organic compounds
Powder study of (R)-1-phenylethylammonium (R)-2-phenylbutyrate form 3
aStrathclyde Institute of Pharmacy and Biomedical Sciences, John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, bISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, cChristopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, and dDepartment of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, England
*Correspondence e-mail: alastair.florence@strath.ac.uk
The 8H12N+·C10H11O2−, was solved by simulated annealing from laboratory X-ray powder diffraction data, collected at 295 K. Subsequent using data collected to 1.54 Å resolution, yielded an Rwp of 0.030. The compound crystallizes with one (R)-1-phenylethylammonium cation and one (R)-2-phenylbutyrate anion in the asymmetric unit.
of a new polymorph of the title compound, CComment
The title compound is known to crystallize in at least two polymorphic forms, form 1 (Brianso, 1978) and form 2 (Fernandes et al., 2006). A third polymorph, form 3, (I), was produced in situ by heating a polycrystalline sample of form 2 to 393 K. The sample remained stable upon cooling to 295 K and the powder data were collected at this temperature.
The compound crystallizes in the monoclinic P21 with one (R)-1-phenylethylammonium cation and one (R)-2-phenylbutyrate anion in the (Fig. 1). The structure contains four N—H⋯O hydrogen bonds between the NH3+ and COO− groups on adjacent ions. The ions pack to form a hydrogen-bonded ladder motif, similar to that observed in form 2 (Table 1, Fig. 2).
Experimental
A polycrystalline sample of (I) was prepared in situ by heating form 2 from 295 to 393 K until all the sample transformed. The sample was then cooled to 295 K and held at that temperature for the duration of the data collection. The sample was held in a rotating 0.7 mm borosilicate glass capillary and the temperature controlled using an Oxford Cryosystems Cryostream 700 series device. Data were collected using a variable count time (VCT) scheme in which the step time is increased with 2θ (Shankland et al., 1997; Hill & Madsen, 2002).
Crystal data
|
Data collection
|
Refinement
The diffraction pattern indexed to a monoclinic cell [M(20) = 95.7 F(20) = 253.2; DICVOL-91; Boultif & Louër, 1991] and P21 was assigned from volume considerations and a statistical consideration of the (Markvardsen et al., 2001). The data set was background subtracted and truncated to 59.8° 2θ for Pawley (1981) fitting (χ2Pawley = 5.10) and the structure solved using the simulated annealing (SA) global optimization procedure, described previously (David et al., 1998), that is now implemented in the DASH computer program (David et al., 2001). The SA structure solution used 290 reflections and involved the optimization of two fragments totaling 14 (six positional and orientational for each fragment present in the plus a torsion angle for each fragment). All were assigned random values at the start of the simulated annealing. The best SA solution had a favourable χSA2/χPawley2 ratio of 1.83 and a chemically reasonable packing arrangement, with no significant misfit to the diffraction data.
The solved structure was then refined against the data in the range 3–59.7° 2θ using a restrained Rietveld (1969) method as implemented in Topas (Coelho, 2003), with the Rwp falling to 0.030 during the All atomic positions (including H atoms) for the structure of (I) were refined, subject to a series of restraints on bond lengths, bond angles and planarity. Uiso values for H atoms were constrained to equal 0.1013 Å2
The restraints were set such that bond lengths and angles did not deviate more than 0.01 Å and 0.8°, respectively, from their initial values during the ). The observed and calculated diffraction patterns for the refined are shown in Fig. 3.
Atoms C13–C18 and H14–H18 (phenylethylammonium) and atoms C5–C10 and H6–H10 (phenylbutyrate) were restrained to be planar. A spherical harmonics (fourth order) correction of intensities for was applied in the final (Järvinen, 1993Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003); cell TOPAS (Coelho, 2003); data reduction: DASH (David et al., 2001); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS; molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Version 011105; Spek, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
https://doi.org/10.1107/S1600536806052093/lh2256sup1.cif
contains datablocks global, I. DOI:Rietveld powder data: contains datablock I. DOI: https://doi.org/10.1107/S1600536806052093/lh2256Isup2.rtv
Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003); cell
TOPAS; data reduction: DASH (David et al., 2001); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS (Coelho, 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Version 011105; Spek, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004).C8H12N+·C10H11O2− | F(000) = 308 |
Mr = 285.37 | Dx = 1.113 Mg m−3 |
Monoclinic, P21 | Cu Kα1 radiation, λ = 1.54056 Å |
Hall symbol: P 2yb | µ = 0.57 mm−1 |
a = 11.88215 (15) Å | T = 298 K |
b = 5.97647 (8) Å | Particle morphology: needles |
c = 13.07499 (15) Å | white |
β = 113.510 (1)° | cylinder, 12 × 0.7 mm |
V = 851.43 (2) Å3 | Specimen preparation: Prepared at 393 K |
Z = 2 |
Bruker AXS D8 Advance diffractometer | Data collection mode: transmission |
Radiation source: sealed X-ray tube, Bruker-AXS D8 | Scan method: step |
Primary focussing, Ge 111 monochromator | 2θmin = 3.0°, 2θmax = 60.0°, 2θstep = 0.017° |
Specimen mounting: 0.7 mm borosilicate capillary |
Least-squares matrix: selected elements only | 101 restraints |
Rp = 0.026 | 1 constraint |
Rwp = 0.031 | Only H-atom coordinates refined |
Rexp = 0.016 | Weighting scheme based on measured s.u.'s w = 1/σ(Yobs)2 |
RBragg = 2.23 | (Δ/σ)max = 0.001 |
4177 data points | Background function: Chebyshev polynomial |
Profile function: Fundamental parameters with axial divergence correction. | Preferred orientation correction: A spherical harmonics-based preferred orientation correction (Järvinen, 1993) was applied with Topas during the Rietveld refinement. |
145 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3747 (5) | 0.1291 (5) | 0.8818 (3) | 0.0718 (5)* | |
O2 | 0.3433 (6) | −0.1669 (7) | 0.7721 (2) | 0.0718 (5)* | |
C1 | 0.3477 (2) | 0.0377 (2) | 0.78746 (12) | 0.0718 (5)* | |
C2 | 0.32515 (16) | 0.1930 (2) | 0.69002 (11) | 0.0718 (5)* | |
C3 | 0.21939 (14) | 0.1089 (3) | 0.58677 (13) | 0.0718 (5)* | |
C4 | 0.09580 (11) | 0.1186 (2) | 0.60089 (8) | 0.0718 (5)* | |
C5 | 0.44009 (15) | 0.2225 (3) | 0.66949 (16) | 0.0718 (5)* | |
C6 | 0.48329 (13) | 0.0467 (3) | 0.6259 (3) | 0.0718 (5)* | |
C7 | 0.58868 (18) | 0.0694 (3) | 0.60649 (17) | 0.0718 (5)* | |
C8 | 0.6603 (2) | 0.2620 (3) | 0.6402 (3) | 0.0718 (5)* | |
C9 | 0.62251 (17) | 0.4285 (3) | 0.6930 (3) | 0.0718 (5)* | |
C10 | 0.51293 (13) | 0.4127 (3) | 0.70507 (18) | 0.0718 (5)* | |
N1 | 0.38635 (9) | 0.5680 (2) | 0.94939 (8) | 0.0718 (5)* | |
C11 | 0.31720 (10) | 0.41721 (19) | 1.09033 (9) | 0.0718 (5)* | |
C12 | 0.30926 (12) | 0.6131 (3) | 1.01329 (11) | 0.0718 (5)* | |
C13 | 0.17962 (18) | 0.6657 (3) | 0.93490 (16) | 0.0718 (5)* | |
C14 | 0.12161 (15) | 0.8606 (3) | 0.94873 (16) | 0.0718 (5)* | |
C15 | 0.00363 (15) | 0.9118 (3) | 0.87154 (16) | 0.0718 (5)* | |
C16 | −0.05983 (16) | 0.7575 (3) | 0.78734 (16) | 0.0718 (5)* | |
C17 | −0.00054 (15) | 0.5681 (3) | 0.77208 (15) | 0.0718 (5)* | |
C18 | 0.11465 (16) | 0.5141 (3) | 0.84997 (16) | 0.0718 (5)* | |
H2 | 0.3072 (9) | 0.3380 (11) | 0.7092 (4) | 0.1013* | |
H3A | 0.2158 (5) | 0.2052 (13) | 0.5273 (4) | 0.1013* | |
H3B | 0.2387 (5) | −0.0409 (13) | 0.5746 (4) | 0.1013* | |
H4A | 0.0792 (6) | 0.2733 (13) | 0.6111 (4) | 0.1013* | |
H4B | 0.1002 (5) | 0.0244 (13) | 0.6644 (4) | 0.1013* | |
H4C | 0.0291 (6) | 0.075 (2) | 0.5316 (5) | 0.1013* | |
H6 | 0.4350 (5) | −0.0846 (12) | 0.5972 (4) | 0.1013* | |
H7 | 0.6181 (5) | −0.0517 (12) | 0.5756 (5) | 0.1013* | |
H8 | 0.7391 (5) | 0.2670 (12) | 0.6375 (7) | 0.1013* | |
H9 | 0.6642 (5) | 0.5714 (15) | 0.7086 (4) | 0.1013* | |
H10 | 0.4794 (5) | 0.5441 (15) | 0.7215 (18) | 0.1013* | |
H1NA | 0.3899 (5) | 0.7000 (13) | 0.9086 (5) | 0.1013* | |
H1NB | 0.3565 (5) | 0.4469 (13) | 0.8949 (4) | 0.1013* | |
H1NC | 0.4694 (6) | 0.5316 (18) | 1.0020 (5) | 0.1013* | |
H11A | 0.2726 (5) | 0.4561 (13) | 1.1364 (4) | 0.1013* | |
H11B | 0.2836 (4) | 0.2838 (13) | 1.0457 (4) | 0.1013* | |
H11C | 0.4033 (4) | 0.3907 (11) | 1.1390 (4) | 0.1013* | |
H12 | 0.3428 (5) | 0.7420 (13) | 1.0575 (4) | 0.1013* | |
H14 | 0.1682 (5) | 0.9672 (13) | 1.0051 (5) | 0.1013* | |
H15 | −0.0339 (5) | 1.0449 (15) | 0.8853 (4) | 0.1013* | |
H16 | −0.1395 (5) | 0.7935 (11) | 0.7330 (4) | 0.1013* | |
H17 | −0.0464 (5) | 0.4590 (12) | 0.7169 (5) | 0.1013* | |
H18 | 0.1545 (5) | 0.3781 (12) | 0.8442 (4) | 0.1013* |
O1—C1 | 1.268 (4) | C6—H6 | 0.956 (7) |
O2—C1 | 1.237 (4) | C7—H7 | 0.960 (7) |
N1—C12 | 1.4901 (19) | C8—H8 | 0.951 (8) |
N1—H1NC | 0.976 (7) | C9—H9 | 0.967 (9) |
N1—H1NA | 0.963 (7) | C10—H10 | 0.943 (11) |
N1—H1NB | 0.978 (7) | C11—C12 | 1.523 (2) |
C1—C2 | 1.5113 (19) | C12—C13 | 1.504 (3) |
C2—C3 | 1.517 (2) | C13—C18 | 1.402 (3) |
C2—C5 | 1.504 (3) | C13—C14 | 1.401 (3) |
C3—C4 | 1.553 (2) | C14—C15 | 1.396 (3) |
C5—C6 | 1.388 (3) | C15—C16 | 1.403 (3) |
C5—C10 | 1.392 (3) | C16—C17 | 1.389 (3) |
C6—C7 | 1.380 (3) | C17—C18 | 1.379 (3) |
C7—C8 | 1.394 (3) | C11—H11A | 0.976 (6) |
C8—C9 | 1.384 (4) | C11—H11B | 0.975 (7) |
C9—C10 | 1.376 (3) | C11—H11C | 0.978 (5) |
C2—H2 | 0.950 (7) | C12—H12 | 0.950 (7) |
C3—H3B | 0.953 (8) | C14—H14 | 0.964 (7) |
C3—H3A | 0.955 (6) | C15—H15 | 0.963 (8) |
C4—H4A | 0.966 (8) | C16—H16 | 0.954 (6) |
C4—H4B | 0.987 (6) | C17—H17 | 0.964 (7) |
C4—H4C | 0.972 (7) | C18—H18 | 0.959 (7) |
H1NA—N1—H1NB | 106.6 (5) | C8—C7—H7 | 118.5 (5) |
H1NA—N1—H1NC | 108.5 (7) | C9—C8—H8 | 121.1 (5) |
H1NB—N1—H1NC | 108.6 (7) | C7—C8—H8 | 120.0 (5) |
C12—N1—H1NC | 108.7 (4) | C10—C9—H9 | 117.7 (4) |
C12—N1—H1NA | 109.6 (4) | C8—C9—H9 | 119.9 (5) |
C12—N1—H1NB | 114.7 (4) | C5—C10—H10 | 119.6 (7) |
O2—C1—C2 | 119.24 (17) | C9—C10—H10 | 118.3 (7) |
O1—C1—O2 | 124.2 (2) | C11—C12—C13 | 112.82 (13) |
O1—C1—C2 | 116.52 (17) | N1—C12—C13 | 110.32 (12) |
C1—C2—C3 | 110.62 (13) | N1—C12—C11 | 110.01 (12) |
C3—C2—C5 | 111.65 (13) | C12—C13—C14 | 120.56 (16) |
C1—C2—C5 | 110.75 (16) | C12—C13—C18 | 119.69 (17) |
C2—C3—C4 | 111.65 (13) | C14—C13—C18 | 119.70 (19) |
C6—C5—C10 | 118.24 (18) | C13—C14—C15 | 119.52 (17) |
C2—C5—C6 | 119.72 (16) | C14—C15—C16 | 119.58 (17) |
C2—C5—C10 | 121.61 (16) | C15—C16—C17 | 120.24 (18) |
C5—C6—C7 | 120.83 (18) | C16—C17—C18 | 119.69 (17) |
C6—C7—C8 | 120.5 (2) | C13—C18—C17 | 120.28 (17) |
C7—C8—C9 | 118.2 (2) | C12—C11—H11A | 108.6 (4) |
C8—C9—C10 | 121.2 (2) | C12—C11—H11B | 109.3 (4) |
C5—C10—C9 | 120.57 (18) | C12—C11—H11C | 109.1 (4) |
C5—C2—H2 | 104.8 (6) | H11A—C11—H11B | 111.8 (5) |
C1—C2—H2 | 108.7 (4) | H11A—C11—H11C | 108.8 (4) |
C3—C2—H2 | 110.1 (5) | H11B—C11—H11C | 109.2 (5) |
C2—C3—H3A | 106.1 (4) | N1—C12—H12 | 106.6 (4) |
C2—C3—H3B | 106.9 (4) | C11—C12—H12 | 108.7 (4) |
C4—C3—H3A | 109.7 (4) | C13—C12—H12 | 108.2 (4) |
C4—C3—H3B | 110.9 (4) | C13—C14—H14 | 119.1 (5) |
H3A—C3—H3B | 111.5 (6) | C15—C14—H14 | 120.8 (5) |
H4A—C4—H4B | 112.0 (5) | C14—C15—H15 | 116.9 (4) |
H4A—C4—H4C | 104.5 (8) | C16—C15—H15 | 123.1 (4) |
C3—C4—H4C | 109.7 (5) | C15—C16—H16 | 119.9 (4) |
C3—C4—H4A | 107.9 (5) | C17—C16—H16 | 119.1 (4) |
C3—C4—H4B | 110.1 (4) | C16—C17—H17 | 119.4 (4) |
H4B—C4—H4C | 112.4 (7) | C18—C17—H17 | 119.5 (4) |
C7—C6—H6 | 117.1 (4) | C13—C18—H18 | 118.5 (4) |
C5—C6—H6 | 121.4 (4) | C17—C18—H18 | 121.1 (4) |
C6—C7—H7 | 120.8 (4) | ||
O1—C1—C2—C3 | −140.9 (4) | C6—C7—C8—C9 | −0.2 (4) |
O1—C1—C2—C5 | 94.8 (4) | C7—C8—C9—C10 | −4.6 (5) |
O2—C1—C2—C3 | 41.6 (5) | C8—C9—C10—C5 | 3.4 (4) |
O2—C1—C2—C5 | −82.7 (4) | N1—C12—C13—C14 | −127.37 (18) |
C1—C2—C3—C4 | 66.34 (18) | N1—C12—C13—C18 | 55.2 (2) |
C5—C2—C3—C4 | −169.84 (12) | C11—C12—C13—C14 | 109.15 (19) |
C1—C2—C5—C6 | 71.0 (2) | C11—C12—C13—C18 | −68.3 (2) |
C1—C2—C5—C10 | −101.35 (19) | C12—C13—C14—C15 | 176.66 (17) |
C3—C2—C5—C6 | −52.8 (2) | C18—C13—C14—C15 | −5.9 (3) |
C3—C2—C5—C10 | 134.91 (18) | C12—C13—C18—C17 | −174.78 (17) |
C2—C5—C6—C7 | −179.9 (2) | C14—C13—C18—C17 | 7.7 (3) |
C10—C5—C6—C7 | −7.3 (4) | C13—C14—C15—C16 | 6.0 (3) |
C2—C5—C10—C9 | 175.0 (2) | C14—C15—C16—C17 | −8.0 (3) |
C6—C5—C10—C9 | 2.6 (3) | C15—C16—C17—C18 | 9.8 (3) |
C5—C6—C7—C8 | 6.2 (4) | C16—C17—C18—C13 | −9.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1NA···O1i | 0.963 (7) | 2.585 (8) | 3.457 (3) | 150.7 (5) |
N1—H1NA···O2i | 0.963 (7) | 1.827 (7) | 2.683 (3) | 146.6 (6) |
N1—H1NB···O1 | 0.978 (7) | 1.927 (8) | 2.754 (3) | 140.7 (5) |
N1—H1NC···O1ii | 0.976 (7) | 1.958 (9) | 2.840 (5) | 149.1 (9) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+2. |
Acknowledgements
We thank the Basic Technology programme of the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (https://www.cposs.org.uk).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Boultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987–993. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brianso, M.-C. (1978). Acta Cryst. B34, 679–680. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Coelho, A. A. (2003). Topas User Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany. Google Scholar
David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0 User Manual. Cambridge Crystallographic Data Centre, England. Google Scholar
David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fernandes, P., Florence, A. J., Shankland, K., Karamertzanis, G. P., Hulme, A. T. & Anandamanoharan, R. P. (2006). Acta. Cryst. E62. In the press. CrossRef IUCr Journals Google Scholar
Hill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker & Ch. Baerlocher, pp. 114–116. Oxford University Press. Google Scholar
Järvinen, M. (1993). J. Appl. Cryst. 26, 525–531. CrossRef Web of Science IUCr Journals Google Scholar
Kienle, M. & Jacob, M. (2003). DIFFRAC plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany. Google Scholar
Markvardsen, A. J., David, W. I. F., Johnson, J. C. & Shankland, K. (2001). Acta Cryst. A57, 47–54. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pawley, G. S. (1981). J. Appl. Cryst. 14, 357–361. CrossRef CAS Web of Science IUCr Journals Google Scholar
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71. CrossRef CAS IUCr Journals Web of Science Google Scholar
Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569–572. CSD CrossRef CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.