organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-O-Iso­propyl­­idene-L-apiono-1,4-lactone [(3S,4S)-3,4-dihydr­­oxy-4-(hy­droxy­methyl)-3,4-di-O-iso­propyl­­idene-4,5-di­hydro­furan-2(3H)-one]

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 11 January 2007; accepted 25 January 2007; online 31 January 2007)

The relative configuration of the title compound, C8H12O5, was unequivocally established by X-ray crystallographic analysis; the absolute configuration was determined by the use of D-ribose as a starting material.

Comment

Branched 2-C-methyl nucleosides are the most promising drug candidates for the treatment of hepatitis C (Sorbera et al., 2006[Sorbera, L. A., Castaner, J. & Leeson, P. A. (2006). Drugs Future, 31, 320-324.]; Pierra et al., 2006[Pierra, C., Amador, A., Benzaria, S., Cretton-Scott, E., D'Amours, M., Mao, J., Mathieu, S., Moussa, A., Bridges, E. G., Standring, D. N., Sommadossi, J. P., Storer, R. & Gosselin, G. (2006). J. Med. Chem. 49, 6614-6620.]). There is inter­est in the activity of nucleoside analogues with substitutents at C-3 of the sugar that may be derived from D-apiose (1D) (Sells & Nair, 1992[Sells, T. B. & Nair, V. (1992). Tetrahedron Lett. 33, 7639-7642.]; Kim et al., 2004[Kim, M. J., Jeong, L. S., Kim, J. H., Shin, J. H., Chung, S. Y., Lee, S. K. & Chun, M. W. (2004). Nucleosides Nucleotides Nucleic Acids, 23, 715-724.]). L-Nucleoside analogues – the enanti­omers of the naturally occurring nucleosides – also produce novel anti­viral agents (Mathé & Gosselin, 2006[Mathé, C. & Gosselin, G. (2006). Antiviral Res. 71, 276-281.]). A project to investigate nucleosides derived from L-apiose (1L) may provide chemotherapeutic leads. The title lactone, (5), is a divergent inter­mediate of value in the synthesis of such compounds. The crystal structure of (5) reported in this paper removes the ambiguity of the stereochemistry at C-3 of the lactone; the absolute configuration of (5) was determined by the use of D-ribose (2) as the starting material.

[Scheme 1]

The isolated mol­ecule of (5) (Fig. 1[link]) shows no unusual features when compared with the Mogul norms (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]). The crystal structure consists of isolated chains of mol­ecules linked by a single hydrogen bond, parallel to the a axis (Fig. 2[link]). There are no hydrogen bonds between the chains, leading to crystals which were not easily cut.

[Figure 1]
Figure 1
A view of (5), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2]
Figure 2
The molecular structure of (5), along the b axis, showing the hydrogen-bonded chains lying parallel to a. There are no hydrogen bonds between the chains.

Experimental

The C-2 branched D-hamamelose, (3), prepared from D-ribose, (2) (Ho, 1979[Ho, P.-T. (1979). Can. J. Chem. 57, 381-383.]), was converted to the ketal of L-apiose, (4), as described previously by Yun et al. (2005[Yun, M., Moon, H. R., Kim, H. O., Choi, W. J., Kim, Y. C., Park, C. S. & Jeong, L. S. (2005). Tetrahedron Lett. 46, 5903-5905.]). The lactol (4) was oxidized by bromine water (Booth et al., 2007[Booth, K. V., Best, D., Jenkinson, S. F. & Fleet, G. W. J. (2007). In preparation.]) to the title compound, (5), which was crystallized from chloro­form (m.p. 363 K). [α]D22 70 (c, 0.95 in chloro­form).

Crystal data
  • C8H12O5

  • Mr = 188.18

  • Orthorhombic, P 21 21 21

  • a = 7.2075 (2) Å

  • b = 9.5645 (3) Å

  • c = 12.9851 (5) Å

  • V = 895.14 (5) Å3

  • Z = 4

  • Dx = 1.396 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • Block, colourless

  • 0.70 × 0.50 × 0.30 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.74, Tmax = 0.97

  • 4866 measured reflections

  • 1171 independent reflections

  • 1106 reflections with I > 2σ(I)

  • Rint = 0.035

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 0.96

  • 1171 reflections

  • 118 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.03P)2 + 0.32P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H7⋯O6i 0.85 2.05 2.802 (2) 148
Symmetry code: (i) x-1, y, z.

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned on the basis of the starting materials. The relatively large ratio of minimum to maximum corrections applied in the multi-scan process (1:1.51) reflects changes in the illuminated volume of the crystal. These were kept to a minimum, and were taken into account (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) by multi-scan inter­frame scaling (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]).

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry, with C—H distances in the range 0.93–0.98 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2–1.5 times Ueq of the parent atom, after which the positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

(3S,4S)-3,4-dihydroxy-4-(hydroxymethyl)-3,4-di- O-isopropylidene-dihydrofuran-2(3H)-one top
Crystal data top
C8H12O5Dx = 1.396 Mg m3
Mr = 188.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1098 reflections
a = 7.2075 (2) Åθ = 5–27°
b = 9.5645 (3) ŵ = 0.12 mm1
c = 12.9851 (5) ÅT = 150 K
V = 895.14 (5) Å3Block, colourless
Z = 40.70 × 0.50 × 0.30 mm
F(000) = 400
Data collection top
Nonius KappaCCD area-detector
diffractometer
1106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.74, Tmax = 0.97k = 1212
4866 measured reflectionsl = 1616
1171 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(F2) + (0.03P)2 + 0.32P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.96(Δ/σ)max = 0.000177
1171 reflectionsΔρmax = 0.21 e Å3
118 parametersΔρmin = 0.22 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6074 (2)0.48960 (16)0.48591 (12)0.0181
C20.7178 (2)0.56545 (17)0.40266 (11)0.0169
C30.9198 (2)0.53234 (18)0.42587 (14)0.0241
O40.93534 (18)0.45806 (14)0.51288 (10)0.0327
C50.7547 (2)0.4199 (2)0.55445 (13)0.0276
O61.05349 (18)0.56712 (16)0.37647 (11)0.0373
O70.65718 (17)0.51103 (12)0.30752 (8)0.0206
C80.5685 (3)0.37907 (17)0.32742 (11)0.0202
O90.49615 (15)0.39187 (11)0.42987 (8)0.0183
C100.4075 (3)0.3641 (2)0.25376 (13)0.0301
C110.7071 (3)0.25999 (18)0.32074 (15)0.0322
C120.4786 (2)0.58301 (18)0.54719 (13)0.0258
O130.36494 (18)0.66645 (13)0.48294 (11)0.0330
H210.69930.66750.40710.0196*
H510.74630.45450.62610.0308*
H520.73590.31640.55070.0312*
H1010.34980.27540.27010.0464*
H1020.32410.44510.26780.0467*
H1030.46290.36540.18530.0453*
H1110.63930.17590.34270.0526*
H1120.81470.27830.36600.0521*
H1130.74940.24950.24850.0522*
H1210.55390.64680.58970.0324*
H1220.40090.52320.59520.0323*
H70.28970.60640.45910.0509*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0217 (8)0.0155 (7)0.0170 (7)0.0018 (6)0.0011 (6)0.0018 (6)
C20.0199 (7)0.0138 (6)0.0170 (7)0.0006 (6)0.0027 (6)0.0015 (6)
C30.0218 (8)0.0211 (8)0.0296 (8)0.0001 (7)0.0036 (7)0.0023 (7)
O40.0260 (6)0.0333 (7)0.0389 (7)0.0029 (6)0.0108 (6)0.0074 (6)
C50.0338 (9)0.0268 (8)0.0222 (8)0.0001 (8)0.0058 (8)0.0050 (7)
O60.0203 (6)0.0418 (8)0.0500 (8)0.0036 (6)0.0062 (6)0.0015 (7)
O70.0305 (6)0.0160 (5)0.0151 (5)0.0079 (5)0.0019 (5)0.0001 (4)
C80.0294 (8)0.0154 (7)0.0158 (7)0.0049 (7)0.0025 (7)0.0009 (6)
O90.0238 (6)0.0153 (5)0.0159 (5)0.0047 (5)0.0020 (4)0.0027 (5)
C100.0429 (11)0.0263 (9)0.0212 (8)0.0151 (9)0.0059 (8)0.0012 (7)
C110.0422 (10)0.0192 (8)0.0352 (10)0.0014 (8)0.0120 (9)0.0049 (8)
C120.0295 (8)0.0236 (8)0.0244 (8)0.0004 (8)0.0040 (7)0.0077 (7)
O130.0247 (6)0.0242 (6)0.0501 (8)0.0061 (5)0.0032 (6)0.0121 (6)
Geometric parameters (Å, º) top
C1—C21.526 (2)C8—O91.4340 (18)
C1—C51.537 (2)C8—C101.510 (2)
C1—O91.4303 (18)C8—C111.517 (2)
C1—C121.514 (2)C10—H1010.969
C2—C31.520 (2)C10—H1020.997
C2—O71.4100 (18)C10—H1030.974
C2—H210.987C11—H1110.983
C3—O41.339 (2)C11—H1120.989
C3—O61.204 (2)C11—H1130.991
O4—C51.456 (2)C12—O131.416 (2)
C5—H510.989C12—H1210.986
C5—H521.001C12—H1221.014
O7—C81.4383 (19)O13—H70.848
C2—C1—C5104.83 (13)O9—C8—C10108.45 (14)
C2—C1—O9104.04 (12)O7—C8—C11110.83 (14)
C5—C1—O9113.48 (13)O9—C8—C11110.88 (13)
C2—C1—C12114.30 (13)C10—C8—C11113.47 (15)
C5—C1—C12112.00 (13)C8—O9—C1108.91 (12)
O9—C1—C12108.03 (13)C8—C10—H101105.9
C1—C2—C3105.08 (13)C8—C10—H102105.9
C1—C2—O7106.48 (12)H101—C10—H102112.4
C3—C2—O7113.18 (14)C8—C10—H103105.2
C1—C2—H21111.0H101—C10—H103112.8
C3—C2—H21108.9H102—C10—H103113.8
O7—C2—H21112.0C8—C11—H111105.7
C2—C3—O4110.95 (14)C8—C11—H112110.4
C2—C3—O6127.09 (16)H111—C11—H112111.3
O4—C3—O6121.94 (16)C8—C11—H113109.4
C3—O4—C5111.77 (13)H111—C11—H113110.1
C1—C5—O4107.13 (13)H112—C11—H113109.8
C1—C5—H51110.9C1—C12—O13112.18 (14)
O4—C5—H51108.6C1—C12—H121108.8
C1—C5—H52107.9O13—C12—H121107.4
O4—C5—H52110.5C1—C12—H122109.2
H51—C5—H52111.6O13—C12—H122111.1
C2—O7—C8107.71 (11)H121—C12—H122108.0
O7—C8—O9104.67 (12)C12—O13—H7101.7
O7—C8—C10108.12 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H7···O6i0.852.052.802 (2)148
Symmetry code: (i) x1, y, z.
 

Acknowledgements

A generous gift of D-ribose from Dextra Laboratories Ltd, Reading, is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBooth, K. V., Best, D., Jenkinson, S. F. & Fleet, G. W. J. (2007). In preparation.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHo, P.-T. (1979). Can. J. Chem. 57, 381–383.  CrossRef CAS Web of Science Google Scholar
First citationKim, M. J., Jeong, L. S., Kim, J. H., Shin, J. H., Chung, S. Y., Lee, S. K. & Chun, M. W. (2004). Nucleosides Nucleotides Nucleic Acids, 23, 715–724.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMathé, C. & Gosselin, G. (2006). Antiviral Res. 71, 276–281.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPierra, C., Amador, A., Benzaria, S., Cretton-Scott, E., D'Amours, M., Mao, J., Mathieu, S., Moussa, A., Bridges, E. G., Standring, D. N., Sommadossi, J. P., Storer, R. & Gosselin, G. (2006). J. Med. Chem. 49, 6614–6620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSells, T. B. & Nair, V. (1992). Tetrahedron Lett. 33, 7639–7642.  CrossRef CAS Web of Science Google Scholar
First citationSorbera, L. A., Castaner, J. & Leeson, P. A. (2006). Drugs Future, 31, 320–324.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYun, M., Moon, H. R., Kim, H. O., Choi, W. J., Kim, Y. C., Park, C. S. & Jeong, L. S. (2005). Tetrahedron Lett. 46, 5903–5905.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds