | 110.0 | C5—C6—C7 | 122.1 (2) |
N1—C1—H1B | 110.0 | C5—C6—N3 | 119.1 (2) |
C2—C1—H1B | 110.0 | C7—C6—N3 | 118.8 (2) |
H1A—C1—H1B | 108.4 | C6—C7—C8 | 118.6 (2) |
N2—C2—C1 | 107.83 (18) | C6—C7—H7 | 120.7 |
N2—C2—H2A | 110.1 | C8—C7—H7 | 120.7 |
C1—C2—H2A | 110.1 | C3—C8—C7 | 120.8 (2) |
N2—C2—H2B | 110.1 | C3—C8—H8 | 119.6 |
C1—C2—H2B | 110.1 | C7—C8—H8 | 119.6 |
H2A—C2—H2B | 108.5 | O2—C9—O3 | 125.2 (2) |
C1—N1—Cu1 | 109.03 (13) | O2—C9—C3 | 117.2 (2) |
C1—N1—H1 | 109.9 | O3—C9—C3 | 117.57 (19) |
Cu1—N1—H1 | 109.9 | O4—N3—O5 | 123.0 (2) |
C1—N1—H2 | 109.9 | O4—N3—C6 | 118.6 (2) |
Cu1—N1—H2 | 109.9 | O5—N3—C6 | 118.4 (2) |
N1—C1—C2—N2 | 51.7 (2) | N3—C6—C7—C8 | 178.1 (2) |
C2—C1—N1—Cu1 | −36.6 (2) | C4—C3—C8—C7 | 0.2 (4) |
N2—Cu1—N1—C1 | 11.08 (14) | C9—C3—C8—C7 | −178.8 (3) |
N2i—Cu1—N1—C1 | −168.92 (14) | C6—C7—C8—C3 | 0.1 (5) |
C1—C2—N2—Cu1 | −41.2 (2) | C8—C3—C9—O2 | −179.8 (2) |
N1i—Cu1—N2—C2 | −163.03 (14) | C4—C3—C9—O2 | 1.3 (3) |
N1—Cu1—N2—C2 | 16.97 (14) | C8—C3—C9—O3 | 1.1 (3) |
C8—C3—C4—C5 | 0.3 (4) | C4—C3—C9—O3 | −177.8 (2) |
C9—C3—C4—C5 | 179.3 (2) | C5—C6—N3—O4 | −0.3 (4) |
C3—C4—C5—C6 | −1.1 (4) | C7—C6—N3—O4 | −179.4 (3) |
C4—C5—C6—C7 | 1.4 (4) | C5—C6—N3—O5 | 179.4 (3) |
C4—C5—C6—N3 | −177.6 (2) | C7—C6—N3—O5 | 0.4 (4) |
C5—C6—C7—C8 | −0.9 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1ii | 0.92 | 2.11 | 3.018 (2) | 170 |
N1—H2···O3 | 0.92 | 2.20 | 3.081 (2) | 161 |
N2—H3···O3iii | 0.92 | 2.24 | 3.037 (3) | 145 |
N2—H4···O2iv | 0.92 | 2.07 | 2.960 (2) | 162 |
O1—H5···O3v | 0.89 | 1.88 | 2.754 (2) | 166 |
O1—H6···O2 | 0.86 | 1.93 | 2.767 (2) | 164 |
Symmetry codes: (ii) x−1, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) −x+1, −y, −z+1. |
Acknowledgements
The authors gratefully acknowledge the financial support of UGC vide grant No. F.12-38/2003(SR).
References
Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Liu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m1081–m1083. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sharma, R. P., Bala, R., Sharma, R., Perez, J. & Miguel, D. (2006). J. Mol. Struct. 797, 49–55. Web of Science CSD CrossRef CAS Google Scholar
Sharma, R. P., Sharma, R., Bala, R., Burrows, A. D., Mahon, M. F. & Cassar, K. (2006). J. Mol. Struct. 794, 173–180. Web of Science CSD CrossRef CAS Google Scholar
Sharma, R. P., Sharma, R., Bala, R., Rychlewska, U. & Warzajtis, B. (2005). J. Mol. Struct. 738, 291–298. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.