organic compounds
3-C-Methyl-D-allono-1,5-lactone
aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: nigel.jones@chem.ox.ac.uk
The 7H12O6, were established by X-ray crystallographic analysis. The was determined by the use of 2-C-methyl-D-ribonolactone as a starting material. Almost all unprotected carbohydrate are five-membered ring 1,4-lactones; the title compound provides a very rare example of a stable six-membered ring lactone.
and ring size of the title compound, CComment
Although ), only recently have the first examples of branched 2-C-methylpentoses become readily available by treatment of an Amadori ketose with aqueous calcium hydroxide (Hotchkiss et al., 2007). The recognition of the value of a family of 2-C-methylnucleosides in the treatment of hepatitis C has led to current interest in the synthesis of 2-C-carbon-substituted sugars (Sorbera et al., 2006). The Kiliani reaction of and deoxyketoses with cyanide has provided an environmentally friendly procedure for the generation of a set of carbohydrate scaffolds with a branched carbon substituent at C-2 (Hotchkiss et al., 2004; Soengas et al., 2005). X-ray crystallographic analysis was vital in determining the structures of the products in these reactions (Punzo et al., 2006; Watkin et al., 2005). At present, free sugars and their with a carbon branch at C-3 are essentially unknown. A 3-C-methylpentonolactone of unknown stereochemistry has been isolated from cigarette smoke (Schumacher et al., 1977), 3-C-methyl-D-mannose (Kwon et al., 2004) is one of the components of the trisaccharide repeating unit of the polysaccharide from Helicobacter pylori (Kocharova et al., 2000) and 3-C-methyl-L-mannose is one of the sugars in a pentasaccharide hapten of the GPL of Mycobacterium avium serovar (Fekete et al., 2006).
are the most varied of cheap chiral building blocks (Lichtenthaler & Peters, 2004The value of the Kiliani reaction on 2-C-carbon-substituted C-hydroxymethyl branched sugars (Parker et al., 2006; Simone et al., 2007) and 3-C-methyl branched sugars (Bream et al., 2006) has been established. Under completely environmentally friendly aqueous conditions, the reaction of cyanide in water with 2-C-methyl-D-ribose, (2), derived from 2-C-methyl-D-ribonolactone, (1) (Hotchkiss et al., 2006), gave a major product which crystallized from the reaction mixture. X-ray crystallographic analysis shows (Fig. 1) that the structure is the title compound, (4), removing ambiguities as to the stereochemistry at the new C-2 chiral centre and the ring size of the lactone. The minor product is most likely the five-membered ring altrono-lactone, (3). The strain in five-membered ring is generally considerably less than in six-membered ring (Luisa et al., 1990; Brown et al., 1989). Compound (4) is thus a very rare example of the preferential formation of a six-membered ring lactone. Its C-2 isomer crystallizes as the 2-C-methyl-D-allono-1,4-lactone, (5), rather than the six-membered ring isomer, (6) (Harding et al., 2005). The of compound (4) was determined by the use of the D-sugar (1) as the starting material.
in the synthesis of 3-The isolated molecule of (4) (Fig. 1) shows no unusual bond lengths or angles, in spite of the strain mentioned above. The largest differences from the MOGUL norms (Bruno et al., 2004) are C6—O7 (00.01 Å; MOGUL s.u. 0.02 Å) and C3—C5—O4 (5.0°; MOGUL s.u. 2.2°).
The bc plane. Both the ketonic atom O8 and the hydroxyl atom O10 act as acceptors for two hydrogen bonds (Table 1 and Fig. 2).
of (4) is composed of hydrogen-bonded sheets of molecules lying parallel to theExperimental
3-C-Methyl-D-allono-1,5-lactone, (4), was crystallized from a 3:1:1 mixture of ethyl acetate, methanol and cyclohexane. Analysis: m.p. 421–423 K; [α]D23 63.5 (c, 0.795 in MeOH).
Crystal data
|
Refinement
|
In the absence of significant
Friedel pairs were merged and the assigned from the starting material.The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.33) reflects changes in the illuminated volume of the very thin needle-like crystal. These changes were kept to a minimum and were taken into account (Görbitz, 1999) by multiscan interframe scaling (DENZO and SCALEPACK; Otwinowski & Minor, 1997).
The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry, with C—H in the range 0.93–0.98 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2–1.5Ueq(parent atom), after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 1997–2001); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536807002899/lh2287sup1.cif
contains datablocks global, 4. DOI:Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S1600536807002899/lh22874sup2.hkl
Data collection: COLLECT (Nonius, 1997–2001); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C7H12O6 | F(000) = 204 |
Mr = 192.17 | Dx = 1.551 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 976 reflections |
a = 5.6603 (2) Å | θ = 5–27° |
b = 8.0045 (2) Å | µ = 0.14 mm−1 |
c = 9.3242 (3) Å | T = 150 K |
β = 103.1470 (13)° | Plate, colourless |
V = 411.39 (2) Å3 | 0.20 × 0.05 × 0.05 mm |
Z = 2 |
Nonius KappaCCD area-detector diffractometer | 930 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω scans | θmax = 27.4°, θmin = 5.1° |
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) | h = −7→7 |
Tmin = 0.75, Tmax = 1.0 | k = −10→10 |
5511 measured reflections | l = −12→12 |
1000 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(F2) + (0.02P)2 + 0.12P] where P = [max(Fo2,0) + 2Fc2]/3 |
S = 1.16 | (Δ/σ)max = 0.000084 |
1000 reflections | Δρmax = 0.29 e Å−3 |
118 parameters | Δρmin = −0.26 e Å−3 |
1 restraint |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6617 (4) | 0.4808 (3) | 0.2422 (2) | 0.0134 | |
C2 | 0.6307 (4) | 0.3130 (3) | 0.3137 (2) | 0.0144 | |
C3 | 0.8396 (4) | 0.1948 (3) | 0.3069 (2) | 0.0144 | |
O4 | 0.9188 (3) | 0.2017 (2) | 0.16759 (17) | 0.0190 | |
C5 | 0.8645 (4) | 0.3256 (3) | 0.0704 (2) | 0.0144 | |
C6 | 0.6588 (4) | 0.4432 (3) | 0.0802 (2) | 0.0139 | |
O7 | 0.6577 (3) | 0.5857 (2) | −0.00803 (17) | 0.0179 | |
O8 | 0.9762 (3) | 0.3333 (2) | −0.02633 (17) | 0.0206 | |
C9 | 0.7731 (4) | 0.0148 (3) | 0.3243 (3) | 0.0177 | |
O10 | 0.9679 (3) | −0.0981 (2) | 0.31742 (18) | 0.0192 | |
O11 | 0.6110 (3) | 0.3279 (2) | 0.46166 (17) | 0.0194 | |
O12 | 0.8962 (3) | 0.5429 (2) | 0.31334 (18) | 0.0169 | |
C13 | 0.4618 (4) | 0.6024 (3) | 0.2552 (3) | 0.0182 | |
H21 | 0.4822 | 0.2623 | 0.2567 | 0.0171* | |
H31 | 0.9819 | 0.2273 | 0.3868 | 0.0172* | |
H61 | 0.5078 | 0.3822 | 0.0397 | 0.0173* | |
H91 | 0.7331 | 0.0010 | 0.4205 | 0.0226* | |
H92 | 0.6307 | −0.0120 | 0.2449 | 0.0220* | |
H131 | 0.4845 | 0.7025 | 0.2044 | 0.0266* | |
H132 | 0.4745 | 0.6262 | 0.3588 | 0.0270* | |
H133 | 0.3052 | 0.5519 | 0.2097 | 0.0273* | |
H7 | 0.9904 | −0.0831 | 0.2322 | 0.0289* | |
H8 | 0.7965 | 0.6309 | 0.0147 | 0.0280* | |
H12 | 0.7302 | 0.3786 | 0.5065 | 0.0306* | |
H3 | 0.9046 | 0.6468 | 0.3116 | 0.0251* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0109 (10) | 0.0127 (12) | 0.0165 (10) | −0.0016 (9) | 0.0027 (8) | −0.0021 (9) |
C2 | 0.0183 (11) | 0.0133 (12) | 0.0128 (10) | −0.0013 (10) | 0.0060 (8) | 0.0008 (11) |
C3 | 0.0192 (11) | 0.0143 (13) | 0.0113 (10) | 0.0001 (10) | 0.0071 (8) | 0.0015 (10) |
O4 | 0.0272 (9) | 0.0143 (9) | 0.0187 (8) | 0.0060 (8) | 0.0120 (6) | 0.0038 (8) |
C5 | 0.0178 (11) | 0.0119 (12) | 0.0134 (10) | −0.0017 (10) | 0.0031 (8) | −0.0016 (10) |
C6 | 0.0161 (10) | 0.0110 (12) | 0.0145 (10) | −0.0006 (9) | 0.0037 (8) | 0.0023 (10) |
O7 | 0.0180 (8) | 0.0153 (9) | 0.0201 (8) | −0.0007 (7) | 0.0034 (6) | 0.0066 (7) |
O8 | 0.0257 (9) | 0.0199 (10) | 0.0199 (9) | 0.0030 (8) | 0.0127 (7) | 0.0022 (8) |
C9 | 0.0210 (12) | 0.0134 (13) | 0.0190 (11) | 0.0010 (10) | 0.0054 (10) | 0.0014 (10) |
O10 | 0.0285 (10) | 0.0130 (9) | 0.0170 (8) | 0.0045 (8) | 0.0068 (7) | 0.0022 (7) |
O11 | 0.0235 (9) | 0.0215 (10) | 0.0154 (7) | −0.0034 (8) | 0.0092 (6) | −0.0007 (8) |
O12 | 0.0170 (8) | 0.0113 (9) | 0.0208 (9) | −0.0030 (7) | 0.0012 (7) | −0.0006 (7) |
C13 | 0.0188 (12) | 0.0145 (12) | 0.0224 (11) | 0.0021 (10) | 0.0070 (9) | −0.0007 (11) |
C1—C2 | 1.527 (3) | C6—O7 | 1.405 (3) |
C1—C6 | 1.536 (3) | C6—H61 | 0.982 |
C1—O12 | 1.431 (3) | O7—H8 | 0.847 |
C1—C13 | 1.518 (3) | C9—O10 | 1.439 (3) |
C2—C3 | 1.527 (3) | C9—H91 | 0.980 |
C2—O11 | 1.415 (3) | C9—H92 | 0.987 |
C2—H21 | 0.975 | O10—H7 | 0.842 |
C3—O4 | 1.469 (3) | O11—H12 | 0.816 |
C3—C9 | 1.507 (3) | O12—H3 | 0.833 |
C3—H31 | 0.999 | C13—H131 | 0.954 |
O4—C5 | 1.332 (3) | C13—H132 | 0.972 |
C5—C6 | 1.516 (3) | C13—H133 | 0.979 |
C5—O8 | 1.215 (3) | ||
C2—C1—C6 | 106.28 (19) | C1—C6—C5 | 110.15 (18) |
C2—C1—O12 | 106.85 (19) | C1—C6—O7 | 114.48 (19) |
C6—C1—O12 | 108.97 (17) | C5—C6—O7 | 111.67 (17) |
C2—C1—C13 | 111.55 (18) | C1—C6—H61 | 106.8 |
C6—C1—C13 | 111.25 (18) | C5—C6—H61 | 106.3 |
O12—C1—C13 | 111.7 (2) | O7—C6—H61 | 106.9 |
C1—C2—C3 | 111.12 (18) | C6—O7—H8 | 108.7 |
C1—C2—O11 | 113.2 (2) | C3—C9—O10 | 112.54 (19) |
C3—C2—O11 | 109.01 (18) | C3—C9—H91 | 108.8 |
C1—C2—H21 | 107.4 | O10—C9—H91 | 108.0 |
C3—C2—H21 | 107.4 | C3—C9—H92 | 108.0 |
O11—C2—H21 | 108.5 | O10—C9—H92 | 109.5 |
C2—C3—O4 | 114.06 (18) | H91—C9—H92 | 110.1 |
C2—C3—C9 | 111.93 (18) | C9—O10—H7 | 103.6 |
O4—C3—C9 | 105.38 (18) | C2—O11—H12 | 107.6 |
C2—C3—H31 | 108.0 | C1—O12—H3 | 112.9 |
O4—C3—H31 | 107.0 | C1—C13—H131 | 108.2 |
C9—C3—H31 | 110.3 | C1—C13—H132 | 108.5 |
C3—O4—C5 | 124.10 (18) | H131—C13—H132 | 109.9 |
O4—C5—C6 | 118.87 (18) | C1—C13—H133 | 108.6 |
O4—C5—O8 | 117.6 (2) | H131—C13—H133 | 110.0 |
C6—C5—O8 | 123.4 (2) | H132—C13—H133 | 111.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H7···O8i | 0.84 | 2.08 | 2.856 (2) | 153 |
O7—H8···O8ii | 0.85 | 2.06 | 2.832 (2) | 152 |
O11—H12···O10iii | 0.82 | 2.09 | 2.836 (2) | 152 |
O12—H3···O10iv | 0.83 | 2.07 | 2.901 (2) | 173 |
Symmetry codes: (i) −x+2, y−1/2, −z; (ii) −x+2, y+1/2, −z; (iii) −x+2, y+1/2, −z+1; (iv) x, y+1, z. |
Acknowledgements
The generous gift of 2-C-methyl-D-ribonolactone from Novartis Pharma AG, Basel, is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bream, R., Watkin, D., Soengas, R., Eastwick-Field, V. & Fleet, G. W. J. (2006). Acta Cryst. E62, o977–o979. CSD CrossRef IUCr Journals Google Scholar
Brown, J. M., Conn, A. D., Pilcher, G., Leitao, M. L. P. & Yang, M. Y. (1989). J. Chem. Soc. Chem. Commun. pp. 1817–1819. CrossRef Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fekete, A., Gyergyoi, K., Kover, K. E., Bajza, I. & Liptak, A. (2006). Carbohydr. Res. 341, 1312–1321. Web of Science CrossRef PubMed CAS Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harding, C. C., Watkin, D. J., Sawyer, N. K., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o1472–o1474. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318. Web of Science CrossRef CAS Google Scholar
Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 517–520. Web of Science CrossRef CAS Google Scholar
Hotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464. Web of Science CrossRef CAS Google Scholar
Kocharova, N. A., Knirel, Y. A., Widmalm, G., Jansson, P. E. & Moran, A. P. (2000). Biochemistry, 39, 4755–4760. Web of Science CrossRef PubMed CAS Google Scholar
Kwon, Y. T., Lee, Y. J., Lee, K. & Kim, K. S. (2004). Org. Lett. 6, 3901–3904. Web of Science CrossRef PubMed CAS Google Scholar
Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90. Web of Science CrossRef CAS Google Scholar
Luisa, M., Pilcher, G., Yang, M. Y., Brown, J. M. & Conn, A. D. (1990). J. Chem. Thermodyn. 22, 885–891. CrossRef Google Scholar
Nonius (1997–2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62, o3961–o3963. Web of Science CSD CrossRef IUCr Journals Google Scholar
Punzo, F., Watkin, D. J., Hotchkiss, D. & Fleet, G. W. J. (2006). Acta Cryst. E62, o98–o100. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schumacher, J. N., Green, C. R., Best, F. W. & Newell, M. P. (1977). J. Agric. Food Chem. 25, 310–320. CrossRef CAS PubMed Web of Science Google Scholar
Simone, M. I., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. E63, o799–o801. Web of Science CSD CrossRef IUCr Journals Google Scholar
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759. Web of Science CrossRef CAS Google Scholar
Sorbera, L. A., Castaner, J. & Leeson, P. A. (2006). Drugs Future 31, 320–324. Web of Science CrossRef CAS Google Scholar
Watkin, D. J., Parry, L. L., Hotchkiss, D. J., Eastwick-Field, V. & Fleet, G. W. J. (2005). Acta Cryst. E61, o3302–o3303. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.