organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Powder study of (R)-1-phenyl­ethyl­ammonium (R)-2-phenyl­butyrate form 3

CROSSMARK_Color_square_no_text.svg

aStrathclyde Institute of Pharmacy and Biomedical Sciences, John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, bISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, cChristopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, and dDepartment of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, England
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 17 November 2006; accepted 1 December 2006; online 8 December 2006)

The crystal structure of a new polymorph of the title compound, C8H12N+·C10H11O2, was solved by simulated annealing from laboratory X-ray powder diffraction data, collected at 295 K. Subsequent Rietveld refinement using data collected to 1.54 Å resolution, yielded an Rwp of 0.030. The compound crystallizes with one (R)-1-phenyl­ethyl­ammonium cation and one (R)-2-phenyl­butyrate anion in the asymmetric unit.

Comment

The title compound is known to crystallize in at least two polymorphic forms, form 1 (Brianso, 1978[Brianso, M.-C. (1978). Acta Cryst. B34, 679-680.]) and form 2 (Fernandes et al., 2006[Fernandes, P., Florence, A. J., Shankland, K., Karamertzanis, G. P., Hulme, A. T. & Anandamanoharan, R. P. (2006). Acta. Cryst. E62. In the press.]). A third polymorph, form 3, (I)[link], was produced in situ by heating a polycrystalline sample of form 2 to 393 K. The sample remained stable upon cooling to 295 K and the powder data were collected at this temperature.

[Scheme 1]

The compound crystallizes in the monoclinic space group P21 with one (R)-1-phenyl­ethyl­ammonium cation and one (R)-2-phenyl­butyrate anion in the asymmetric unit (Fig. 1[link]). The structure contains four N—H⋯O hydrogen bonds between the NH3+ and COO groups on adjacent ions. The ions pack to form a hydrogen-bonded ladder motif, similar to that observed in form 2 (Table 1[link], Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] with the atom-numbering scheme. Displacement spheres are shown at the 50% probability level. The dashed line indicates a hydrogen bond.
[Figure 2]
Figure 2
The hydrogen-bonded (dashed lines) ladder motif running parallel to the b axis in (I)[link]. Atoms not directly involved in hydrogen-bond contacts are omitted for clarity.
[Figure 3]
Figure 3
Final observed (points), calculated (line) and difference [(yobsycalc)/σ(yobs)] profiles for the Rietveld refinement of the title compound.

Experimental

A polycrystalline sample of (I)[link] was prepared in situ by heating form 2 from 295 to 393 K until all the sample transformed. The sample was then cooled to 295 K and held at that temperature for the duration of the data collection. The sample was held in a rotating 0.7 mm borosilicate glass capillary and the temperature controlled using an Oxford Cryosystems Cryostream 700 series device. Data were collected using a variable count time (VCT) scheme in which the step time is increased with 2θ (Shankland et al., 1997[Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569-572.]; Hill & Madsen, 2002[Hill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker & Ch. Baerlocher, pp. 114-116. Oxford University Press.]).

Crystal data
  • C8H12N+·C10H11O2

  • Mr = 285.37

  • Monoclinic, P 21

  • a = 11.88215 (15) Å

  • b = 5.97647 (8) Å

  • c = 13.07499 (15) Å

  • β = 113.510 (1)°

  • V = 851.43 (2) Å3

  • Z = 2

  • Dx = 1.113 Mg m−3

  • Cu Kα1 radiation

  • μ = 0.57 mm−1

  • T = 298 K

  • Specimen shape: cylinder

  • 12 × 0.7 × 0.7 mm

  • Specimen prepared at 393 K

  • Particle morphology: needle, white

Data collection
  • Bruker AXS D8 Advance diffractometer

  • Specimen mounting: 0.7 mm borosilicate capillary

  • Specimen mounted in transmission mode

  • Scan method: step

  • Wavelength of incident radiation: 1.54056 Å

  • Absorption correction: none

  • 2θmin = 3.0, 2θmax = 60.0°

  • Increment in 2θ = 0.017°

Refinement
  • Rp = 0.026

  • Rwp = 0.031

  • Rexp = 0.016

  • RB = 0.0223%

  • S = 1.96

  • Profile function: Fundamental parameters with axial divergence correction.

  • 145 parameters

  • Only H-atom coordinates refined

  • w = 1/σ(Yobs)2

  • (Δ/σ)max = 0.001

  • Preferred orientation correction: A spherical harmonics-based preferred orientation correction (Järvinen, 1993[Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.]) was applied with TOPAS during the Rietveld refinement

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O1i 0.963 (7) 2.585 (8) 3.457 (3) 150.7 (5)
N1—H1NA⋯O2i 0.963 (7) 1.827 (7) 2.683 (3) 146.6 (6)
N1—H1NB⋯O1 0.978 (7) 1.927 (8) 2.754 (3) 140.7 (5)
N1—H1NC⋯O1ii 0.976 (7) 1.958 (9) 2.840 (5) 149.1 (9)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+2].

The diffraction pattern indexed to a monoclinic cell [M(20) = 95.7 F(20) = 253.2; DICVOL-91; Boultif & Louër, 1991[Boultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987-993.]] and space group P21 was assigned from volume considerations and a statistical consideration of the systematic absences (Markvardsen et al., 2001[Markvardsen, A. J., David, W. I. F., Johnson, J. C. & Shankland, K. (2001). Acta Cryst. A57, 47-54.]). The data set was background subtracted and truncated to 59.8° 2θ for Pawley (1981[Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361.]) fitting (χ2Pawley = 5.10) and the structure solved using the simulated annealing (SA) global optimization procedure, described previously (David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]), that is now implemented in the DASH computer program (David et al., 2001[David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0 User Manual. Cambridge Crystallographic Data Centre, England.]). The SA structure solution used 290 reflections and involved the optimization of two fragments totaling 14 degrees of freedom (six positional and orientational for each fragment present in the asymmetric unit plus a torsion angle for each fragment). All degrees of freedom were assigned random values at the start of the simulated annealing. The best SA solution had a favourable χSA2/χPawley2 ratio of 1.83 and a chemically reasonable packing arrangement, with no significant misfit to the diffraction data.

The solved structure was then refined against the data in the range 3–59.7° 2θ using a restrained Rietveld (1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]) method as implemented in Topas (Coelho, 2003[Coelho, A. A. (2003). Topas User Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.]), with the Rwp falling to 0.030 during the refinement. All atomic positions (including H atoms) for the structure of (I)[link] were refined, subject to a series of restraints on bond lengths, bond angles and planarity. Uiso values for H atoms were constrained to equal 0.1013 Å2

The restraints were set such that bond lengths and angles did not deviate more than 0.01 Å and 0.8°, respectively, from their initial values during the refinement. Atoms C13–C18 and H14–H18 (phenyl­ethyl­ammonium) and atoms C5–C10 and H6–H10 (phenyl­butyrate) were restrained to be planar. A spherical harmonics (fourth order) correction of intensities for preferred orientation was applied in the final refinement (Järvinen, 1993[Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.]). The observed and calculated diffraction patterns for the refined crystal structure are shown in Fig. 3[link].

Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003[Kienle, M. & Jacob, M. (2003). DIFFRAC plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: TOPAS (Coelho, 2003[Coelho, A. A. (2003). Topas User Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: DASH (David et al., 2001[David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0 User Manual. Cambridge Crystallographic Data Centre, England.]); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Version 011105; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003); cell refinement: TOPAS; data reduction: DASH (David et al., 2001); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS (Coelho, 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Version 011105; Spek, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004).

(R)-1-phenylethylammonium (R)-2-phenylbutyrate top
Crystal data top
C8H12N+·C10H11O2F(000) = 308
Mr = 285.37Dx = 1.113 Mg m3
Monoclinic, P21Cu Kα1 radiation, λ = 1.54056 Å
Hall symbol: P 2ybµ = 0.57 mm1
a = 11.88215 (15) ÅT = 298 K
b = 5.97647 (8) ÅParticle morphology: needles
c = 13.07499 (15) Åwhite
β = 113.510 (1)°cylinder, 12 × 0.7 mm
V = 851.43 (2) Å3Specimen preparation: Prepared at 393 K
Z = 2
Data collection top
Bruker AXS D8 Advance
diffractometer
Data collection mode: transmission
Radiation source: sealed X-ray tube, Bruker-AXS D8Scan method: step
Primary focussing, Ge 111 monochromator2θmin = 3.0°, 2θmax = 60.0°, 2θstep = 0.017°
Specimen mounting: 0.7 mm borosilicate capillary
Refinement top
Least-squares matrix: selected elements only101 restraints
Rp = 0.0261 constraint
Rwp = 0.031Only H-atom coordinates refined
Rexp = 0.016Weighting scheme based on measured s.u.'s w = 1/σ(Yobs)2
RBragg = 2.23(Δ/σ)max = 0.001
4177 data pointsBackground function: Chebyshev polynomial
Profile function: Fundamental parameters with axial divergence correction.Preferred orientation correction: A spherical harmonics-based preferred orientation correction (Järvinen, 1993) was applied with Topas during the Rietveld refinement.
145 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3747 (5)0.1291 (5)0.8818 (3)0.0718 (5)*
O20.3433 (6)0.1669 (7)0.7721 (2)0.0718 (5)*
C10.3477 (2)0.0377 (2)0.78746 (12)0.0718 (5)*
C20.32515 (16)0.1930 (2)0.69002 (11)0.0718 (5)*
C30.21939 (14)0.1089 (3)0.58677 (13)0.0718 (5)*
C40.09580 (11)0.1186 (2)0.60089 (8)0.0718 (5)*
C50.44009 (15)0.2225 (3)0.66949 (16)0.0718 (5)*
C60.48329 (13)0.0467 (3)0.6259 (3)0.0718 (5)*
C70.58868 (18)0.0694 (3)0.60649 (17)0.0718 (5)*
C80.6603 (2)0.2620 (3)0.6402 (3)0.0718 (5)*
C90.62251 (17)0.4285 (3)0.6930 (3)0.0718 (5)*
C100.51293 (13)0.4127 (3)0.70507 (18)0.0718 (5)*
N10.38635 (9)0.5680 (2)0.94939 (8)0.0718 (5)*
C110.31720 (10)0.41721 (19)1.09033 (9)0.0718 (5)*
C120.30926 (12)0.6131 (3)1.01329 (11)0.0718 (5)*
C130.17962 (18)0.6657 (3)0.93490 (16)0.0718 (5)*
C140.12161 (15)0.8606 (3)0.94873 (16)0.0718 (5)*
C150.00363 (15)0.9118 (3)0.87154 (16)0.0718 (5)*
C160.05983 (16)0.7575 (3)0.78734 (16)0.0718 (5)*
C170.00054 (15)0.5681 (3)0.77208 (15)0.0718 (5)*
C180.11465 (16)0.5141 (3)0.84997 (16)0.0718 (5)*
H20.3072 (9)0.3380 (11)0.7092 (4)0.1013*
H3A0.2158 (5)0.2052 (13)0.5273 (4)0.1013*
H3B0.2387 (5)0.0409 (13)0.5746 (4)0.1013*
H4A0.0792 (6)0.2733 (13)0.6111 (4)0.1013*
H4B0.1002 (5)0.0244 (13)0.6644 (4)0.1013*
H4C0.0291 (6)0.075 (2)0.5316 (5)0.1013*
H60.4350 (5)0.0846 (12)0.5972 (4)0.1013*
H70.6181 (5)0.0517 (12)0.5756 (5)0.1013*
H80.7391 (5)0.2670 (12)0.6375 (7)0.1013*
H90.6642 (5)0.5714 (15)0.7086 (4)0.1013*
H100.4794 (5)0.5441 (15)0.7215 (18)0.1013*
H1NA0.3899 (5)0.7000 (13)0.9086 (5)0.1013*
H1NB0.3565 (5)0.4469 (13)0.8949 (4)0.1013*
H1NC0.4694 (6)0.5316 (18)1.0020 (5)0.1013*
H11A0.2726 (5)0.4561 (13)1.1364 (4)0.1013*
H11B0.2836 (4)0.2838 (13)1.0457 (4)0.1013*
H11C0.4033 (4)0.3907 (11)1.1390 (4)0.1013*
H120.3428 (5)0.7420 (13)1.0575 (4)0.1013*
H140.1682 (5)0.9672 (13)1.0051 (5)0.1013*
H150.0339 (5)1.0449 (15)0.8853 (4)0.1013*
H160.1395 (5)0.7935 (11)0.7330 (4)0.1013*
H170.0464 (5)0.4590 (12)0.7169 (5)0.1013*
H180.1545 (5)0.3781 (12)0.8442 (4)0.1013*
Geometric parameters (Å, º) top
O1—C11.268 (4)C6—H60.956 (7)
O2—C11.237 (4)C7—H70.960 (7)
N1—C121.4901 (19)C8—H80.951 (8)
N1—H1NC0.976 (7)C9—H90.967 (9)
N1—H1NA0.963 (7)C10—H100.943 (11)
N1—H1NB0.978 (7)C11—C121.523 (2)
C1—C21.5113 (19)C12—C131.504 (3)
C2—C31.517 (2)C13—C181.402 (3)
C2—C51.504 (3)C13—C141.401 (3)
C3—C41.553 (2)C14—C151.396 (3)
C5—C61.388 (3)C15—C161.403 (3)
C5—C101.392 (3)C16—C171.389 (3)
C6—C71.380 (3)C17—C181.379 (3)
C7—C81.394 (3)C11—H11A0.976 (6)
C8—C91.384 (4)C11—H11B0.975 (7)
C9—C101.376 (3)C11—H11C0.978 (5)
C2—H20.950 (7)C12—H120.950 (7)
C3—H3B0.953 (8)C14—H140.964 (7)
C3—H3A0.955 (6)C15—H150.963 (8)
C4—H4A0.966 (8)C16—H160.954 (6)
C4—H4B0.987 (6)C17—H170.964 (7)
C4—H4C0.972 (7)C18—H180.959 (7)
H1NA—N1—H1NB106.6 (5)C8—C7—H7118.5 (5)
H1NA—N1—H1NC108.5 (7)C9—C8—H8121.1 (5)
H1NB—N1—H1NC108.6 (7)C7—C8—H8120.0 (5)
C12—N1—H1NC108.7 (4)C10—C9—H9117.7 (4)
C12—N1—H1NA109.6 (4)C8—C9—H9119.9 (5)
C12—N1—H1NB114.7 (4)C5—C10—H10119.6 (7)
O2—C1—C2119.24 (17)C9—C10—H10118.3 (7)
O1—C1—O2124.2 (2)C11—C12—C13112.82 (13)
O1—C1—C2116.52 (17)N1—C12—C13110.32 (12)
C1—C2—C3110.62 (13)N1—C12—C11110.01 (12)
C3—C2—C5111.65 (13)C12—C13—C14120.56 (16)
C1—C2—C5110.75 (16)C12—C13—C18119.69 (17)
C2—C3—C4111.65 (13)C14—C13—C18119.70 (19)
C6—C5—C10118.24 (18)C13—C14—C15119.52 (17)
C2—C5—C6119.72 (16)C14—C15—C16119.58 (17)
C2—C5—C10121.61 (16)C15—C16—C17120.24 (18)
C5—C6—C7120.83 (18)C16—C17—C18119.69 (17)
C6—C7—C8120.5 (2)C13—C18—C17120.28 (17)
C7—C8—C9118.2 (2)C12—C11—H11A108.6 (4)
C8—C9—C10121.2 (2)C12—C11—H11B109.3 (4)
C5—C10—C9120.57 (18)C12—C11—H11C109.1 (4)
C5—C2—H2104.8 (6)H11A—C11—H11B111.8 (5)
C1—C2—H2108.7 (4)H11A—C11—H11C108.8 (4)
C3—C2—H2110.1 (5)H11B—C11—H11C109.2 (5)
C2—C3—H3A106.1 (4)N1—C12—H12106.6 (4)
C2—C3—H3B106.9 (4)C11—C12—H12108.7 (4)
C4—C3—H3A109.7 (4)C13—C12—H12108.2 (4)
C4—C3—H3B110.9 (4)C13—C14—H14119.1 (5)
H3A—C3—H3B111.5 (6)C15—C14—H14120.8 (5)
H4A—C4—H4B112.0 (5)C14—C15—H15116.9 (4)
H4A—C4—H4C104.5 (8)C16—C15—H15123.1 (4)
C3—C4—H4C109.7 (5)C15—C16—H16119.9 (4)
C3—C4—H4A107.9 (5)C17—C16—H16119.1 (4)
C3—C4—H4B110.1 (4)C16—C17—H17119.4 (4)
H4B—C4—H4C112.4 (7)C18—C17—H17119.5 (4)
C7—C6—H6117.1 (4)C13—C18—H18118.5 (4)
C5—C6—H6121.4 (4)C17—C18—H18121.1 (4)
C6—C7—H7120.8 (4)
O1—C1—C2—C3140.9 (4)C6—C7—C8—C90.2 (4)
O1—C1—C2—C594.8 (4)C7—C8—C9—C104.6 (5)
O2—C1—C2—C341.6 (5)C8—C9—C10—C53.4 (4)
O2—C1—C2—C582.7 (4)N1—C12—C13—C14127.37 (18)
C1—C2—C3—C466.34 (18)N1—C12—C13—C1855.2 (2)
C5—C2—C3—C4169.84 (12)C11—C12—C13—C14109.15 (19)
C1—C2—C5—C671.0 (2)C11—C12—C13—C1868.3 (2)
C1—C2—C5—C10101.35 (19)C12—C13—C14—C15176.66 (17)
C3—C2—C5—C652.8 (2)C18—C13—C14—C155.9 (3)
C3—C2—C5—C10134.91 (18)C12—C13—C18—C17174.78 (17)
C2—C5—C6—C7179.9 (2)C14—C13—C18—C177.7 (3)
C10—C5—C6—C77.3 (4)C13—C14—C15—C166.0 (3)
C2—C5—C10—C9175.0 (2)C14—C15—C16—C178.0 (3)
C6—C5—C10—C92.6 (3)C15—C16—C17—C189.8 (3)
C5—C6—C7—C86.2 (4)C16—C17—C18—C139.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O1i0.963 (7)2.585 (8)3.457 (3)150.7 (5)
N1—H1NA···O2i0.963 (7)1.827 (7)2.683 (3)146.6 (6)
N1—H1NB···O10.978 (7)1.927 (8)2.754 (3)140.7 (5)
N1—H1NC···O1ii0.976 (7)1.958 (9)2.840 (5)149.1 (9)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+2.
 

Acknowledgements

We thank the Basic Technology programme of the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (https://www.cposs.org.uk).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987–993.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrianso, M.-C. (1978). Acta Cryst. B34, 679–680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoelho, A. A. (2003). Topas User Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDavid, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0 User Manual. Cambridge Crystallographic Data Centre, England.  Google Scholar
First citationDavid, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernandes, P., Florence, A. J., Shankland, K., Karamertzanis, G. P., Hulme, A. T. & Anandamanoharan, R. P. (2006). Acta. Cryst. E62. In the press.  CrossRef IUCr Journals Google Scholar
First citationHill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker & Ch. Baerlocher, pp. 114–116. Oxford University Press.  Google Scholar
First citationJärvinen, M. (1993). J. Appl. Cryst. 26, 525–531.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKienle, M. & Jacob, M. (2003). DIFFRAC plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationMarkvardsen, A. J., David, W. I. F., Johnson, J. C. & Shankland, K. (2001). Acta Cryst. A57, 47–54.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPawley, G. S. (1981). J. Appl. Cryst. 14, 357–361.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569–572.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds