organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A low-temperature redetermination of cyhepta­mide

CROSSMARK_Color_square_no_text.svg

aISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, and bSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 1 November 2006; accepted 20 November 2006; online 8 December 2006)

In the title compound [systematic name: 10,11-dihydro-5H-dibenz[a,d]cyclo­heptene-5-carboxamide], C16H15NO, N—H⋯O and N—H⋯π inter­actions combine to create a catemeric motif that is also observed in crystal structures of the closely related compound dihydro­carbamazepine.

Comment

Cyhepta­mide, (I)[link], is an analogue of dihydro­carbamazepine, (II), the latter being a recognized impurity (Cyr et al., 1987[Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836-840.]) in the widely used anti­epileptic drug carbamazepine, (III). The crystal structure of (I)[link] was first reported by Codding et al. (1984[Codding, P. W., Lee, T. A. & Richardson, J. F. (1984). J. Med. Chem. 27, 649-654.]) and the structure reported here (Fig. 1[link]) is a low-temperature redetemination. This work forms part of a wider investigation that couples automated parallel crystallization (Florence, Johnston, Fernandes et al., 2006[Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922-924.]) with crystal-structure prediction methodology to investigate the basic science underlying the solid-state diversity of (III) and its analogues (Florence, Johnston, Price et al., 2006[Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918-1930.]).

[Scheme 1]

The inter­molecular inter­actions in (I)[link] combine to create the catemeric motif shown in Fig. 2[link], with the geometric parameters listed in Table 1[link]. Infinite [010] chains of mol­ecules are linked by an N1⋯O1i [symmetry code: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]] hydrogen bond, supplemented by an N—H⋯π inter­action, N1⋯Cg2ii [symmetry code: (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]], where Cg2 is the centroid of ring R2 (atoms C10–C15). The robustness of this motif is reflected in the fact that it is observed in all three polymorphic forms of (II) (monoclinic: Bandoli et al., 1992[Bandoli, G., Nicolini, M., Onagaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177-183.]; ortho­rhom­bic: Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240-o242.]; triclinic: Leech et al., 2006[Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2006). Acta Cryst. E62. Submitted.]) and in a predicted crystal structure of (III) that is isostructural with the ortho­rhom­bic form of (II) (Florence, Leech et al., 2006[Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746-747.]). It is notable also that the crystal structure of (I)[link] is essentially isostructural with the monoclinic form of (II) [P21/c; a = 5.433 (3) Å, b = 9.129 (2) Å, c = 24.196 (5) Å, β = 96.47 (3)°, V = 1192.4 (8) Å3 at T = 150 K; Leech, 2006[Leech, C. K. (2006). Unpublished results.]].

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The catemeric motif of (I)[link]. Hydrogen bonds are indicated by dashed lines.

Experimental

A single-crystal of the title compound was selected from the sample as supplied (Sigma–Aldrich Co.) without recrystallization.

Crystal data
  • C16H15NO

  • Mr = 237.29

  • Monoclinic, P 21 /c

  • a = 5.6035 (7) Å

  • b = 9.1716 (11) Å

  • c = 23.579 (3) Å

  • β = 96.752 (12)°

  • V = 1203.4 (3) Å3

  • Z = 4

  • Dx = 1.310 Mg m−3

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.26 × 0.17 × 0.16 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2 (release 20-01-2006 CrysAlis171 . NET). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.956, Tmax = 0.983

  • 11433 measured reflections

  • 2407 independent reflections

  • 1928 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 26.4°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.04

  • 2407 reflections

  • 223 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0353P)2 + 0.4305P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.91 (2) 2.13 (2) 2.842 (2) 135 (1)
N1—H1BCg2ii 0.93 (2) 2.78 (2) 3.676 (1) 162 (1)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

All H atoms were located in a Fourier difference map and the atomic coordinates and Uiso parameters were refined freely. X—H distances refined to N1—H1A = 0.90 (2) Å, N1—H1B = 0.93 (2) Å, C1—H1 = 1.03 (2) and 0.96 (2)–1.01 (2) Å for aromatic H atoms and 0.98 (2)–1.00 (2) Å for the CH2 H atoms.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2 (release 20-01-2006 CrysAlis171 . NET). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2 (release 20-01-2006 CrysAlis171 . NET). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Version 011105; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Version 011105; Spek, 2003); software used to prepare material for publication: SHELXL97.

10,11-dihydro-5H-dibenz[a,d]cycloheptene-5-carboxamide top
Crystal data top
C16H15NOF(000) = 504
Mr = 237.29Dx = 1.310 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5695 reflections
a = 5.6035 (7) Åθ = 2.4–28.0°
b = 9.1716 (11) ŵ = 0.08 mm1
c = 23.579 (3) ÅT = 150 K
β = 96.752 (12)°Block, colourless
V = 1203.4 (3) Å30.26 × 0.17 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Gemini
diffractometer
2407 independent reflections
Radiation source: Enhance (Mo) X-ray Source1928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 15.9745 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω and φ scansh = 66
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1111
Tmin = 0.956, Tmax = 0.983l = 2928
11433 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.086All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.4305P]
where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37581 (17)0.71849 (10)0.21007 (4)0.0258 (2)
C10.1185 (2)0.91677 (14)0.17364 (6)0.0188 (3)
N10.4738 (2)0.94199 (15)0.24450 (5)0.0266 (3)
C20.0314 (2)0.81878 (14)0.12290 (6)0.0198 (3)
C70.1170 (2)0.82304 (14)0.06934 (6)0.0217 (3)
C110.3338 (2)1.27115 (15)0.11228 (6)0.0221 (3)
C160.3378 (2)0.85046 (14)0.21032 (6)0.0201 (3)
C150.1420 (2)1.07749 (14)0.15933 (6)0.0181 (3)
C90.4629 (2)1.01088 (15)0.09812 (6)0.0219 (3)
C30.1529 (2)0.72033 (15)0.13157 (7)0.0239 (3)
C140.0075 (2)1.18044 (15)0.18046 (6)0.0216 (3)
C80.3149 (3)0.92184 (16)0.05173 (6)0.0242 (3)
C60.0123 (3)0.72846 (16)0.02645 (7)0.0292 (3)
C40.2550 (3)0.62948 (16)0.08836 (7)0.0296 (4)
C100.3137 (2)1.12316 (15)0.12427 (6)0.0194 (3)
C120.1827 (3)1.37355 (16)0.13308 (6)0.0245 (3)
C130.0110 (3)1.32744 (16)0.16701 (6)0.0246 (3)
C50.1717 (3)0.63338 (16)0.03540 (7)0.0319 (4)
H30.207 (3)0.7207 (17)0.1690 (8)0.031 (4)*
H9B0.594 (3)1.0627 (16)0.0810 (6)0.022 (4)*
H9A0.537 (2)0.9436 (16)0.1282 (7)0.018 (4)*
H110.455 (3)1.3047 (17)0.0885 (7)0.028 (4)*
H8B0.239 (3)0.9875 (17)0.0219 (7)0.024 (4)*
H60.076 (3)0.7306 (18)0.0120 (8)0.036 (5)*
H40.388 (3)0.5642 (18)0.0965 (7)0.032 (4)*
H140.129 (3)1.1473 (17)0.2044 (7)0.027 (4)*
H8A0.422 (3)0.8596 (18)0.0326 (7)0.031 (4)*
H10.013 (3)0.9104 (15)0.2006 (7)0.022 (4)*
H120.204 (3)1.4789 (18)0.1245 (7)0.030 (4)*
H130.097 (3)1.3978 (18)0.1810 (7)0.032 (4)*
H50.237 (3)0.5704 (18)0.0052 (8)0.032 (4)*
H1B0.596 (3)0.900 (2)0.2693 (8)0.042 (5)*
H1A0.452 (3)1.040 (2)0.2440 (8)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0307 (5)0.0183 (5)0.0277 (6)0.0030 (4)0.0002 (4)0.0034 (4)
C10.0190 (6)0.0194 (7)0.0186 (7)0.0007 (5)0.0051 (5)0.0008 (5)
N10.0313 (7)0.0229 (7)0.0237 (7)0.0003 (5)0.0049 (5)0.0015 (5)
C20.0188 (6)0.0168 (7)0.0232 (7)0.0047 (5)0.0001 (5)0.0006 (5)
C70.0235 (7)0.0184 (7)0.0224 (8)0.0055 (5)0.0000 (5)0.0002 (5)
C110.0224 (7)0.0228 (7)0.0204 (8)0.0014 (6)0.0005 (6)0.0029 (5)
C160.0230 (7)0.0219 (8)0.0162 (7)0.0004 (5)0.0055 (5)0.0027 (5)
C150.0187 (6)0.0184 (7)0.0166 (7)0.0008 (5)0.0006 (5)0.0002 (5)
C90.0210 (7)0.0228 (7)0.0231 (8)0.0023 (6)0.0066 (6)0.0033 (6)
C30.0212 (7)0.0194 (7)0.0310 (9)0.0032 (5)0.0023 (6)0.0033 (6)
C140.0213 (7)0.0234 (7)0.0202 (7)0.0020 (6)0.0023 (6)0.0020 (5)
C80.0292 (8)0.0244 (8)0.0202 (8)0.0044 (6)0.0080 (6)0.0001 (6)
C60.0374 (8)0.0254 (8)0.0235 (8)0.0059 (6)0.0022 (7)0.0020 (6)
C40.0247 (7)0.0190 (7)0.0428 (10)0.0005 (6)0.0053 (7)0.0012 (6)
C100.0181 (6)0.0219 (7)0.0176 (7)0.0014 (5)0.0009 (5)0.0002 (5)
C120.0291 (7)0.0190 (7)0.0236 (8)0.0013 (6)0.0044 (6)0.0020 (6)
C130.0254 (7)0.0228 (7)0.0245 (8)0.0068 (6)0.0012 (6)0.0033 (6)
C50.0360 (8)0.0220 (8)0.0341 (9)0.0022 (6)0.0116 (7)0.0057 (6)
Geometric parameters (Å, º) top
O1—C161.2291 (16)C9—C81.529 (2)
C1—C151.5214 (18)C9—H9B1.000 (15)
C1—C21.5296 (19)C9—H9A0.994 (15)
C1—C161.5423 (18)C3—C41.386 (2)
C1—H11.028 (15)C3—H30.966 (18)
N1—C161.3381 (18)C14—C131.392 (2)
N1—H1B0.93 (2)C14—H140.983 (16)
N1—H1A0.904 (19)C8—H8B0.985 (16)
C2—C71.403 (2)C8—H8A0.978 (17)
C2—C31.405 (2)C6—C51.385 (2)
C7—C61.407 (2)C6—H61.013 (19)
C7—C81.527 (2)C4—C51.384 (2)
C11—C121.392 (2)C4—H40.993 (17)
C11—C101.3937 (19)C12—C131.388 (2)
C11—H110.982 (16)C12—H120.996 (16)
C15—C141.3927 (19)C13—H130.967 (17)
C15—C101.4044 (19)C5—H50.956 (17)
C9—C101.5034 (19)
C15—C1—C2115.08 (11)C4—C3—C2121.75 (15)
C15—C1—C16114.98 (11)C4—C3—H3121.7 (10)
C2—C1—C16111.51 (11)C2—C3—H3116.5 (10)
C15—C1—H1106.2 (8)C13—C14—C15120.75 (13)
C2—C1—H1105.3 (8)C13—C14—H14120.3 (9)
C16—C1—H1102.2 (8)C15—C14—H14118.9 (9)
C16—N1—H1B116.4 (11)C7—C8—C9118.20 (12)
C16—N1—H1A123.0 (12)C7—C8—H8B106.8 (9)
H1B—N1—H1A120.5 (16)C9—C8—H8B109.8 (9)
C7—C2—C3118.94 (13)C7—C8—H8A106.6 (9)
C7—C2—C1125.19 (12)C9—C8—H8A109.3 (10)
C3—C2—C1115.86 (13)H8B—C8—H8A105.4 (13)
C2—C7—C6118.15 (13)C5—C6—C7122.24 (15)
C2—C7—C8126.67 (12)C5—C6—H6119.7 (10)
C6—C7—C8115.17 (13)C7—C6—H6118.1 (10)
C12—C11—C10121.24 (14)C5—C4—C3119.58 (14)
C12—C11—H11118.8 (9)C5—C4—H4122.1 (10)
C10—C11—H11119.9 (9)C3—C4—H4118.3 (10)
O1—C16—N1122.28 (13)C11—C10—C15119.15 (12)
O1—C16—C1120.84 (12)C11—C10—C9121.46 (13)
N1—C16—C1116.76 (12)C15—C10—C9119.31 (12)
C14—C15—C10119.41 (12)C13—C12—C11119.30 (13)
C14—C15—C1120.41 (12)C13—C12—H12121.2 (9)
C10—C15—C1120.18 (11)C11—C12—H12119.5 (9)
C10—C9—C8112.23 (11)C12—C13—C14120.12 (13)
C10—C9—H9B108.1 (8)C12—C13—H13119.7 (10)
C8—C9—H9B109.1 (9)C14—C13—H13120.2 (10)
C10—C9—H9A109.9 (8)C4—C5—C6119.32 (14)
C8—C9—H9A109.0 (8)C4—C5—H5121.0 (10)
H9B—C9—H9A108.4 (11)C6—C5—H5119.7 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.91 (2)2.13 (2)2.842 (2)135 (1)
N1—H1B···Cg2ii0.93 (2)2.78 (2)3.676 (1)162 (1)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank the Basic Technology programme of the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (URL: https://www.cposs.org.uk).

References

First citationBandoli, G., Nicolini, M., Onagaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183.  CAS Google Scholar
First citationCodding, P. W., Lee, T. A. & Richardson, J. F. (1984). J. Med. Chem. 27, 649–654.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836–840.  CAS PubMed Web of Science Google Scholar
First citationFlorence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918–1930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLeech, C. K. (2006). Unpublished results.  Google Scholar
First citationLeech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2006). Acta Cryst. E62. Submitted.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2 (release 20-01-2006 CrysAlis171 . NET). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds