organic compounds
2,3-O-Isopropylidene-L-apiono-1,4-lactone [(3S,4S)-3,4-dihydroxy-4-(hydroxymethyl)-3,4-di-O-isopropylidene-4,5-dihydrofuran-2(3H)-one]
aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk
The 8H12O5, was unequivocally established by X-ray crystallographic analysis; the was determined by the use of D-ribose as a starting material.
of the title compound, CComment
Branched 2-C-methyl are the most promising drug candidates for the treatment of hepatitis C (Sorbera et al., 2006; Pierra et al., 2006). There is interest in the activity of nucleoside analogues with substitutents at C-3 of the sugar that may be derived from D-apiose (1D) (Sells & Nair, 1992; Kim et al., 2004). L-Nucleoside analogues – the enantiomers of the naturally occurring – also produce novel antiviral agents (Mathé & Gosselin, 2006). A project to investigate derived from L-apiose (1L) may provide chemotherapeutic leads. The title lactone, (5), is a divergent intermediate of value in the synthesis of such compounds. The of (5) reported in this paper removes the ambiguity of the stereochemistry at C-3 of the lactone; the of (5) was determined by the use of D-ribose (2) as the starting material.
The isolated molecule of (5) (Fig. 1) shows no unusual features when compared with the Mogul norms (Bruno et al., 2004). The consists of isolated chains of molecules linked by a single hydrogen bond, parallel to the a axis (Fig. 2). There are no hydrogen bonds between the chains, leading to crystals which were not easily cut.
Experimental
The C-2 branched D-hamamelose, (3), prepared from D-ribose, (2) (Ho, 1979), was converted to the ketal of L-apiose, (4), as described previously by Yun et al. (2005). The lactol (4) was oxidized by bromine water (Booth et al., 2007) to the title compound, (5), which was crystallized from chloroform (m.p. 363 K). [α]D22 70 (c, 0.95 in chloroform).
Crystal data
|
Refinement
|
In the absence of significant ) by multi-scan interframe scaling (DENZO and SCALEPACK; Otwinowski & Minor, 1997).
Friedel pairs were merged and the assigned on the basis of the starting materials. The relatively large ratio of minimum to maximum corrections applied in the multi-scan process (1:1.51) reflects changes in the illuminated volume of the crystal. These were kept to a minimum, and were taken into account (Görbitz, 1999The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry, with C—H distances in the range 0.93–0.98 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2–1.5 times Ueq of the parent atom, after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536807004230/fl2098sup1.cif
contains datablocks global, 5. DOI:Structure factors: contains datablock 5. DOI: https://doi.org/10.1107/S1600536807004230/fl20985sup2.hkl
Data collection: COLLECT (Nonius, 2001); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C8H12O5 | Dx = 1.396 Mg m−3 |
Mr = 188.18 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1098 reflections |
a = 7.2075 (2) Å | θ = 5–27° |
b = 9.5645 (3) Å | µ = 0.12 mm−1 |
c = 12.9851 (5) Å | T = 150 K |
V = 895.14 (5) Å3 | Block, colourless |
Z = 4 | 0.70 × 0.50 × 0.30 mm |
F(000) = 400 |
Nonius KappaCCD area-detector diffractometer | 1106 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 27.5°, θmin = 5.1° |
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) | h = −9→9 |
Tmin = 0.74, Tmax = 0.97 | k = −12→12 |
4866 measured reflections | l = −16→16 |
1171 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.074 | w = 1/[σ2(F2) + (0.03P)2 + 0.32P], where P = [max(Fo2,0) + 2Fc2]/3 |
S = 0.96 | (Δ/σ)max = 0.000177 |
1171 reflections | Δρmax = 0.21 e Å−3 |
118 parameters | Δρmin = −0.22 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6074 (2) | 0.48960 (16) | 0.48591 (12) | 0.0181 | |
C2 | 0.7178 (2) | 0.56545 (17) | 0.40266 (11) | 0.0169 | |
C3 | 0.9198 (2) | 0.53234 (18) | 0.42587 (14) | 0.0241 | |
O4 | 0.93534 (18) | 0.45806 (14) | 0.51288 (10) | 0.0327 | |
C5 | 0.7547 (2) | 0.4199 (2) | 0.55445 (13) | 0.0276 | |
O6 | 1.05349 (18) | 0.56712 (16) | 0.37647 (11) | 0.0373 | |
O7 | 0.65718 (17) | 0.51103 (12) | 0.30752 (8) | 0.0206 | |
C8 | 0.5685 (3) | 0.37907 (17) | 0.32742 (11) | 0.0202 | |
O9 | 0.49615 (15) | 0.39187 (11) | 0.42987 (8) | 0.0183 | |
C10 | 0.4075 (3) | 0.3641 (2) | 0.25376 (13) | 0.0301 | |
C11 | 0.7071 (3) | 0.25999 (18) | 0.32074 (15) | 0.0322 | |
C12 | 0.4786 (2) | 0.58301 (18) | 0.54719 (13) | 0.0258 | |
O13 | 0.36494 (18) | 0.66645 (13) | 0.48294 (11) | 0.0330 | |
H21 | 0.6993 | 0.6675 | 0.4071 | 0.0196* | |
H51 | 0.7463 | 0.4545 | 0.6261 | 0.0308* | |
H52 | 0.7359 | 0.3164 | 0.5507 | 0.0312* | |
H101 | 0.3498 | 0.2754 | 0.2701 | 0.0464* | |
H102 | 0.3241 | 0.4451 | 0.2678 | 0.0467* | |
H103 | 0.4629 | 0.3654 | 0.1853 | 0.0453* | |
H111 | 0.6393 | 0.1759 | 0.3427 | 0.0526* | |
H112 | 0.8147 | 0.2783 | 0.3660 | 0.0521* | |
H113 | 0.7494 | 0.2495 | 0.2485 | 0.0522* | |
H121 | 0.5539 | 0.6468 | 0.5897 | 0.0324* | |
H122 | 0.4009 | 0.5232 | 0.5952 | 0.0323* | |
H7 | 0.2897 | 0.6064 | 0.4591 | 0.0509* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0217 (8) | 0.0155 (7) | 0.0170 (7) | −0.0018 (6) | −0.0011 (6) | −0.0018 (6) |
C2 | 0.0199 (7) | 0.0138 (6) | 0.0170 (7) | −0.0006 (6) | −0.0027 (6) | −0.0015 (6) |
C3 | 0.0218 (8) | 0.0211 (8) | 0.0296 (8) | 0.0001 (7) | −0.0036 (7) | −0.0023 (7) |
O4 | 0.0260 (6) | 0.0333 (7) | 0.0389 (7) | 0.0029 (6) | −0.0108 (6) | 0.0074 (6) |
C5 | 0.0338 (9) | 0.0268 (8) | 0.0222 (8) | −0.0001 (8) | −0.0058 (8) | 0.0050 (7) |
O6 | 0.0203 (6) | 0.0418 (8) | 0.0500 (8) | −0.0036 (6) | 0.0062 (6) | −0.0015 (7) |
O7 | 0.0305 (6) | 0.0160 (5) | 0.0151 (5) | −0.0079 (5) | −0.0019 (5) | 0.0001 (4) |
C8 | 0.0294 (8) | 0.0154 (7) | 0.0158 (7) | −0.0049 (7) | 0.0025 (7) | −0.0009 (6) |
O9 | 0.0238 (6) | 0.0153 (5) | 0.0159 (5) | −0.0047 (5) | 0.0020 (4) | −0.0027 (5) |
C10 | 0.0429 (11) | 0.0263 (9) | 0.0212 (8) | −0.0151 (9) | −0.0059 (8) | −0.0012 (7) |
C11 | 0.0422 (10) | 0.0192 (8) | 0.0352 (10) | 0.0014 (8) | 0.0120 (9) | −0.0049 (8) |
C12 | 0.0295 (8) | 0.0236 (8) | 0.0244 (8) | −0.0004 (8) | 0.0040 (7) | −0.0077 (7) |
O13 | 0.0247 (6) | 0.0242 (6) | 0.0501 (8) | 0.0061 (5) | −0.0032 (6) | −0.0121 (6) |
C1—C2 | 1.526 (2) | C8—O9 | 1.4340 (18) |
C1—C5 | 1.537 (2) | C8—C10 | 1.510 (2) |
C1—O9 | 1.4303 (18) | C8—C11 | 1.517 (2) |
C1—C12 | 1.514 (2) | C10—H101 | 0.969 |
C2—C3 | 1.520 (2) | C10—H102 | 0.997 |
C2—O7 | 1.4100 (18) | C10—H103 | 0.974 |
C2—H21 | 0.987 | C11—H111 | 0.983 |
C3—O4 | 1.339 (2) | C11—H112 | 0.989 |
C3—O6 | 1.204 (2) | C11—H113 | 0.991 |
O4—C5 | 1.456 (2) | C12—O13 | 1.416 (2) |
C5—H51 | 0.989 | C12—H121 | 0.986 |
C5—H52 | 1.001 | C12—H122 | 1.014 |
O7—C8 | 1.4383 (19) | O13—H7 | 0.848 |
C2—C1—C5 | 104.83 (13) | O9—C8—C10 | 108.45 (14) |
C2—C1—O9 | 104.04 (12) | O7—C8—C11 | 110.83 (14) |
C5—C1—O9 | 113.48 (13) | O9—C8—C11 | 110.88 (13) |
C2—C1—C12 | 114.30 (13) | C10—C8—C11 | 113.47 (15) |
C5—C1—C12 | 112.00 (13) | C8—O9—C1 | 108.91 (12) |
O9—C1—C12 | 108.03 (13) | C8—C10—H101 | 105.9 |
C1—C2—C3 | 105.08 (13) | C8—C10—H102 | 105.9 |
C1—C2—O7 | 106.48 (12) | H101—C10—H102 | 112.4 |
C3—C2—O7 | 113.18 (14) | C8—C10—H103 | 105.2 |
C1—C2—H21 | 111.0 | H101—C10—H103 | 112.8 |
C3—C2—H21 | 108.9 | H102—C10—H103 | 113.8 |
O7—C2—H21 | 112.0 | C8—C11—H111 | 105.7 |
C2—C3—O4 | 110.95 (14) | C8—C11—H112 | 110.4 |
C2—C3—O6 | 127.09 (16) | H111—C11—H112 | 111.3 |
O4—C3—O6 | 121.94 (16) | C8—C11—H113 | 109.4 |
C3—O4—C5 | 111.77 (13) | H111—C11—H113 | 110.1 |
C1—C5—O4 | 107.13 (13) | H112—C11—H113 | 109.8 |
C1—C5—H51 | 110.9 | C1—C12—O13 | 112.18 (14) |
O4—C5—H51 | 108.6 | C1—C12—H121 | 108.8 |
C1—C5—H52 | 107.9 | O13—C12—H121 | 107.4 |
O4—C5—H52 | 110.5 | C1—C12—H122 | 109.2 |
H51—C5—H52 | 111.6 | O13—C12—H122 | 111.1 |
C2—O7—C8 | 107.71 (11) | H121—C12—H122 | 108.0 |
O7—C8—O9 | 104.67 (12) | C12—O13—H7 | 101.7 |
O7—C8—C10 | 108.12 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H7···O6i | 0.85 | 2.05 | 2.802 (2) | 148 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
A generous gift of D-ribose from Dextra Laboratories Ltd, Reading, is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Booth, K. V., Best, D., Jenkinson, S. F. & Fleet, G. W. J. (2007). In preparation. Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ho, P.-T. (1979). Can. J. Chem. 57, 381–383. CrossRef CAS Web of Science Google Scholar
Kim, M. J., Jeong, L. S., Kim, J. H., Shin, J. H., Chung, S. Y., Lee, S. K. & Chun, M. W. (2004). Nucleosides Nucleotides Nucleic Acids, 23, 715–724. Web of Science CrossRef PubMed CAS Google Scholar
Mathé, C. & Gosselin, G. (2006). Antiviral Res. 71, 276–281. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pierra, C., Amador, A., Benzaria, S., Cretton-Scott, E., D'Amours, M., Mao, J., Mathieu, S., Moussa, A., Bridges, E. G., Standring, D. N., Sommadossi, J. P., Storer, R. & Gosselin, G. (2006). J. Med. Chem. 49, 6614–6620. Web of Science CrossRef PubMed CAS Google Scholar
Sells, T. B. & Nair, V. (1992). Tetrahedron Lett. 33, 7639–7642. CrossRef CAS Web of Science Google Scholar
Sorbera, L. A., Castaner, J. & Leeson, P. A. (2006). Drugs Future, 31, 320–324. Web of Science CrossRef CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Yun, M., Moon, H. R., Kim, H. O., Choi, W. J., Kim, Y. C., Park, C. S. & Jeong, L. S. (2005). Tetrahedron Lett. 46, 5903–5905. Web of Science CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.