organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­methyl-3,4-O-iso­propyl­­idene-L-arabinono-1,5-lactone

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Chrystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: victoria.booth@chem.ox.ac.uk

(Received 26 January 2007; accepted 29 January 2007; online 7 February 2007)

The relative configuration at C-2 of 2,4-dimethyl-3,4-O-isopropyl­idene-L-arabinono lactone, C10H16O5, which exists in the boat form, was unequivocally established by X-ray crystallographic analysis. The absolute configuration was determined by the use of 2-C-methyl-D-ribonolactone as a starting material.

Comment

Rare and new monosaccharides have potential both as healthy dietary alternatives (Sun et al., 2007[Sun, Y. X., Hayakawa, S., Ogawa, M. & Izumori, K. (2007). Food Contr. 18, 220-227.]; Skytte, 2002[Skytte, U. P. (2002). Cereal Foods World, 47, 224.]) and for specific chemotherapeutic uses (Nakajima et al., 2004[Nakajima, Y., Gotanda, T., Uchimiya, H., Furukawa, T., Haraguchi, M., Ikeda, R., Sumizawa, T., Yoshida, H. & Akiyama, S. (2004). Cancer Res. 64, 1794-1801.]; Menavuvu et al., 2006[Menavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granstrom, T. B., Takada, G. & Izumori, K. J. (2006). Biosci. Bioeng. 101, 340-345.]; Hossain et al., 2006[Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. J. (2006). Biosci. Bioeng. 101, 369-371.]). Branched 2-C-methyl pentoses have become readily available by treatment of an Amadori ketose with aqueous calcium hydroxide (Hotchkiss et al., 2007[Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 517-520.]) and are key inter­mediates in the synthesis of 2-C-methyl nucleosides, a new class of drugs for the treatment of hepatitis C (Sorbera et al., 2006[Sorbera, L. A., Castaner, J. & Leeson, P. A. (2006). Drugs Future, 31, 320-324.]). Carbohydrates with a branch at C-2 may also be accessed by the reaction of ketoses and deoxy­ketoses with cyanide (Hotchkiss et al., 2004[Hotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]; Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]). In contrast, there have been no biological studies on unprotected monosaccharides with more than one carbon branch.

[Scheme 1]

The protected lactone (4)[link] is a key inter­mediate in the synthesis of monosaccharides with two C-methyl branches (Booth et al., 2007[Booth, V. K., Best, D., Jenkinson, S. F. & Fleet, G. W. J. (2007). In preparation.]). 2-C-Methyl-D-ribonolactone, (1)[link], prepared by the green environmentally friendly aqueous isomerization of D-glucose (Hotchkiss et al., 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]), may be converted to the 3-C-methyl-L-erythronolactone (2)[link] as previously described (Barrett & Dhanak, 1987[Barrett, A. G. M. & Dhanak, D. (1987). Tetrahedron Lett. 28, 3327-3330.]; Barrett et al., 1989[Barrett, A. G. M., Bezuidenhoudt, B. C. B., Dhanak, D., Gasiecki, A. F., Howell, A. R., Lee, A. C. & Russell, M. A. (1989). J. Org. Chem. 54, 3321-3324.]). Sequential treatment of (2) with methyl magnesium bromide followed by aqueous cyanide leads to the isolation of a major crystalline product which has a new stereogenic centre, which could be either the epimeric ribo- (3)[link] or arabino-lactone (4)[link]. X-ray crystallographic analysis resolved the ambiguity at C-2 and unequivocally established the relative stereochemistry as the arabinono-1,5-lactone (4), which exists in a boat form; the absolute configuration of (4) is determined by the use of 2-C-methyl-D-ribonolactone (1) as the starting material.

The mol­ecular structure of (4) is shown in Fig. 1[link]. The mol­ecular geometry contains no unusual features. The largest differences from the Mogul norms (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) are C2—O3 (0.02 Å, Mogul s.u. 0.01 Å) and C3—C9—O8 (3.4 Å, Mogul s.u. 1.9°). The crystal structure consists of broad ribbons of hydrogen-bonded mol­ecules lying with the plane of the ribbon perpendicular to b, and the length of the ribbon lying along a (Fig. 2[link]). The hydrogen bonds form the backbone of the ribbon, with the individual mol­ecules lying alternately on either side. The backbone of each ribbon lies above and parallel to the inter­face between two ribbons in the adjacent layers.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2]
Figure 2
Part of the hydrogen-bonded (dotted lines) ribbon lying parallel to a. The image has been rotated about c (out of the plane of the ribbon) to clarify the hydrogen-bonding chain. The mol­ecule corresponding to the published coordinates does not form any hydrogen bonds within the natural unit cell. [Symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (ii) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (iii) −x + [{3\over 2}], −y + 1, z + [{1\over 2}].]

Experimental

2,4-Dimethyl-3,4-O-isopropyl­idene-L-arabinono lactone (4) was crystallized from a mix of ethyl acetate and cyclohexane by vapour diffusion: m.p. 385–391 K; [α]D23 +131 (c, 1.5 in chloro­form)

Crystal data
  • C10H16O5

  • Mr = 216.23

  • Orthorhombic, P 21 21 21

  • a = 6.3457 (2) Å

  • b = 12.0530 (4) Å

  • c = 14.1034 (5) Å

  • V = 1078.69 (6) Å3

  • Z = 4

  • Dx = 1.331 Mg m−3

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • Plate, colourless

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.82, Tmax = 0.98

  • 6458 measured reflections

  • 1421 independent reflections

  • 1301 reflections with I > 2σ(I)

  • Rint = 0.051

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 0.86

  • 1421 reflections

  • 136 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.07P)2 + 0.5P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1⋯O7iv 0.88 1.99 2.870 (2) 178
Symmetry code: (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material. The relatively large ratio of minimum to maximum corrections applied in the multi-scan process (1:1.2) reflects effects in addition to absorption, possibly connected with the flake-like aspect of the sample. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) by the multi-scan inter-frame scaling (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]).

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2,4-Dimethyl-3,4-O-isopropylidene-L-arabinono lactone top
Crystal data top
C10H16O5F(000) = 464
Mr = 216.23Dx = 1.331 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1339 reflections
a = 6.3457 (2) Åθ = 5–27°
b = 12.0530 (4) ŵ = 0.11 mm1
c = 14.1034 (5) ÅT = 150 K
V = 1078.69 (6) Å3Plate, colourless
Z = 40.40 × 0.40 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 5.3°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 88
Tmin = 0.82, Tmax = 0.98k = 1515
6458 measured reflectionsl = 1818
1421 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(F2) + (0.07P)2 + 0.5P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.86(Δ/σ)max = 0.000299
1421 reflectionsΔρmax = 0.26 e Å3
136 parametersΔρmin = 0.18 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2418 (3)0.83400 (16)0.29155 (13)0.0226
C20.1810 (3)0.73928 (16)0.22279 (13)0.0215
C30.3015 (3)0.74232 (16)0.12915 (13)0.0209
C40.5380 (3)0.74540 (17)0.15287 (14)0.0234
O50.5983 (2)0.81516 (14)0.22116 (11)0.0313
C60.4429 (4)0.89114 (18)0.26103 (16)0.0299
O70.6698 (2)0.68862 (15)0.11399 (10)0.0312
O80.2491 (3)0.84518 (11)0.08425 (10)0.0283
C90.2504 (4)0.64316 (17)0.06758 (14)0.0253
O100.2439 (2)0.64042 (11)0.27115 (9)0.0235
C110.2262 (4)0.66333 (16)0.37041 (14)0.0279
O120.2837 (3)0.77729 (11)0.37897 (9)0.0289
C130.0003 (5)0.6445 (2)0.40394 (18)0.0429
C140.3840 (5)0.5936 (2)0.42241 (15)0.0407
C150.0713 (4)0.92003 (18)0.30548 (17)0.0333
H210.02870.73940.20850.0263*
H610.50880.92950.31660.0383*
H620.40790.94670.20840.0377*
H910.34020.64740.00960.0402*
H920.10330.64420.04750.0414*
H930.28310.57620.10550.0416*
H1310.00880.66290.47330.0662*
H1320.09280.69400.36410.0656*
H1330.03430.56550.39200.0667*
H1410.37840.60880.49140.0584*
H1420.52340.61190.39690.0597*
H1430.35350.51570.41000.0591*
H1510.12100.97980.34450.0480*
H1520.03860.95220.24460.0501*
H1530.05640.88590.33130.0484*
H10.22350.83630.02340.0405*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (10)0.0237 (9)0.0169 (8)0.0009 (9)0.0020 (8)0.0002 (7)
C20.0211 (9)0.0243 (9)0.0189 (9)0.0011 (8)0.0007 (7)0.0011 (7)
C30.0226 (9)0.0223 (9)0.0176 (8)0.0006 (8)0.0016 (7)0.0009 (7)
C40.0242 (9)0.0309 (10)0.0152 (8)0.0017 (9)0.0010 (8)0.0048 (8)
O50.0234 (7)0.0404 (8)0.0301 (8)0.0062 (7)0.0002 (7)0.0081 (7)
C60.0332 (12)0.0278 (10)0.0287 (11)0.0059 (9)0.0009 (10)0.0062 (9)
O70.0249 (7)0.0461 (9)0.0226 (7)0.0056 (7)0.0034 (6)0.0007 (7)
O80.0378 (9)0.0276 (7)0.0195 (7)0.0021 (7)0.0042 (6)0.0031 (5)
C90.0280 (10)0.0290 (9)0.0190 (8)0.0017 (10)0.0025 (8)0.0035 (7)
O100.0317 (8)0.0217 (6)0.0171 (6)0.0023 (7)0.0037 (6)0.0005 (5)
C110.0430 (12)0.0232 (9)0.0176 (9)0.0003 (10)0.0063 (9)0.0023 (7)
O120.0458 (9)0.0237 (7)0.0172 (7)0.0011 (7)0.0037 (7)0.0004 (5)
C130.0550 (16)0.0391 (13)0.0345 (13)0.0082 (12)0.0226 (12)0.0031 (11)
C140.0671 (18)0.0324 (11)0.0226 (10)0.0087 (12)0.0016 (11)0.0031 (9)
C150.0399 (13)0.0294 (10)0.0307 (11)0.0070 (10)0.0012 (10)0.0042 (9)
Geometric parameters (Å, º) top
C1—C21.547 (3)C9—H910.998
C1—C61.513 (3)C9—H920.975
C1—O121.435 (2)C9—H930.990
C1—C151.511 (3)O10—C111.431 (2)
C2—C31.526 (3)C11—O121.426 (2)
C2—O101.430 (2)C11—C131.526 (3)
C2—H210.987C11—C141.499 (3)
C3—C41.538 (3)C13—H1311.005
C3—O81.431 (2)C13—H1321.010
C3—C91.512 (3)C13—H1330.992
C4—O51.335 (3)C14—H1410.991
C4—O71.212 (3)C14—H1420.980
O5—C61.459 (3)C14—H1430.974
C6—H611.002C15—H1510.960
C6—H621.025C15—H1520.965
O8—H10.880C15—H1530.979
C2—C1—C6111.59 (16)H91—C9—H92107.9
C2—C1—O12103.50 (14)C3—C9—H93106.8
C6—C1—O12107.74 (17)H91—C9—H93111.4
C2—C1—C15114.17 (18)H92—C9—H93111.6
C6—C1—C15109.17 (17)C2—O10—C11106.50 (14)
O12—C1—C15110.37 (16)O10—C11—O12104.39 (15)
C1—C2—C3113.57 (16)O10—C11—C13110.36 (19)
C1—C2—O10104.26 (14)O12—C11—C13110.94 (19)
C3—C2—O10107.03 (15)O10—C11—C14108.53 (17)
C1—C2—H21111.8O12—C11—C14109.1 (2)
C3—C2—H21108.3C13—C11—C14113.12 (19)
O10—C2—H21111.9C1—O12—C11109.79 (15)
C2—C3—C4107.53 (16)C11—C13—H131108.8
C2—C3—O8106.69 (15)C11—C13—H132106.8
C4—C3—O8107.58 (16)H131—C13—H132112.2
C2—C3—C9111.74 (16)C11—C13—H133107.3
C4—C3—C9110.67 (17)H131—C13—H133111.4
O8—C3—C9112.38 (15)H132—C13—H133110.1
C3—C4—O5116.88 (18)C11—C14—H141110.7
C3—C4—O7124.15 (19)C11—C14—H142107.3
O5—C4—O7118.97 (19)H141—C14—H142110.6
C4—O5—C6118.67 (16)C11—C14—H143108.6
C1—C6—O5113.22 (16)H141—C14—H143110.3
C1—C6—H61109.9H142—C14—H143109.3
O5—C6—H61108.0C1—C15—H151110.7
C1—C6—H62108.7C1—C15—H152108.3
O5—C6—H62106.1H151—C15—H152106.3
H61—C6—H62110.9C1—C15—H153110.7
C3—O8—H1111.6H151—C15—H153111.9
C3—C9—H91107.9H152—C15—H153108.8
C3—C9—H92111.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1···O7i0.881.992.870 (2)178
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

A generous gift of 2-C-methyl-D-ribonolactone from Novartis Pharma AG Basel is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarrett, A. G. M., Bezuidenhoudt, B. C. B., Dhanak, D., Gasiecki, A. F., Howell, A. R., Lee, A. C. & Russell, M. A. (1989). J. Org. Chem. 54, 3321–3324.  CrossRef CAS Web of Science Google Scholar
First citationBarrett, A. G. M. & Dhanak, D. (1987). Tetrahedron Lett. 28, 3327–3330.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBooth, V. K., Best, D., Jenkinson, S. F. & Fleet, G. W. J. (2007). In preparation.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. J. (2006). Biosci. Bioeng. 101, 369–371.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 517–520.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationMenavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granstrom, T. B., Takada, G. & Izumori, K. J. (2006). Biosci. Bioeng. 101, 340–345.  Web of Science CrossRef CAS Google Scholar
First citationNakajima, Y., Gotanda, T., Uchimiya, H., Furukawa, T., Haraguchi, M., Ikeda, R., Sumizawa, T., Yoshida, H. & Akiyama, S. (2004). Cancer Res. 64, 1794–1801.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSkytte, U. P. (2002). Cereal Foods World, 47, 224.  Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationSorbera, L. A., Castaner, J. & Leeson, P. A. (2006). Drugs Future, 31, 320-324.  Web of Science CrossRef CAS Google Scholar
First citationSun, Y. X., Hayakawa, S., Ogawa, M. & Izumori, K. (2007). Food Contr. 18, 220–227.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds