organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-C-Methyl-D-allono-1,5-lactone

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: nigel.jones@chem.ox.ac.uk

(Received 11 January 2007; accepted 18 January 2007; online 31 January 2007)

The relative configuration and ring size of the title compound, C7H12O6, were established by X-ray crystallographic analysis. The absolute configuration was determined by the use of 2-C-methyl-D-ribonolactone as a starting material. Almost all unprotected carbohydrate lactones are five-membered ring 1,4-lactones; the title compound provides a very rare example of a stable six-membered ring lactone.

Comment

Although carbohydrates are the most varied of cheap chiral building blocks (Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65-90.]), only recently have the first examples of branched 2-C-methylpentoses become readily available by treatment of an Amadori ketose with aqueous calcium hydroxide (Hotchkiss et al., 2007[Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 517-520.]). The recognition of the value of a family of 2-C-methylnucleosides in the treatment of hepatitis C has led to current inter­est in the synthesis of 2-C-carbon-substituted sugars (Sorbera et al., 2006[Sorbera, L. A., Castaner, J. & Leeson, P. A. (2006). Drugs Future 31, 320-324.]). The Kiliani reaction of ketoses and deoxy­ketoses with cyanide has provided an environmentally friendly procedure for the generation of a set of carbohydrate scaffolds with a branched carbon substituent at C-2 (Hotchkiss et al., 2004[Hotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]; Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]). X-ray crystallographic analysis was vital in determining the structures of the products in these reactions (Punzo et al., 2006[Punzo, F., Watkin, D. J., Hotchkiss, D. & Fleet, G. W. J. (2006). Acta Cryst. E62, o98-o100.]; Watkin et al., 2005[Watkin, D. J., Parry, L. L., Hotchkiss, D. J., Eastwick-Field, V. & Fleet, G. W. J. (2005). Acta Cryst. E61, o3302-o3303.]). At present, free sugars and their lactones with a carbon branch at C-3 are essentially unknown. A 3-C-methyl­pentonolactone of unknown stereochemistry has been isolated from cigarette smoke (Schumacher et al., 1977[Schumacher, J. N., Green, C. R., Best, F. W. & Newell, M. P. (1977). J. Agric. Food Chem. 25, 310-320.]), 3-C-methyl-D-mannose (Kwon et al., 2004[Kwon, Y. T., Lee, Y. J., Lee, K. & Kim, K. S. (2004). Org. Lett. 6, 3901-3904.]) is one of the components of the tris­accharide repeating unit of the polysaccharide from Helicobacter pylori (Kocharova et al., 2000[Kocharova, N. A., Knirel, Y. A., Widmalm, G., Jansson, P. E. & Moran, A. P. (2000). Biochemistry, 39, 4755-4760.]) and 3-C-methyl-L-mannose is one of the sugars in a penta­saccharide hapten of the GPL of Mycobacterium avium serovar (Fekete et al., 2006[Fekete, A., Gyergyoi, K., Kover, K. E., Bajza, I. & Liptak, A. (2006). Carbohydr. Res. 341, 1312-1321.]).

[Scheme 1]

The value of the Kiliani reaction on 2-C-carbon-substituted carbohydrates in the synthesis of 3-C-hydroxy­methyl branched sugars (Parker et al., 2006[Parker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62, o3961-o3963.]; Simone et al., 2007[Simone, M. I., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. E63, o799-o801.]) and 3-C-methyl branched sugars (Bream et al., 2006[Bream, R., Watkin, D., Soengas, R., Eastwick-Field, V. & Fleet, G. W. J. (2006). Acta Cryst. E62, o977-o979.]) has been established. Under completely environmentally friendly aqueous conditions, the reaction of cyanide in water with 2-C-methyl-D-ribose, (2), derived from 2-C-methyl-D-ribonolactone, (1) (Hotchkiss et al., 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]), gave a major product which crystallized from the reaction mixture. X-ray crystallographic analysis shows (Fig. 1[link]) that the structure is the title compound, (4), removing ambiguities as to the stereochemistry at the new C-2 chiral centre and the ring size of the lactone. The minor product is most likely the five-membered ring altrono-lactone, (3). The strain in five-membered ring lactones is generally considerably less than in six-membered ring lactones (Luisa et al., 1990[Luisa, M., Pilcher, G., Yang, M. Y., Brown, J. M. & Conn, A. D. (1990). J. Chem. Thermodyn. 22, 885-891.]; Brown et al., 1989[Brown, J. M., Conn, A. D., Pilcher, G., Leitao, M. L. P. & Yang, M. Y. (1989). J. Chem. Soc. Chem. Commun. pp. 1817-1819.]). Compound (4) is thus a very rare example of the preferential formation of a six-membered ring lactone. Its C-2 isomer crystallizes as the 2-C-methyl-D-allono-1,4-lactone, (5), rather than the six-membered ring isomer, (6) (Harding et al., 2005[Harding, C. C., Watkin, D. J., Sawyer, N. K., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o1472-o1474.]). The absolute configuration of compound (4) was determined by the use of the D-sugar (1) as the starting material.

The isolated mol­ecule of (4) (Fig. 1[link]) shows no unusual bond lengths or angles, in spite of the strain mentioned above. The largest differences from the MOGUL norms (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) are C6—O7 (00.01 Å; MOGUL s.u. 0.02 Å) and C3—C5—O4 (5.0°; MOGUL s.u. 2.2°).

The crystal structure of (4) is composed of hydrogen-bonded sheets of mol­ecules lying parallel to the bc plane. Both the ketonic atom O8 and the hydroxyl atom O10 act as acceptors for two hydrogen bonds (Table 1[link] and Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (4), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radii.
[Figure 2]
Figure 2
A projection along the a axis of part of a hydrogen-bonded sheet of (I). There are no strong inter­actions between the sheets. Hydrogen bonds are shown as dotted lines.

Experimental

3-C-Methyl-D-allono-1,5-lactone, (4), was crystallized from a 3:1:1 mixture of ethyl acetate, methanol and cyclo­hexane. Analysis: m.p. 421–423 K; [α]D23 63.5 (c, 0.795 in MeOH).

Crystal data
  • C7H12O6

  • Mr = 192.17

  • Monoclinic, P 21

  • a = 5.6603 (2) Å

  • b = 8.0045 (2) Å

  • c = 9.3242 (3) Å

  • β = 103.1470 (13)°

  • V = 411.39 (2) Å3

  • Z = 2

  • Dx = 1.551 Mg m−3

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 150 K

  • Needle, colourless

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.75, Tmax = 1.0

  • 5511 measured reflections

  • 1000 independent reflections

  • 930 reflections with I > 2σ(I)

  • Rint = 0.050

  • θmax = 27.4°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 1.16

  • 1000 reflections

  • 118 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.02P)2 + 0.12P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H7⋯O8i 0.84 2.08 2.856 (2) 153
O7—H8⋯O8ii 0.85 2.06 2.832 (2) 152
O11—H12⋯O10iii 0.82 2.09 2.836 (2) 152
O12—H3⋯O10iv 0.83 2.07 2.901 (2) 173
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z]; (ii) [-x+2, y+{\script{1\over 2}}, -z]; (iii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iv) x, y+1, z.

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.33) reflects changes in the illuminated volume of the very thin needle-like crystal. These changes were kept to a minimum and were taken into account (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) by multiscan inter­frame scaling (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]).

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry, with C—H in the range 0.93–0.98 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2–1.5Ueq(parent atom), after which the positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 1997–2001[Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997–2001); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

3-C-Methyl-D-allono-1,5-lactone top
Crystal data top
C7H12O6F(000) = 204
Mr = 192.17Dx = 1.551 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 976 reflections
a = 5.6603 (2) Åθ = 5–27°
b = 8.0045 (2) ŵ = 0.14 mm1
c = 9.3242 (3) ÅT = 150 K
β = 103.1470 (13)°Plate, colourless
V = 411.39 (2) Å30.20 × 0.05 × 0.05 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.4°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.75, Tmax = 1.0k = 1010
5511 measured reflectionsl = 1212
1000 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(F2) + (0.02P)2 + 0.12P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.16(Δ/σ)max = 0.000084
1000 reflectionsΔρmax = 0.29 e Å3
118 parametersΔρmin = 0.26 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6617 (4)0.4808 (3)0.2422 (2)0.0134
C20.6307 (4)0.3130 (3)0.3137 (2)0.0144
C30.8396 (4)0.1948 (3)0.3069 (2)0.0144
O40.9188 (3)0.2017 (2)0.16759 (17)0.0190
C50.8645 (4)0.3256 (3)0.0704 (2)0.0144
C60.6588 (4)0.4432 (3)0.0802 (2)0.0139
O70.6577 (3)0.5857 (2)0.00803 (17)0.0179
O80.9762 (3)0.3333 (2)0.02633 (17)0.0206
C90.7731 (4)0.0148 (3)0.3243 (3)0.0177
O100.9679 (3)0.0981 (2)0.31742 (18)0.0192
O110.6110 (3)0.3279 (2)0.46166 (17)0.0194
O120.8962 (3)0.5429 (2)0.31334 (18)0.0169
C130.4618 (4)0.6024 (3)0.2552 (3)0.0182
H210.48220.26230.25670.0171*
H310.98190.22730.38680.0172*
H610.50780.38220.03970.0173*
H910.73310.00100.42050.0226*
H920.63070.01200.24490.0220*
H1310.48450.70250.20440.0266*
H1320.47450.62620.35880.0270*
H1330.30520.55190.20970.0273*
H70.99040.08310.23220.0289*
H80.79650.63090.01470.0280*
H120.73020.37860.50650.0306*
H30.90460.64680.31160.0251*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0109 (10)0.0127 (12)0.0165 (10)0.0016 (9)0.0027 (8)0.0021 (9)
C20.0183 (11)0.0133 (12)0.0128 (10)0.0013 (10)0.0060 (8)0.0008 (11)
C30.0192 (11)0.0143 (13)0.0113 (10)0.0001 (10)0.0071 (8)0.0015 (10)
O40.0272 (9)0.0143 (9)0.0187 (8)0.0060 (8)0.0120 (6)0.0038 (8)
C50.0178 (11)0.0119 (12)0.0134 (10)0.0017 (10)0.0031 (8)0.0016 (10)
C60.0161 (10)0.0110 (12)0.0145 (10)0.0006 (9)0.0037 (8)0.0023 (10)
O70.0180 (8)0.0153 (9)0.0201 (8)0.0007 (7)0.0034 (6)0.0066 (7)
O80.0257 (9)0.0199 (10)0.0199 (9)0.0030 (8)0.0127 (7)0.0022 (8)
C90.0210 (12)0.0134 (13)0.0190 (11)0.0010 (10)0.0054 (10)0.0014 (10)
O100.0285 (10)0.0130 (9)0.0170 (8)0.0045 (8)0.0068 (7)0.0022 (7)
O110.0235 (9)0.0215 (10)0.0154 (7)0.0034 (8)0.0092 (6)0.0007 (8)
O120.0170 (8)0.0113 (9)0.0208 (9)0.0030 (7)0.0012 (7)0.0006 (7)
C130.0188 (12)0.0145 (12)0.0224 (11)0.0021 (10)0.0070 (9)0.0007 (11)
Geometric parameters (Å, º) top
C1—C21.527 (3)C6—O71.405 (3)
C1—C61.536 (3)C6—H610.982
C1—O121.431 (3)O7—H80.847
C1—C131.518 (3)C9—O101.439 (3)
C2—C31.527 (3)C9—H910.980
C2—O111.415 (3)C9—H920.987
C2—H210.975O10—H70.842
C3—O41.469 (3)O11—H120.816
C3—C91.507 (3)O12—H30.833
C3—H310.999C13—H1310.954
O4—C51.332 (3)C13—H1320.972
C5—C61.516 (3)C13—H1330.979
C5—O81.215 (3)
C2—C1—C6106.28 (19)C1—C6—C5110.15 (18)
C2—C1—O12106.85 (19)C1—C6—O7114.48 (19)
C6—C1—O12108.97 (17)C5—C6—O7111.67 (17)
C2—C1—C13111.55 (18)C1—C6—H61106.8
C6—C1—C13111.25 (18)C5—C6—H61106.3
O12—C1—C13111.7 (2)O7—C6—H61106.9
C1—C2—C3111.12 (18)C6—O7—H8108.7
C1—C2—O11113.2 (2)C3—C9—O10112.54 (19)
C3—C2—O11109.01 (18)C3—C9—H91108.8
C1—C2—H21107.4O10—C9—H91108.0
C3—C2—H21107.4C3—C9—H92108.0
O11—C2—H21108.5O10—C9—H92109.5
C2—C3—O4114.06 (18)H91—C9—H92110.1
C2—C3—C9111.93 (18)C9—O10—H7103.6
O4—C3—C9105.38 (18)C2—O11—H12107.6
C2—C3—H31108.0C1—O12—H3112.9
O4—C3—H31107.0C1—C13—H131108.2
C9—C3—H31110.3C1—C13—H132108.5
C3—O4—C5124.10 (18)H131—C13—H132109.9
O4—C5—C6118.87 (18)C1—C13—H133108.6
O4—C5—O8117.6 (2)H131—C13—H133110.0
C6—C5—O8123.4 (2)H132—C13—H133111.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H7···O8i0.842.082.856 (2)153
O7—H8···O8ii0.852.062.832 (2)152
O11—H12···O10iii0.822.092.836 (2)152
O12—H3···O10iv0.832.072.901 (2)173
Symmetry codes: (i) x+2, y1/2, z; (ii) x+2, y+1/2, z; (iii) x+2, y+1/2, z+1; (iv) x, y+1, z.
 

Acknowledgements

The generous gift of 2-C-methyl-D-ribonolactone from Novartis Pharma AG, Basel, is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBream, R., Watkin, D., Soengas, R., Eastwick-Field, V. & Fleet, G. W. J. (2006). Acta Cryst. E62, o977–o979.  CSD CrossRef IUCr Journals Google Scholar
First citationBrown, J. M., Conn, A. D., Pilcher, G., Leitao, M. L. P. & Yang, M. Y. (1989). J. Chem. Soc. Chem. Commun. pp. 1817–1819.  CrossRef Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFekete, A., Gyergyoi, K., Kover, K. E., Bajza, I. & Liptak, A. (2006). Carbohydr. Res. 341, 1312–1321.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarding, C. C., Watkin, D. J., Sawyer, N. K., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o1472–o1474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 517–520.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationKocharova, N. A., Knirel, Y. A., Widmalm, G., Jansson, P. E. & Moran, A. P. (2000). Biochemistry, 39, 4755–4760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKwon, Y. T., Lee, Y. J., Lee, K. & Kim, K. S. (2004). Org. Lett. 6, 3901–3904.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90.  Web of Science CrossRef CAS Google Scholar
First citationLuisa, M., Pilcher, G., Yang, M. Y., Brown, J. M. & Conn, A. D. (1990). J. Chem. Thermodyn. 22, 885–891.  CrossRef Google Scholar
First citationNonius (1997–2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62, o3961–o3963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPunzo, F., Watkin, D. J., Hotchkiss, D. & Fleet, G. W. J. (2006). Acta Cryst. E62, o98–o100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchumacher, J. N., Green, C. R., Best, F. W. & Newell, M. P. (1977). J. Agric. Food Chem. 25, 310–320.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSimone, M. I., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. E63, o799–o801.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationSorbera, L. A., Castaner, J. & Leeson, P. A. (2006). Drugs Future 31, 320–324.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Parry, L. L., Hotchkiss, D. J., Eastwick-Field, V. & Fleet, G. W. J. (2005). Acta Cryst. E61, o3302–o3303.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds