metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(ethyl­enedi­amine)copper(II) bis­­(4-nitro­benzoate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, and cPanjab University, Department of Chemistry, Chandigarh 160 014, India
*Correspondence e-mail: w.harrison@abdn.ac.uk, rpsharma@yahoo.co.in

(Received 27 October 2006; accepted 6 December 2006; online 13 December 2006)

In the title compound, [Cu(C2H8N2)2(H2O)2](C7H4NO4)2, the component complex cations and organic anions inter­act by way of N—H⋯O and O—H⋯O hydrogen bonds, leading to a layered structure. The Cu atom has site symmetry [\overline{1}].

Comment

The title compound, (I)[link], was prepared as part of our ongoing studies of second-sphere hydrogen-bonding inter­actions in compounds containing cationic metal complexes and organic counter-anions (Sharma, Bala et al., 2006[Sharma, R. P., Bala, R., Sharma, R., Perez, J. & Miguel, D. (2006). J. Mol. Struct. 797, 49-55.]; Sharma, Sharma et al., 2006[Sharma, R. P., Sharma, R., Bala, R., Burrows, A. D., Mahon, M. F. & Cassar, K. (2006). J. Mol. Struct. 794, 173-180.]).

[Scheme 1]

The geometrical parameters for the component species in (I)[link] fall within their expected ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The well known [Cu(C2N2H8)2(H2O)2]2+ complex cation in (I)[link] is built up from a central copper(II) ion (site symmetry [\overline{1}]) chelated by two ethyl­enediamine mol­ecules to form an approximate CuN4 square. The Jahn–Teller distorted copper coordination is completed by two trans water mol­ecules (Table 1[link]). The Cu—N and Cu—O bond lengths in (I)[link] are very similar to the equivalent values observed for the same complex cation in its bis­(naphthalene-2-sulfonate) (Sharma et al., 2005[Sharma, R. P., Sharma, R., Bala, R., Rychlewska, U. & Warzajtis, B. (2005). J. Mol. Struct. 738, 291-298.]) and bis­(4-fluoro­benzoate) (Liu et al., 2004[Liu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m1081-m1083.]) salts.

The 4-nitro­benzoate anion in (I)[link] is almost planar, the dihedral angles between the mean plane of the C3–C8 benzene ring and the planes of its attached C9/O2/O3 carboxyl­ate and N3/O4/O5 nitro groups being 2.14 (17) and 1.9 (2)°, respectively. The carboxyl­ate C—O bond lengths are almost equal, suggesting charge delocalization.

As well as electrostatic forces, the component species in (I)[link] inter­act by way of O—H⋯O and N—H⋯O hydrogen bonds (Table 2[link]). Firstly, adjacent complex cations are linked into chains propagating along [100] by way of translation-related pairs of N1—H1⋯O1i bonds (see Table 2[link] for symmetry code). A bridging carboxyl­ate atom O3 also helps to consolidate the chains (Fig. 2[link]). Then, adjacent cations and anions form a distinctive bridged chain propagating along [010] (Fig. 3[link]), where each carboxyl­ate group in the chain accepts no fewer than four hydrogen bonds from its two adjoining cations. Combining these hydrogen-bonding motifs results in (001) sheets of tightly bound cations and anions. It is notable that the nitro O atoms do not serve as acceptors for any of the hydrogen bonds.

[Figure 1]
Figure 1
View of the mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms). [Symmetry code: (i) 1 − x, 1 − y, 1 − z.]
[Figure 2]
Figure 2
Detail of (I)[link], showing part of a [100] chain arising from hydrogen-bonding inter­actions (dashed lines). C-bound H atoms have been omitted. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, 1 − y, 1 − z; (iii) 1 + x, y, z; (iv) 1 + x, 1 + y, z.]
[Figure 3]
Figure 3
Detail of (I)[link], showing part of a [010] chain arising from hydrogen-bonding inter­actions (dashed lines). C-bound H atoms have been omitted. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, 1 + y, z; (iii) 1 − x, 2 − y, 1 − z; (iv) x, 1 + y, z.]

Experimental

Compound (I)[link] was prepared by taking a suspension of [Cu(H2O)6](C7H4NO4)2 [obtained by reacting basic copper(II) carbonate with p-nitro­benzoic acid in water] and adding a methanol solution of ethyl­enediamine dropwise until a slight excess of a 1:2 Cu–en stoichiometry was achieved, resulting in a deep-blue solution, which was allowed to evaporate at room temperature to obtain purple crystals of (I)[link] after a few days. Crystals were filtered off and dried in air.

Crystal data
  • [Cu(C2H8N2)2(H2O)2](C7H4NO4)2

  • Mr = 552.00

  • Triclinic, [P \overline 1]

  • a = 6.0019 (5) Å

  • b = 7.1230 (4) Å

  • c = 15.370 (2) Å

  • α = 95.48 (2)°

  • β = 98.43 (2)°

  • γ = 114.26 (2)°

  • V = 583.69 (15) Å3

  • Z = 1

  • Dx = 1.570 Mg m−3

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 93 (2) K

  • Cube, purple

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.856, Tmax = 1.000 (expected range = 0.774–0.905)

  • 3754 measured reflections

  • 2005 independent reflections

  • 1930 reflections with I > 2σ(I)

  • Rint = 0.015

  • θmax = 25.3°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.077

  • S = 1.08

  • 2005 reflections

  • 160 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0337P)2 + 0.5044P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.0146 (18)
Cu1—N2 2.0272 (19)
Cu1—O1 2.5369 (17)
C9—O2 1.256 (3)
C9—O3 1.261 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.92 2.11 3.018 (2) 170
N1—H2⋯O3 0.92 2.20 3.081 (2) 161
N2—H3⋯O3ii 0.92 2.24 3.037 (3) 145
N2—H4⋯O2iii 0.92 2.07 2.960 (2) 162
O1—H5⋯O3iv 0.89 1.88 2.754 (2) 166
O1—H6⋯O2 0.86 1.93 2.767 (2) 164
Symmetry codes: (i) x-1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) -x+1, -y, -z+1.

The O-bound H atoms were located in a difference map and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O). The C- and N-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å, N—H = 0.92 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N).

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Diaquabis(ethylenediamine)copper(II) bis(4-nitrobenzoate) top
Crystal data top
[Cu(C2H8N2)2(H2O)2](C7H4NO4)2Z = 1
Mr = 552.00F(000) = 287
Triclinic, P1Dx = 1.570 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0019 (5) ÅCell parameters from 2340 reflections
b = 7.1230 (4) Åθ = 2.7–28.2°
c = 15.370 (2) ŵ = 1.00 mm1
α = 95.48 (2)°T = 93 K
β = 98.43 (2)°Cube, purple
γ = 114.26 (2)°0.10 × 0.10 × 0.10 mm
V = 583.69 (15) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
2005 independent reflections
Radiation source: rotating anode1930 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.015
Detector resolution: 0.83 pixels mm-1θmax = 25.3°, θmin = 2.7°
φ and ω scansh = 57
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 68
Tmin = 0.856, Tmax = 1.000l = 1818
3754 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.5044P]
where P = (Fo2 + 2Fc2)/3
2005 reflections(Δ/σ)max = 0.002
160 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.44 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.01301 (14)
C10.3527 (4)0.4877 (4)0.66944 (15)0.0177 (5)
H1A0.28720.40000.71430.021*
H1B0.29220.59780.67100.021*
C20.6352 (4)0.5864 (4)0.69053 (15)0.0177 (5)
H2A0.69980.68990.74650.021*
H2B0.69600.47800.69830.021*
N10.2647 (3)0.3572 (3)0.57892 (12)0.0131 (4)
H10.10610.33960.55510.016*
H20.25990.22740.58260.016*
N20.7230 (3)0.6905 (3)0.61493 (12)0.0138 (4)
H30.88610.71410.61600.017*
H40.71450.81700.61910.017*
O10.7238 (3)0.2674 (2)0.51837 (10)0.0158 (4)
H50.70640.17560.47100.019*
H60.69520.18960.55890.019*
C30.4867 (4)0.1037 (3)0.78913 (14)0.0139 (5)
C40.7093 (5)0.2037 (5)0.85044 (17)0.0297 (6)
H4A0.86200.23410.83130.036*
C50.7131 (5)0.2603 (5)0.93950 (17)0.0354 (7)
H5A0.86660.32700.98180.042*
C60.4916 (4)0.2183 (3)0.96539 (15)0.0167 (5)
C70.2672 (5)0.1185 (5)0.90654 (17)0.0350 (7)
H70.11520.08910.92620.042*
C80.2663 (5)0.0614 (5)0.81761 (17)0.0330 (7)
H80.11200.00780.77590.040*
C90.4873 (4)0.0454 (3)0.69155 (14)0.0136 (5)
N30.4942 (4)0.2855 (3)1.05959 (13)0.0222 (5)
O20.6956 (3)0.0885 (2)0.67087 (10)0.0171 (4)
O30.2795 (3)0.0400 (2)0.63757 (10)0.0183 (4)
O40.6929 (4)0.3750 (4)1.11118 (13)0.0516 (6)
O50.2963 (4)0.2486 (4)1.08147 (13)0.0499 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0109 (2)0.0139 (2)0.0121 (2)0.00344 (16)0.00238 (15)0.00153 (15)
C10.0215 (13)0.0168 (13)0.0140 (11)0.0066 (10)0.0070 (10)0.0020 (9)
C20.0204 (13)0.0176 (13)0.0124 (11)0.0065 (10)0.0012 (10)0.0017 (9)
N10.0124 (9)0.0120 (10)0.0152 (9)0.0059 (8)0.0019 (8)0.0018 (7)
N20.0111 (9)0.0127 (10)0.0172 (10)0.0048 (8)0.0037 (8)0.0017 (8)
O10.0175 (8)0.0155 (8)0.0158 (8)0.0080 (7)0.0046 (7)0.0032 (6)
C30.0172 (12)0.0093 (12)0.0164 (11)0.0067 (9)0.0034 (9)0.0025 (9)
C40.0155 (13)0.0513 (18)0.0181 (13)0.0107 (12)0.0046 (10)0.0028 (12)
C50.0165 (14)0.0567 (19)0.0168 (13)0.0039 (13)0.0026 (11)0.0018 (12)
C60.0261 (13)0.0135 (12)0.0118 (11)0.0096 (10)0.0050 (10)0.0015 (9)
C70.0181 (14)0.063 (2)0.0184 (13)0.0124 (13)0.0080 (11)0.0036 (13)
C80.0153 (13)0.0508 (18)0.0197 (13)0.0038 (12)0.0034 (11)0.0050 (12)
C90.0191 (12)0.0086 (11)0.0152 (11)0.0073 (9)0.0047 (10)0.0037 (9)
N30.0327 (13)0.0195 (11)0.0138 (10)0.0106 (10)0.0052 (10)0.0020 (8)
O20.0167 (8)0.0188 (9)0.0183 (8)0.0086 (7)0.0075 (7)0.0038 (7)
O30.0162 (9)0.0215 (9)0.0135 (8)0.0054 (7)0.0027 (7)0.0005 (6)
O40.0385 (13)0.0721 (16)0.0171 (10)0.0033 (11)0.0003 (10)0.0118 (10)
O50.0417 (13)0.0851 (18)0.0219 (11)0.0273 (12)0.0131 (10)0.0052 (11)
Geometric parameters (Å, º) top
Cu1—N1i2.0146 (18)O1—H60.8625
Cu1—N12.0146 (18)C3—C81.378 (3)
Cu1—N22.0272 (19)C3—C41.379 (3)
Cu1—N2i2.0272 (19)C3—C91.519 (3)
Cu1—O12.5369 (17)C4—C51.384 (4)
Cu1—O1i2.5369 (17)C4—H4A0.950
C1—N11.488 (3)C5—C61.366 (4)
C1—C21.513 (3)C5—H5A0.950
C1—H1A0.990C6—C71.368 (4)
C1—H1B0.990C6—N31.477 (3)
C2—N21.483 (3)C7—C81.387 (4)
C2—H2A0.990C7—H70.950
C2—H2B0.990C8—H80.950
N1—H10.920C9—O21.256 (3)
N1—H20.920C9—O31.261 (3)
N2—H30.920N3—O41.208 (3)
N2—H40.920N3—O51.212 (3)
O1—H50.8941
N1i—Cu1—N1180.0H1—N1—H2108.3
N1i—Cu1—N295.08 (7)C2—N2—Cu1107.93 (14)
N1—Cu1—N284.92 (7)C2—N2—H3110.1
N1i—Cu1—N2i84.92 (7)Cu1—N2—H3110.1
N1—Cu1—N2i95.08 (7)C2—N2—H4110.1
N2—Cu1—N2i180.0Cu1—N2—H4110.1
O1—Cu1—N192.58 (7)H3—N2—H4108.4
O1—Cu1—N289.44 (7)H5—O1—H6101.3
O1—Cu1—N1i87.42 (7)C8—C3—C4119.0 (2)
O1—Cu1—N2i90.56 (7)C8—C3—C9121.0 (2)
O1i—Cu1—N1i92.58 (7)C4—C3—C9119.9 (2)
O1i—Cu1—N2i89.44 (7)C3—C4—C5120.9 (2)
O1i—Cu1—N187.42 (7)C3—C4—H4A119.6
O1i—Cu1—N290.56 (7)C5—C4—H4A119.6
O1—Cu1—O1i180.0C6—C5—C4118.6 (2)
N1—C1—C2108.30 (18)C6—C5—H5A120.7
N1—C1—H1A110.0C4—C5—H5A120.7
C2—C1—H1A110.0C5—C6—C7122.1 (2)
N1—C1—H1B110.0C5—C6—N3119.1 (2)
C2—C1—H1B110.0C7—C6—N3118.8 (2)
H1A—C1—H1B108.4C6—C7—C8118.6 (2)
N2—C2—C1107.83 (18)C6—C7—H7120.7
N2—C2—H2A110.1C8—C7—H7120.7
C1—C2—H2A110.1C3—C8—C7120.8 (2)
N2—C2—H2B110.1C3—C8—H8119.6
C1—C2—H2B110.1C7—C8—H8119.6
H2A—C2—H2B108.5O2—C9—O3125.2 (2)
C1—N1—Cu1109.03 (13)O2—C9—C3117.2 (2)
C1—N1—H1109.9O3—C9—C3117.57 (19)
Cu1—N1—H1109.9O4—N3—O5123.0 (2)
C1—N1—H2109.9O4—N3—C6118.6 (2)
Cu1—N1—H2109.9O5—N3—C6118.4 (2)
N1—C1—C2—N251.7 (2)N3—C6—C7—C8178.1 (2)
C2—C1—N1—Cu136.6 (2)C4—C3—C8—C70.2 (4)
N2—Cu1—N1—C111.08 (14)C9—C3—C8—C7178.8 (3)
N2i—Cu1—N1—C1168.92 (14)C6—C7—C8—C30.1 (5)
C1—C2—N2—Cu141.2 (2)C8—C3—C9—O2179.8 (2)
N1i—Cu1—N2—C2163.03 (14)C4—C3—C9—O21.3 (3)
N1—Cu1—N2—C216.97 (14)C8—C3—C9—O31.1 (3)
C8—C3—C4—C50.3 (4)C4—C3—C9—O3177.8 (2)
C9—C3—C4—C5179.3 (2)C5—C6—N3—O40.3 (4)
C3—C4—C5—C61.1 (4)C7—C6—N3—O4179.4 (3)
C4—C5—C6—C71.4 (4)C5—C6—N3—O5179.4 (3)
C4—C5—C6—N3177.6 (2)C7—C6—N3—O50.4 (4)
C5—C6—C7—C80.9 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.922.113.018 (2)170
N1—H2···O30.922.203.081 (2)161
N2—H3···O3iii0.922.243.037 (3)145
N2—H4···O2iv0.922.072.960 (2)162
O1—H5···O3v0.891.882.754 (2)166
O1—H6···O20.861.932.767 (2)164
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x+1, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge the financial support of UGC vide grant No. F.12-38/2003(SR).

References

First citationAllen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m1081–m1083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSharma, R. P., Bala, R., Sharma, R., Perez, J. & Miguel, D. (2006). J. Mol. Struct. 797, 49–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, R. P., Sharma, R., Bala, R., Burrows, A. D., Mahon, M. F. & Cassar, K. (2006). J. Mol. Struct. 794, 173–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, R. P., Sharma, R., Bala, R., Rychlewska, U. & Warzajtis, B. (2005). J. Mol. Struct. 738, 291–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds