organic compounds
A low-temperature redetermination of cyheptamide
aISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, and bSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk
In the title compound [systematic name: 10,11-dihydro-5H-dibenz[a,d]cycloheptene-5-carboxamide], C16H15NO, N—H⋯O and N—H⋯π interactions combine to create a catemeric motif that is also observed in crystal structures of the closely related compound dihydrocarbamazepine.
Comment
Cyheptamide, (I), is an analogue of dihydrocarbamazepine, (II), the latter being a recognized impurity (Cyr et al., 1987) in the widely used antiepileptic drug carbamazepine, (III). The of (I) was first reported by Codding et al. (1984) and the structure reported here (Fig. 1) is a low-temperature redetemination. This work forms part of a wider investigation that couples automated parallel crystallization (Florence, Johnston, Fernandes et al., 2006) with crystal-structure prediction methodology to investigate the basic science underlying the solid-state diversity of (III) and its analogues (Florence, Johnston, Price et al., 2006).
The intermolecular interactions in (I) combine to create the catemeric motif shown in Fig. 2, with the geometric parameters listed in Table 1. Infinite [010] chains of molecules are linked by an N1⋯O1i [symmetry code: (i) −x + 1, y + , −z + ] hydrogen bond, supplemented by an N—H⋯π interaction, N1⋯Cg2ii [symmetry code: (ii) −x + 1, y − , −z + ], where Cg2 is the centroid of ring R2 (atoms C10–C15). The robustness of this motif is reflected in the fact that it is observed in all three polymorphic forms of (II) (monoclinic: Bandoli et al., 1992; orthorhombic: Harrison et al., 2006; triclinic: Leech et al., 2006) and in a predicted of (III) that is isostructural with the orthorhombic form of (II) (Florence, Leech et al., 2006). It is notable also that the of (I) is essentially isostructural with the monoclinic form of (II) [P21/c; a = 5.433 (3) Å, b = 9.129 (2) Å, c = 24.196 (5) Å, β = 96.47 (3)°, V = 1192.4 (8) Å3 at T = 150 K; Leech, 2006].
Experimental
A single-crystal of the title compound was selected from the sample as supplied (Sigma–Aldrich Co.) without recrystallization.
Crystal data
|
Refinement
|
All H atoms were located in a Fourier difference map and the atomic coordinates and Uiso parameters were refined freely. X—H distances refined to N1—H1A = 0.90 (2) Å, N1—H1B = 0.93 (2) Å, C1—H1 = 1.03 (2) and 0.96 (2)–1.01 (2) Å for aromatic H atoms and 0.98 (2)–1.00 (2) Å for the CH2 H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Version 011105; Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S160053680604983X/ez2051sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680604983X/ez2051Isup2.hkl
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Version 011105; Spek, 2003); software used to prepare material for publication: SHELXL97.C16H15NO | F(000) = 504 |
Mr = 237.29 | Dx = 1.310 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5695 reflections |
a = 5.6035 (7) Å | θ = 2.4–28.0° |
b = 9.1716 (11) Å | µ = 0.08 mm−1 |
c = 23.579 (3) Å | T = 150 K |
β = 96.752 (12)° | Block, colourless |
V = 1203.4 (3) Å3 | 0.26 × 0.17 × 0.16 mm |
Z = 4 |
Oxford Diffraction Gemini diffractometer | 2407 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1928 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 15.9745 pixels mm-1 | θmax = 26.4°, θmin = 2.8° |
ω and φ scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −11→11 |
Tmin = 0.956, Tmax = 0.983 | l = −29→28 |
11433 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.086 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0353P)2 + 0.4305P] where P = (Fo2 + 2Fc2)/3 |
2407 reflections | (Δ/σ)max < 0.001 |
223 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.37581 (17) | 0.71849 (10) | 0.21007 (4) | 0.0258 (2) | |
C1 | 0.1185 (2) | 0.91677 (14) | 0.17364 (6) | 0.0188 (3) | |
N1 | 0.4738 (2) | 0.94199 (15) | 0.24450 (5) | 0.0266 (3) | |
C2 | 0.0314 (2) | 0.81878 (14) | 0.12290 (6) | 0.0198 (3) | |
C7 | 0.1170 (2) | 0.82304 (14) | 0.06934 (6) | 0.0217 (3) | |
C11 | 0.3338 (2) | 1.27115 (15) | 0.11228 (6) | 0.0221 (3) | |
C16 | 0.3378 (2) | 0.85046 (14) | 0.21032 (6) | 0.0201 (3) | |
C15 | 0.1420 (2) | 1.07749 (14) | 0.15933 (6) | 0.0181 (3) | |
C9 | 0.4629 (2) | 1.01088 (15) | 0.09812 (6) | 0.0219 (3) | |
C3 | −0.1529 (2) | 0.72033 (15) | 0.13157 (7) | 0.0239 (3) | |
C14 | −0.0075 (2) | 1.18044 (15) | 0.18046 (6) | 0.0216 (3) | |
C8 | 0.3149 (3) | 0.92184 (16) | 0.05173 (6) | 0.0242 (3) | |
C6 | 0.0123 (3) | 0.72846 (16) | 0.02645 (7) | 0.0292 (3) | |
C4 | −0.2550 (3) | 0.62948 (16) | 0.08836 (7) | 0.0296 (4) | |
C10 | 0.3137 (2) | 1.12316 (15) | 0.12427 (6) | 0.0194 (3) | |
C12 | 0.1827 (3) | 1.37355 (16) | 0.13308 (6) | 0.0245 (3) | |
C13 | 0.0110 (3) | 1.32744 (16) | 0.16701 (6) | 0.0246 (3) | |
C5 | −0.1717 (3) | 0.63338 (16) | 0.03540 (7) | 0.0319 (4) | |
H3 | −0.207 (3) | 0.7207 (17) | 0.1690 (8) | 0.031 (4)* | |
H9B | 0.594 (3) | 1.0627 (16) | 0.0810 (6) | 0.022 (4)* | |
H9A | 0.537 (2) | 0.9436 (16) | 0.1282 (7) | 0.018 (4)* | |
H11 | 0.455 (3) | 1.3047 (17) | 0.0885 (7) | 0.028 (4)* | |
H8B | 0.239 (3) | 0.9875 (17) | 0.0219 (7) | 0.024 (4)* | |
H6 | 0.076 (3) | 0.7306 (18) | −0.0120 (8) | 0.036 (5)* | |
H4 | −0.388 (3) | 0.5642 (18) | 0.0965 (7) | 0.032 (4)* | |
H14 | −0.129 (3) | 1.1473 (17) | 0.2044 (7) | 0.027 (4)* | |
H8A | 0.422 (3) | 0.8596 (18) | 0.0326 (7) | 0.031 (4)* | |
H1 | −0.013 (3) | 0.9104 (15) | 0.2006 (7) | 0.022 (4)* | |
H12 | 0.204 (3) | 1.4789 (18) | 0.1245 (7) | 0.030 (4)* | |
H13 | −0.097 (3) | 1.3978 (18) | 0.1810 (7) | 0.032 (4)* | |
H5 | −0.237 (3) | 0.5704 (18) | 0.0052 (8) | 0.032 (4)* | |
H1B | 0.596 (3) | 0.900 (2) | 0.2693 (8) | 0.042 (5)* | |
H1A | 0.452 (3) | 1.040 (2) | 0.2440 (8) | 0.040 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0307 (5) | 0.0183 (5) | 0.0277 (6) | 0.0030 (4) | −0.0002 (4) | 0.0034 (4) |
C1 | 0.0190 (6) | 0.0194 (7) | 0.0186 (7) | 0.0007 (5) | 0.0051 (5) | 0.0008 (5) |
N1 | 0.0313 (7) | 0.0229 (7) | 0.0237 (7) | −0.0003 (5) | −0.0049 (5) | 0.0015 (5) |
C2 | 0.0188 (6) | 0.0168 (7) | 0.0232 (7) | 0.0047 (5) | 0.0001 (5) | 0.0006 (5) |
C7 | 0.0235 (7) | 0.0184 (7) | 0.0224 (8) | 0.0055 (5) | 0.0000 (5) | 0.0002 (5) |
C11 | 0.0224 (7) | 0.0228 (7) | 0.0204 (8) | −0.0014 (6) | −0.0005 (6) | 0.0029 (5) |
C16 | 0.0230 (7) | 0.0219 (8) | 0.0162 (7) | −0.0004 (5) | 0.0055 (5) | 0.0027 (5) |
C15 | 0.0187 (6) | 0.0184 (7) | 0.0166 (7) | 0.0008 (5) | −0.0006 (5) | 0.0002 (5) |
C9 | 0.0210 (7) | 0.0228 (7) | 0.0231 (8) | 0.0023 (6) | 0.0066 (6) | 0.0033 (6) |
C3 | 0.0212 (7) | 0.0194 (7) | 0.0310 (9) | 0.0032 (5) | 0.0023 (6) | 0.0033 (6) |
C14 | 0.0213 (7) | 0.0234 (7) | 0.0202 (7) | 0.0020 (6) | 0.0023 (6) | −0.0020 (5) |
C8 | 0.0292 (8) | 0.0244 (8) | 0.0202 (8) | 0.0044 (6) | 0.0080 (6) | 0.0001 (6) |
C6 | 0.0374 (8) | 0.0254 (8) | 0.0235 (8) | 0.0059 (6) | −0.0022 (7) | −0.0020 (6) |
C4 | 0.0247 (7) | 0.0190 (7) | 0.0428 (10) | 0.0005 (6) | −0.0053 (7) | 0.0012 (6) |
C10 | 0.0181 (6) | 0.0219 (7) | 0.0176 (7) | 0.0014 (5) | −0.0009 (5) | 0.0002 (5) |
C12 | 0.0291 (7) | 0.0190 (7) | 0.0236 (8) | 0.0013 (6) | −0.0044 (6) | 0.0020 (6) |
C13 | 0.0254 (7) | 0.0228 (7) | 0.0245 (8) | 0.0068 (6) | −0.0012 (6) | −0.0033 (6) |
C5 | 0.0360 (8) | 0.0220 (8) | 0.0341 (9) | 0.0022 (6) | −0.0116 (7) | −0.0057 (6) |
O1—C16 | 1.2291 (16) | C9—C8 | 1.529 (2) |
C1—C15 | 1.5214 (18) | C9—H9B | 1.000 (15) |
C1—C2 | 1.5296 (19) | C9—H9A | 0.994 (15) |
C1—C16 | 1.5423 (18) | C3—C4 | 1.386 (2) |
C1—H1 | 1.028 (15) | C3—H3 | 0.966 (18) |
N1—C16 | 1.3381 (18) | C14—C13 | 1.392 (2) |
N1—H1B | 0.93 (2) | C14—H14 | 0.983 (16) |
N1—H1A | 0.904 (19) | C8—H8B | 0.985 (16) |
C2—C7 | 1.403 (2) | C8—H8A | 0.978 (17) |
C2—C3 | 1.405 (2) | C6—C5 | 1.385 (2) |
C7—C6 | 1.407 (2) | C6—H6 | 1.013 (19) |
C7—C8 | 1.527 (2) | C4—C5 | 1.384 (2) |
C11—C12 | 1.392 (2) | C4—H4 | 0.993 (17) |
C11—C10 | 1.3937 (19) | C12—C13 | 1.388 (2) |
C11—H11 | 0.982 (16) | C12—H12 | 0.996 (16) |
C15—C14 | 1.3927 (19) | C13—H13 | 0.967 (17) |
C15—C10 | 1.4044 (19) | C5—H5 | 0.956 (17) |
C9—C10 | 1.5034 (19) | ||
C15—C1—C2 | 115.08 (11) | C4—C3—C2 | 121.75 (15) |
C15—C1—C16 | 114.98 (11) | C4—C3—H3 | 121.7 (10) |
C2—C1—C16 | 111.51 (11) | C2—C3—H3 | 116.5 (10) |
C15—C1—H1 | 106.2 (8) | C13—C14—C15 | 120.75 (13) |
C2—C1—H1 | 105.3 (8) | C13—C14—H14 | 120.3 (9) |
C16—C1—H1 | 102.2 (8) | C15—C14—H14 | 118.9 (9) |
C16—N1—H1B | 116.4 (11) | C7—C8—C9 | 118.20 (12) |
C16—N1—H1A | 123.0 (12) | C7—C8—H8B | 106.8 (9) |
H1B—N1—H1A | 120.5 (16) | C9—C8—H8B | 109.8 (9) |
C7—C2—C3 | 118.94 (13) | C7—C8—H8A | 106.6 (9) |
C7—C2—C1 | 125.19 (12) | C9—C8—H8A | 109.3 (10) |
C3—C2—C1 | 115.86 (13) | H8B—C8—H8A | 105.4 (13) |
C2—C7—C6 | 118.15 (13) | C5—C6—C7 | 122.24 (15) |
C2—C7—C8 | 126.67 (12) | C5—C6—H6 | 119.7 (10) |
C6—C7—C8 | 115.17 (13) | C7—C6—H6 | 118.1 (10) |
C12—C11—C10 | 121.24 (14) | C5—C4—C3 | 119.58 (14) |
C12—C11—H11 | 118.8 (9) | C5—C4—H4 | 122.1 (10) |
C10—C11—H11 | 119.9 (9) | C3—C4—H4 | 118.3 (10) |
O1—C16—N1 | 122.28 (13) | C11—C10—C15 | 119.15 (12) |
O1—C16—C1 | 120.84 (12) | C11—C10—C9 | 121.46 (13) |
N1—C16—C1 | 116.76 (12) | C15—C10—C9 | 119.31 (12) |
C14—C15—C10 | 119.41 (12) | C13—C12—C11 | 119.30 (13) |
C14—C15—C1 | 120.41 (12) | C13—C12—H12 | 121.2 (9) |
C10—C15—C1 | 120.18 (11) | C11—C12—H12 | 119.5 (9) |
C10—C9—C8 | 112.23 (11) | C12—C13—C14 | 120.12 (13) |
C10—C9—H9B | 108.1 (8) | C12—C13—H13 | 119.7 (10) |
C8—C9—H9B | 109.1 (9) | C14—C13—H13 | 120.2 (10) |
C10—C9—H9A | 109.9 (8) | C4—C5—C6 | 119.32 (14) |
C8—C9—H9A | 109.0 (8) | C4—C5—H5 | 121.0 (10) |
H9B—C9—H9A | 108.4 (11) | C6—C5—H5 | 119.7 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.91 (2) | 2.13 (2) | 2.842 (2) | 135 (1) |
N1—H1B···Cg2ii | 0.93 (2) | 2.78 (2) | 3.676 (1) | 162 (1) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
We thank the Basic Technology programme of the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (URL: https://www.cposs.org.uk).
References
Bandoli, G., Nicolini, M., Onagaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183. CAS Google Scholar
Codding, P. W., Lee, T. A. & Richardson, J. F. (1984). J. Med. Chem. 27, 649–654. CrossRef CAS PubMed Web of Science Google Scholar
Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836–840. CAS PubMed Web of Science Google Scholar
Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924. Web of Science CrossRef CAS IUCr Journals Google Scholar
Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918–1930. Web of Science CrossRef PubMed CAS Google Scholar
Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747. Web of Science CSD CrossRef CAS Google Scholar
Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Leech, C. K. (2006). Unpublished results. Google Scholar
Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2006). Acta Cryst. E62. Submitted. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2 (release 20-01-2006 CrysAlis171 . NET). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.