organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Chloro-2-nitro­benzo­yl)-N′-isonicotinoyl­hydrazine: a three-dimensional framework containing four types of hydrogen bond

aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 4 December 2006; accepted 4 December 2006; online 13 December 2006)

The title compound, C13H9ClN4O4, crystallizes with Z′ = 2, and the two mol­ecules have markedly different conformations. The mol­ecules are linked into a three-dimensional framework by a combination of N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds.

Comment

We have recently reported the supra­molecular structures of 4-[(4-chloro-3-nitro­benzo­yl)hydrazinocarbon­yl]pyridinium chloride and N-3,5-dinitro­benzoyl-N′-isonicotinoylhydrazine (Vasconcelos et al., 2006[Vasconcelos, T. R. A., de Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o222-o226.]). These compounds were prepared as part of a programme to test bactericidal activities, especially towards the Mycobacterium tuberculosis bacterium. Both compounds were found to exhibit significant activities (Junior et al., 2006[Junior, I. N., Lourenco, M. C. S., de Mirandal, G. D. B., Vasconcelos, T. R. A., Pais, K. C., Junior, J. D. D., Wardell, S. M. S. V., Wardell, J. L. & de Souza, M. V. N. (2006). Lett. Drug. Des. Disc. 3, 424-428.]). The structure of a third member of this series, N-(5-chloro-2-nitro­benzo­yl)-N′-isonicotinoylhydrazine, (I)[link] (Fig. 1[link]), is reported here.

[Scheme 1]

Compound (I)[link] crystallizes with Z′ = 2 in space group Fdd2, with a unit cell of markedly tabular shape, as shown by the axial ratios a:b:c of 1.958:1:0.134, so that the ratio c/a is only 0.0686. The two independent mol­ecules adopt significantly different conformations, as shown by the leading torsion angles (Table 1[link]).

The mol­ecules of (I)[link] are linked by a combination of four types of hydrogen bond (Table 2[link]) to form a fairly complex three-dimensional framework, whose formation is nonetheless readily analysed in terms of three distinct substructures. Within the selected asymmetric unit, the two mol­ecules are linked by an N—H⋯N hydrogen bond, possibly weakly augmented by a C—H⋯N hydrogen bond, and these bi­mol­ecular units are linked by two N—H⋯O hydrogen bonds into a chain of edge-fused R44(26) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings generated by translation along the [001] direction (Fig. 2[link]). In the second substructure, the bimolecular units are linked by the second N—H⋯N hydrogen bond, in which atom N37 at (x, y, z) acts as donor to atom N11 at ([{3\over 4}] − x, −[{1\over 4}] + y, [{1\over 4}] + z), so forming a C22(14) chain running parallel to the [01[\overline{1}]] direction and generated by the d-glide plane at x = 0.375 (Fig. 3[link]). This chain may be weakly reinforced by a second C—H⋯N hydrogen bond. In the final substructure, atom C44 at (x, y, z) acts as hydrogen-bond donor to atom O1 at ([{1\over 4}] + x, [{3\over 4}] − y, [{7 \over 4}}] + z), so forming a C22(17) chain running parallel to the [107] direction and generated by the d-glide plane at y = 0.375 (Fig. 4[link]). The combination of the [001], [01[\overline{1}]] and [107] chains is sufficient to generate a single three-dimensional framework structure.

[Figure 1]
Figure 1
The structures of the two independent mol­ecules of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoscopic view of part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded (dashed lines) chain of R44(26) rings generated by translation along [001]. For the sake of clarity, the unit-cell outline and H atoms bonded to C atoms have been omitted.
[Figure 3]
Figure 3
A stereoscopic view of part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded (dashed lines) C22(14) chain along [01[\overline{1}]]. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 4]
Figure 4
A stereoscopic view of part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded (dashed lines) C22(17) chain along [107]. For the sake of clarity, H atoms bonded to C atoms but not involved in the motif shown have been omitted.

Experimental

5-Chloro-2-nitro­benzoyl chloride was prepared from the corresponding carboxylic acid (1 g) using thionyl chloride (3 molar equivalents) and N,N-dimethyl­formamide (0.1 equivalent) in dichloro­methane (20 ml) at ambient temperature with stirring and in a dinitro­gen atmosphere. After 6 h, the excess of thionyl chloride was removed under reduced pressure to leave the crude acyl chloride, which was used without purification in a reaction with isonicotinoyl­hydrazine (isoniazid, 1 molar equivalent) in refluxing tetra­hydro­furan (20 ml). The mixture was then cooled and the solvent removed under reduced pressure. The crude solid product, (I)[link], was purified by column chromatography on silica gel, using as eluant a hexa­ne–ethyl acetate gradient. Recrystallization from ethanol gave crystals suitable for single-crystal X-ray diffraction [yield 75%, m.p. 543–545 K (decomposition)]. GC/MS m/z 320 [M]+.

Crystal data
  • C13H9ClN4O4

  • Mr = 320.69

  • Orthorhombic, F d d 2

  • a = 67.786 (4) Å

  • b = 34.613 (2) Å

  • c = 4.6486 (2) Å

  • V = 10906.9 (10) Å3

  • Z = 32

  • Dx = 1.562 Mg m−3

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.20 × 0.04 × 0.02 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.994

  • 16346 measured reflections

  • 3383 independent reflections

  • 2656 reflections with I > 2σ(I)

  • Rint = 0.104

  • θmax = 22.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.102

  • S = 1.05

  • 3383 reflections

  • 397 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0289P)2 + 24.7113P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1344 Friedel pairs

  • Flack parameter: 0.08 (10)

Table 1
Selected torsion angles (°)

C12—C13—C14—C17 −179.9 (5)
C13—C14—C17—N17 27.6 (7)
C14—C17—N17—N27 176.5 (4)
C17—N17—N27—C27 −149.8 (5)
N17—N27—C27—C21 169.8 (4)
N27—C27—C21—C22 73.2 (7)
C21—C22—N22—O21 14.6 (7)
C32—C33—C34—C37 −179.6 (5)
C33—C34—C37—N37 2.7 (8)
C34—C37—N37—N47 176.3 (4)
C37—N37—N47—C47 −128.3 (5)
N37—N47—C47—C41 −179.6 (4)
N47—C47—C41—C42 120.7 (5)
C41—C42—N42—O41 −32.2 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯N31 0.88 2.22 3.039 (6) 156
C13—H13⋯N31 0.95 2.56 3.448 (7) 156
N27—H27⋯O2i 0.88 1.86 2.737 (6) 171
N47—H47⋯O4ii 0.88 1.93 2.777 (6) 160
N37—H37⋯N11iii 0.88 2.07 2.908 (6) 159
C33—H33⋯N11iii 0.95 2.55 3.476 (7) 165
C44—H44⋯O1iv 0.95 2.30 3.164 (7) 151
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1; (iii) [-x+{\script{3\over 4}}, y-{\script{1\over 4}}, z+{\script{1\over 4}}]; (iv) [x+{\script{1\over 4}}, -y+{\script{3\over 4}}, z+{\script{7\over 4}}].

All H atoms were located in difference maps and then treated as riding, with C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N). The unit-cell dimensions posed some difficulties during the data collection, and there was effectively no scattering beyond θ = 22°.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

N-(5-Chloro-2-nitrobenzoyl)-N'-isonicotinoylhydrazine top
Crystal data top
C13H9ClN4O4F(000) = 5248
Mr = 320.69Dx = 1.562 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 3383 reflections
a = 67.786 (4) Åθ = 3.0–22.5°
b = 34.613 (2) ŵ = 0.31 mm1
c = 4.6486 (2) ÅT = 120 K
V = 10906.9 (10) Å3Needle, colourless
Z = 320.20 × 0.04 × 0.02 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3383 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
Detector resolution: 9.091 pixels mm-1θmax = 22.5°, θmin = 3.0°
φ and ω scansh = 7272
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2936
Tmin = 0.955, Tmax = 0.994l = 44
16346 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0289P)2 + 24.7113P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3383 reflectionsΔρmax = 0.22 e Å3
397 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), with 1344 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (10)
Special details top

Experimental. GC/MS m/z 320 [M]+; 1 H NMR (DMSO-d6, δ, p.p.m.): 11.48 (1H, s, NH), 11.13 (1H, s, NH), 8.99 (2H, d, J = 5.0 Hz), 8.94 (1H, d, J = 4.5 Hz), 8.20 (1H, s), 8.17 (2H, d, J = 5.0 Hz), 8.11 (1H, d, J = 4.5 Hz); 13C NMR (DMSO-d6, δ, p.p.m.): 163.1, 162.8, 148.0, 146.8, 145.6, 142.6, 138.2, 131.5, 129.2, 126.5, 123.2; IR (KBr disk, ν, cm-1) 3091 (NH), 1703 (CO), 1668 (CO).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.32274 (6)0.54404 (12)0.6076 (9)0.0274 (12)
C120.33700 (8)0.51929 (15)0.6811 (13)0.0301 (14)
C130.33787 (8)0.48147 (15)0.5828 (11)0.0267 (15)
C140.32318 (8)0.46834 (15)0.4031 (11)0.0232 (13)
C150.30859 (8)0.49394 (15)0.3220 (11)0.0244 (14)
C160.30883 (8)0.53063 (15)0.4320 (12)0.0271 (14)
C170.32230 (7)0.42828 (16)0.2821 (13)0.0217 (13)
O10.31415 (5)0.42119 (10)0.0530 (8)0.0289 (9)
N170.33095 (6)0.40022 (11)0.4385 (9)0.0243 (11)
N270.32920 (6)0.36286 (11)0.3350 (9)0.0278 (11)
C270.32892 (7)0.33276 (14)0.5187 (13)0.0217 (13)
O20.33100 (6)0.33659 (10)0.7804 (8)0.0321 (10)
C210.32351 (7)0.29506 (14)0.3875 (11)0.0203 (13)
C220.33456 (7)0.27172 (14)0.2074 (11)0.0218 (13)
N220.35514 (7)0.28219 (14)0.1378 (11)0.0339 (13)
O210.36322 (5)0.30690 (11)0.2866 (9)0.0383 (10)
O220.36326 (6)0.26550 (12)0.0632 (11)0.0497 (12)
C230.32756 (8)0.23772 (16)0.0876 (12)0.0303 (15)
C240.30871 (8)0.22605 (15)0.1591 (12)0.0313 (15)
C250.29757 (7)0.24784 (16)0.3449 (12)0.0266 (14)
Cl250.27397 (2)0.23329 (4)0.4317 (4)0.0492 (5)
C260.30482 (8)0.28213 (15)0.4576 (12)0.0262 (14)
N310.36416 (6)0.40581 (13)0.8757 (9)0.0263 (11)
C320.37569 (8)0.37612 (15)0.8074 (12)0.0279 (14)
C330.39446 (8)0.37069 (15)0.9265 (12)0.0273 (14)
C340.40144 (7)0.39704 (15)1.1202 (12)0.0215 (13)
C350.38935 (8)0.42736 (15)1.1948 (12)0.0277 (14)
C360.37124 (8)0.43104 (16)1.0637 (12)0.0291 (14)
C370.42157 (7)0.39452 (16)1.2631 (13)0.0251 (14)
O30.42663 (5)0.41836 (11)1.4393 (9)0.0355 (10)
N370.43315 (6)0.36508 (12)1.1805 (9)0.0260 (11)
N470.45204 (6)0.36366 (11)1.2963 (10)0.0233 (11)
C470.46750 (8)0.36012 (14)1.1193 (14)0.0242 (14)
O40.46603 (5)0.35841 (10)0.8564 (8)0.0332 (10)
C410.48709 (7)0.35861 (15)1.2688 (11)0.0221 (13)
C420.49991 (8)0.32735 (16)1.2428 (11)0.0274 (14)
N420.49372 (8)0.29281 (13)1.0876 (10)0.0341 (13)
O410.47619 (6)0.28373 (10)1.0942 (8)0.0366 (10)
O420.50662 (6)0.27417 (12)0.9587 (11)0.0571 (13)
C430.51840 (8)0.32683 (18)1.3700 (12)0.0380 (16)
C440.52428 (8)0.35888 (19)1.5291 (14)0.0411 (17)
C450.51170 (8)0.38943 (16)1.5572 (11)0.0314 (15)
Cl450.51843 (2)0.42921 (5)1.7631 (3)0.0468 (5)
C460.49313 (7)0.39002 (15)1.4267 (11)0.0240 (13)
H120.34710.52800.80730.036*
H130.34840.46500.63840.032*
H150.29850.48620.19180.029*
H160.29840.54760.37970.033*
H170.33750.40150.60140.029*
H270.33070.35620.15360.033*
H230.33550.22290.03970.036*
H240.30350.20290.07970.038*
H260.29680.29690.58460.031*
H320.37100.35780.67170.034*
H330.40220.34900.87330.033*
H350.39350.44561.33540.033*
H360.36340.45291.11050.035*
H370.42910.34721.05990.031*
H470.45370.36481.48380.028*
H430.52690.30511.34910.046*
H440.53690.35951.61730.049*
H460.48480.41191.44690.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.027 (3)0.018 (3)0.038 (3)0.000 (2)0.007 (2)0.001 (2)
C120.028 (3)0.027 (3)0.036 (4)0.005 (3)0.001 (3)0.002 (3)
C130.034 (4)0.019 (3)0.028 (4)0.008 (3)0.006 (3)0.003 (3)
C140.032 (3)0.023 (3)0.015 (3)0.002 (3)0.002 (3)0.006 (3)
C150.020 (3)0.027 (3)0.027 (3)0.004 (3)0.005 (3)0.001 (3)
C160.022 (3)0.026 (4)0.034 (4)0.002 (3)0.006 (3)0.003 (3)
C170.017 (3)0.022 (3)0.025 (3)0.004 (3)0.005 (3)0.001 (3)
O10.033 (2)0.023 (2)0.030 (2)0.0020 (18)0.011 (2)0.0064 (18)
N170.041 (3)0.016 (3)0.016 (2)0.003 (2)0.005 (2)0.003 (2)
N270.054 (3)0.011 (3)0.019 (3)0.002 (2)0.000 (2)0.006 (2)
C270.026 (3)0.015 (3)0.025 (4)0.005 (3)0.001 (3)0.004 (3)
O20.054 (3)0.025 (2)0.017 (2)0.001 (2)0.005 (2)0.0051 (19)
C210.021 (3)0.021 (3)0.019 (3)0.001 (3)0.005 (3)0.004 (3)
C220.021 (3)0.018 (3)0.026 (3)0.002 (3)0.003 (3)0.004 (3)
N220.036 (3)0.023 (3)0.043 (3)0.001 (3)0.000 (3)0.003 (3)
O210.035 (2)0.031 (2)0.049 (3)0.011 (2)0.004 (2)0.006 (2)
O220.043 (3)0.042 (3)0.064 (3)0.001 (2)0.023 (3)0.020 (3)
C230.032 (4)0.024 (3)0.034 (4)0.002 (3)0.006 (3)0.003 (3)
C240.037 (4)0.020 (3)0.037 (4)0.008 (3)0.009 (3)0.002 (3)
C250.018 (3)0.025 (3)0.037 (4)0.001 (3)0.002 (3)0.001 (3)
Cl250.0278 (8)0.0388 (9)0.0809 (13)0.0087 (7)0.0070 (9)0.0028 (9)
C260.034 (4)0.020 (3)0.025 (3)0.007 (3)0.007 (3)0.002 (3)
N310.023 (3)0.027 (3)0.029 (3)0.001 (2)0.002 (2)0.003 (2)
C320.025 (3)0.025 (3)0.033 (4)0.002 (3)0.010 (3)0.002 (3)
C330.025 (3)0.020 (3)0.036 (4)0.002 (3)0.002 (3)0.001 (3)
C340.019 (3)0.018 (3)0.027 (3)0.000 (3)0.001 (3)0.002 (3)
C350.032 (3)0.023 (3)0.029 (4)0.001 (3)0.000 (3)0.001 (3)
C360.027 (3)0.034 (4)0.026 (3)0.007 (3)0.003 (3)0.001 (3)
C370.023 (3)0.024 (4)0.028 (4)0.001 (3)0.005 (3)0.005 (3)
O30.031 (2)0.036 (2)0.040 (2)0.0066 (19)0.008 (2)0.019 (2)
N370.021 (3)0.023 (3)0.034 (3)0.001 (2)0.008 (3)0.009 (2)
N470.023 (3)0.026 (3)0.021 (3)0.004 (2)0.003 (2)0.003 (2)
C470.032 (4)0.015 (3)0.026 (4)0.001 (3)0.001 (3)0.002 (3)
O40.036 (2)0.037 (3)0.027 (3)0.0037 (19)0.003 (2)0.0007 (19)
C410.025 (3)0.024 (3)0.017 (3)0.001 (3)0.002 (3)0.001 (3)
C420.027 (3)0.027 (3)0.028 (3)0.004 (3)0.000 (3)0.001 (3)
N420.037 (3)0.024 (3)0.042 (3)0.009 (3)0.002 (3)0.001 (2)
O410.032 (2)0.030 (2)0.047 (3)0.002 (2)0.007 (2)0.003 (2)
O420.054 (3)0.046 (3)0.071 (3)0.012 (2)0.019 (3)0.013 (3)
C430.030 (4)0.043 (4)0.041 (4)0.009 (3)0.001 (3)0.008 (3)
C440.019 (3)0.062 (5)0.042 (4)0.001 (4)0.009 (3)0.009 (4)
C450.034 (4)0.037 (4)0.023 (3)0.013 (3)0.003 (3)0.002 (3)
Cl450.0420 (9)0.0615 (11)0.0368 (9)0.0228 (9)0.0024 (8)0.0074 (8)
C460.022 (3)0.026 (3)0.024 (3)0.005 (3)0.005 (3)0.006 (3)
Geometric parameters (Å, º) top
N11—C161.331 (6)N31—C361.325 (6)
N11—C121.336 (6)N31—C321.329 (6)
C12—C131.388 (7)C32—C331.400 (7)
C12—H120.95C32—H320.95
C13—C141.377 (7)C33—C341.366 (7)
C13—H130.95C33—H330.95
C14—C151.380 (7)C34—C351.376 (7)
C14—C171.498 (7)C34—C371.520 (7)
C15—C161.369 (7)C35—C361.377 (7)
C15—H150.95C35—H350.95
C16—H160.95C36—H360.95
C17—O11.224 (6)C37—O31.212 (6)
C17—N171.347 (6)C37—N371.343 (6)
N17—N271.385 (5)N37—N471.389 (5)
N17—H170.88N37—H370.88
N27—C271.347 (6)N47—C471.338 (6)
N27—H270.88N47—H470.88
C27—O21.232 (6)C47—O41.227 (6)
C27—C211.486 (7)C47—C411.500 (7)
C21—C261.382 (7)C41—C461.374 (7)
C21—C221.384 (7)C41—C421.393 (7)
C22—C231.385 (7)C42—C431.386 (7)
C22—N221.477 (6)C42—N421.458 (7)
N22—O221.228 (6)N42—O411.230 (5)
N22—O211.229 (5)N42—O421.241 (6)
C23—C241.381 (7)C43—C441.391 (8)
C23—H230.95C43—H430.95
C24—C251.373 (7)C44—C451.365 (7)
C24—H240.95C44—H440.95
C25—C261.387 (7)C45—C461.397 (7)
C25—Cl251.725 (5)C45—Cl451.738 (5)
C26—H260.95C46—H460.95
C16—N11—C12116.5 (5)C36—N31—C32117.0 (5)
N11—C12—C13123.5 (5)N31—C32—C33122.9 (5)
N11—C12—H12118.3N31—C32—H32118.5
C13—C12—H12118.3C33—C32—H32118.5
C14—C13—C12118.7 (5)C34—C33—C32119.1 (5)
C14—C13—H13120.6C34—C33—H33120.5
C12—C13—H13120.6C32—C33—H33120.5
C13—C14—C15118.2 (5)C33—C34—C35118.0 (5)
C13—C14—C17124.2 (5)C33—C34—C37124.1 (5)
C15—C14—C17117.6 (5)C35—C34—C37117.9 (5)
C16—C15—C14119.0 (5)C34—C35—C36119.4 (5)
C16—C15—H15120.5C34—C35—H35120.3
C14—C15—H15120.5C36—C35—H35120.3
N11—C16—C15124.2 (5)N31—C36—C35123.6 (5)
N11—C16—H16117.9N31—C36—H36118.2
C15—C16—H16117.9C35—C36—H36118.2
O1—C17—N17121.4 (5)O3—C37—N37123.0 (5)
O1—C17—C14122.0 (5)O3—C37—C34120.7 (5)
N17—C17—C14116.6 (5)N37—C37—C34116.3 (5)
C17—N17—N27116.7 (4)C37—N37—N47117.1 (4)
C17—N17—H17130.4C37—N37—H37122.2
N27—N17—H17112.9N47—N37—H37120.8
C27—N27—N17120.2 (4)C47—N47—N37119.1 (4)
C27—N27—H27114.1C47—N47—H47120.7
N17—N27—H27124.5N37—N47—H47120.2
O2—C27—N27122.7 (5)O4—C47—N47123.6 (5)
O2—C27—C21121.9 (5)O4—C47—C41122.1 (5)
N27—C27—C21115.0 (5)N47—C47—C41114.3 (5)
C26—C21—C22116.7 (5)C46—C41—C42118.3 (5)
C26—C21—C27114.4 (5)C46—C41—C47119.0 (5)
C22—C21—C27128.9 (5)C42—C41—C47122.6 (5)
C21—C22—C23123.6 (5)C43—C42—C41122.5 (5)
C21—C22—N22120.0 (5)C43—C42—N42117.4 (5)
C23—C22—N22116.4 (5)C41—C42—N42120.0 (5)
O22—N22—O21123.8 (5)O41—N42—O42124.1 (5)
O22—N22—C22118.3 (5)O41—N42—C42118.4 (5)
O21—N22—C22117.9 (5)O42—N42—C42117.5 (5)
C24—C23—C22118.0 (5)C42—C43—C44118.4 (5)
C24—C23—H23121.0C42—C43—H43120.8
C22—C23—H23121.0C44—C43—H43120.8
C25—C24—C23120.0 (5)C45—C44—C43119.3 (5)
C25—C24—H24120.0C45—C44—H44120.3
C23—C24—H24120.0C43—C44—H44120.3
C24—C25—C26120.8 (5)C44—C45—C46122.2 (5)
C24—C25—Cl25119.8 (4)C44—C45—Cl45120.2 (5)
C26—C25—Cl25119.3 (4)C46—C45—Cl45117.6 (5)
C21—C26—C25120.8 (5)C41—C46—C45119.3 (5)
C21—C26—H26119.6C41—C46—H46120.4
C25—C26—H26119.6C45—C46—H46120.4
C16—N11—C12—C130.4 (8)C36—N31—C32—C330.6 (8)
N11—C12—C13—C140.9 (8)N31—C32—C33—C340.5 (8)
C12—C13—C14—C152.0 (7)C32—C33—C34—C351.6 (8)
C12—C13—C14—C17179.9 (5)C32—C33—C34—C37179.6 (5)
C13—C14—C15—C162.7 (7)C33—C34—C35—C362.9 (8)
C17—C14—C15—C16179.1 (5)C37—C34—C35—C36178.3 (5)
C12—N11—C16—C151.1 (8)C32—N31—C36—C352.0 (8)
C14—C15—C16—N112.3 (8)C34—C35—C36—N313.2 (8)
C13—C14—C17—O1152.5 (5)C33—C34—C37—O3178.0 (5)
C15—C14—C17—O125.6 (7)C35—C34—C37—O30.8 (8)
C13—C14—C17—N1727.6 (7)C33—C34—C37—N372.7 (8)
C15—C14—C17—N17154.3 (5)C35—C34—C37—N37178.5 (5)
O1—C17—N17—N273.4 (7)O3—C37—N37—N473.0 (7)
C14—C17—N17—N27176.5 (4)C34—C37—N37—N47176.3 (4)
C17—N17—N27—C27149.8 (5)C37—N37—N47—C47128.3 (5)
N17—N27—C27—O23.2 (8)N37—N47—C47—O40.8 (8)
N17—N27—C27—C21169.8 (4)N37—N47—C47—C41179.6 (4)
O2—C27—C21—C2666.3 (7)O4—C47—C41—C46117.0 (6)
N27—C27—C21—C26106.8 (5)N47—C47—C41—C4662.6 (6)
O2—C27—C21—C22113.8 (6)O4—C47—C41—C4259.7 (8)
N27—C27—C21—C2273.2 (7)N47—C47—C41—C42120.7 (5)
C26—C21—C22—C232.9 (8)C46—C41—C42—C430.1 (8)
C27—C21—C22—C23177.1 (5)C47—C41—C42—C43176.8 (5)
C26—C21—C22—N22175.9 (4)C46—C41—C42—N42177.4 (5)
C27—C21—C22—N224.1 (8)C47—C41—C42—N425.9 (8)
C21—C22—N22—O22166.1 (5)C43—C42—N42—O41145.2 (5)
C23—C22—N22—O2215.0 (7)C41—C42—N42—O4132.2 (7)
C21—C22—N22—O2114.6 (7)C43—C42—N42—O4234.2 (7)
C23—C22—N22—O21164.3 (5)C41—C42—N42—O42148.4 (5)
C21—C22—C23—C241.9 (8)C41—C42—C43—C440.1 (8)
N22—C22—C23—C24176.9 (5)N42—C42—C43—C44177.4 (5)
C22—C23—C24—C250.4 (8)C42—C43—C44—C450.6 (8)
C23—C24—C25—C261.5 (8)C43—C44—C45—C461.2 (8)
C23—C24—C25—Cl25179.6 (4)C43—C44—C45—Cl45178.2 (4)
C22—C21—C26—C251.6 (7)C42—C41—C46—C450.6 (7)
C27—C21—C26—C25178.3 (5)C47—C41—C46—C45177.5 (5)
C24—C25—C26—C210.5 (8)C44—C45—C46—C411.2 (8)
Cl25—C25—C26—C21178.6 (4)Cl45—C45—C46—C41178.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N310.882.223.039 (6)156
C13—H13···N310.952.563.448 (7)156
N27—H27···O2i0.881.862.737 (6)171
N47—H47···O4ii0.881.932.777 (6)160
N37—H37···N11iii0.882.072.908 (6)159
C33—H33···N11iii0.952.553.476 (7)165
C44—H44···O1iv0.952.303.164 (7)151
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+3/4, y1/4, z+1/4; (iv) x+1/4, y+3/4, z+7/4.
 

Acknowledgements

The X-ray data were collected at the EPSRC National Crystallograpic Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJunior, I. N., Lourenco, M. C. S., de Mirandal, G. D. B., Vasconcelos, T. R. A., Pais, K. C., Junior, J. D. D., Wardell, S. M. S. V., Wardell, J. L. & de Souza, M. V. N. (2006). Lett. Drug. Des. Disc. 3, 424–428.  CrossRef Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasconcelos, T. R. A., de Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o222–o226.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds