organic compounds
2,4-Dimethyl-3,4-O-isopropylidene-L-arabinono-1,5-lactone
aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Chrystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: victoria.booth@chem.ox.ac.uk
The O-isopropylidene-L-arabinono lactone, C10H16O5, which exists in the boat form, was unequivocally established by X-ray crystallographic analysis. The was determined by the use of 2-C-methyl-D-ribonolactone as a starting material.
at C-2 of 2,4-dimethyl-3,4-Comment
Rare and new et al., 2007; Skytte, 2002) and for specific chemotherapeutic uses (Nakajima et al., 2004; Menavuvu et al., 2006; Hossain et al., 2006). Branched 2-C-methyl pentoses have become readily available by treatment of an Amadori ketose with aqueous calcium hydroxide (Hotchkiss et al., 2007) and are key intermediates in the synthesis of 2-C-methyl a new class of drugs for the treatment of hepatitis C (Sorbera et al., 2006). with a branch at C-2 may also be accessed by the reaction of and deoxyketoses with cyanide (Hotchkiss et al., 2004; Soengas et al., 2005). In contrast, there have been no biological studies on unprotected with more than one carbon branch.
have potential both as healthy dietary alternatives (SunThe protected lactone (4) is a key intermediate in the synthesis of with two C-methyl branches (Booth et al., 2007). 2-C-Methyl-D-ribonolactone, (1), prepared by the green environmentally friendly aqueous isomerization of D-glucose (Hotchkiss et al., 2006), may be converted to the 3-C-methyl-L-erythronolactone (2) as previously described (Barrett & Dhanak, 1987; Barrett et al., 1989). Sequential treatment of (2) with methyl magnesium bromide followed by aqueous cyanide leads to the isolation of a major crystalline product which has a new stereogenic centre, which could be either the epimeric ribo- (3) or arabino-lactone (4). X-ray crystallographic analysis resolved the ambiguity at C-2 and unequivocally established the relative stereochemistry as the arabinono-1,5-lactone (4), which exists in a boat form; the of (4) is determined by the use of 2-C-methyl-D-ribonolactone (1) as the starting material.
The molecular structure of (4) is shown in Fig. 1. The molecular geometry contains no unusual features. The largest differences from the Mogul norms (Bruno et al., 2004) are C2—O3 (0.02 Å, Mogul s.u. 0.01 Å) and C3—C9—O8 (3.4 Å, Mogul s.u. 1.9°). The consists of broad ribbons of hydrogen-bonded molecules lying with the plane of the ribbon perpendicular to b, and the length of the ribbon lying along a (Fig. 2). The hydrogen bonds form the backbone of the ribbon, with the individual molecules lying alternately on either side. The backbone of each ribbon lies above and parallel to the interface between two ribbons in the adjacent layers.
Experimental
2,4-Dimethyl-3,4-O-isopropylidene-L-arabinono lactone (4) was crystallized from a mix of ethyl acetate and cyclohexane by vapour diffusion: m.p. 385–391 K; [α]D23 +131 (c, 1.5 in chloroform)
Crystal data
|
Refinement
|
In the absence of significant ) by the multi-scan inter-frame scaling (DENZO/SCALEPACK; Otwinowski & Minor, 1997).
Friedel pairs were merged and the was assigned from the starting material. The relatively large ratio of minimum to maximum corrections applied in the multi-scan process (1:1.2) reflects effects in addition to absorption, possibly connected with the flake-like aspect of the sample. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S160053680700476X/lh2305sup1.cif
contains datablocks global, 4. DOI:Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S160053680700476X/lh23054sup2.hkl
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C10H16O5 | F(000) = 464 |
Mr = 216.23 | Dx = 1.331 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1339 reflections |
a = 6.3457 (2) Å | θ = 5–27° |
b = 12.0530 (4) Å | µ = 0.11 mm−1 |
c = 14.1034 (5) Å | T = 150 K |
V = 1078.69 (6) Å3 | Plate, colourless |
Z = 4 | 0.40 × 0.40 × 0.20 mm |
Nonius KappaCCD diffractometer | 1301 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ω scans | θmax = 27.5°, θmin = 5.3° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −8→8 |
Tmin = 0.82, Tmax = 0.98 | k = −15→15 |
6458 measured reflections | l = −18→18 |
1421 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(F2) + (0.07P)2 + 0.5P], where P = [max(Fo2,0) + 2Fc2]/3 |
S = 0.86 | (Δ/σ)max = 0.000299 |
1421 reflections | Δρmax = 0.26 e Å−3 |
136 parameters | Δρmin = −0.18 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2418 (3) | 0.83400 (16) | 0.29155 (13) | 0.0226 | |
C2 | 0.1810 (3) | 0.73928 (16) | 0.22279 (13) | 0.0215 | |
C3 | 0.3015 (3) | 0.74232 (16) | 0.12915 (13) | 0.0209 | |
C4 | 0.5380 (3) | 0.74540 (17) | 0.15287 (14) | 0.0234 | |
O5 | 0.5983 (2) | 0.81516 (14) | 0.22116 (11) | 0.0313 | |
C6 | 0.4429 (4) | 0.89114 (18) | 0.26103 (16) | 0.0299 | |
O7 | 0.6698 (2) | 0.68862 (15) | 0.11399 (10) | 0.0312 | |
O8 | 0.2491 (3) | 0.84518 (11) | 0.08425 (10) | 0.0283 | |
C9 | 0.2504 (4) | 0.64316 (17) | 0.06758 (14) | 0.0253 | |
O10 | 0.2439 (2) | 0.64042 (11) | 0.27115 (9) | 0.0235 | |
C11 | 0.2262 (4) | 0.66333 (16) | 0.37041 (14) | 0.0279 | |
O12 | 0.2837 (3) | 0.77729 (11) | 0.37897 (9) | 0.0289 | |
C13 | 0.0003 (5) | 0.6445 (2) | 0.40394 (18) | 0.0429 | |
C14 | 0.3840 (5) | 0.5936 (2) | 0.42241 (15) | 0.0407 | |
C15 | 0.0713 (4) | 0.92003 (18) | 0.30548 (17) | 0.0333 | |
H21 | 0.0287 | 0.7394 | 0.2085 | 0.0263* | |
H61 | 0.5088 | 0.9295 | 0.3166 | 0.0383* | |
H62 | 0.4079 | 0.9467 | 0.2084 | 0.0377* | |
H91 | 0.3402 | 0.6474 | 0.0096 | 0.0402* | |
H92 | 0.1033 | 0.6442 | 0.0475 | 0.0414* | |
H93 | 0.2831 | 0.5762 | 0.1055 | 0.0416* | |
H131 | −0.0088 | 0.6629 | 0.4733 | 0.0662* | |
H132 | −0.0928 | 0.6940 | 0.3641 | 0.0656* | |
H133 | −0.0343 | 0.5655 | 0.3920 | 0.0667* | |
H141 | 0.3784 | 0.6088 | 0.4914 | 0.0584* | |
H142 | 0.5234 | 0.6119 | 0.3969 | 0.0597* | |
H143 | 0.3535 | 0.5157 | 0.4100 | 0.0591* | |
H151 | 0.1210 | 0.9798 | 0.3445 | 0.0480* | |
H152 | 0.0386 | 0.9522 | 0.2446 | 0.0501* | |
H153 | −0.0564 | 0.8859 | 0.3313 | 0.0484* | |
H1 | 0.2235 | 0.8363 | 0.0234 | 0.0405* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0272 (10) | 0.0237 (9) | 0.0169 (8) | −0.0009 (9) | −0.0020 (8) | −0.0002 (7) |
C2 | 0.0211 (9) | 0.0243 (9) | 0.0189 (9) | −0.0011 (8) | 0.0007 (7) | −0.0011 (7) |
C3 | 0.0226 (9) | 0.0223 (9) | 0.0176 (8) | −0.0006 (8) | −0.0016 (7) | 0.0009 (7) |
C4 | 0.0242 (9) | 0.0309 (10) | 0.0152 (8) | −0.0017 (9) | 0.0010 (8) | 0.0048 (8) |
O5 | 0.0234 (7) | 0.0404 (8) | 0.0301 (8) | −0.0062 (7) | −0.0002 (7) | −0.0081 (7) |
C6 | 0.0332 (12) | 0.0278 (10) | 0.0287 (11) | −0.0059 (9) | 0.0009 (10) | −0.0062 (9) |
O7 | 0.0249 (7) | 0.0461 (9) | 0.0226 (7) | 0.0056 (7) | 0.0034 (6) | 0.0007 (7) |
O8 | 0.0378 (9) | 0.0276 (7) | 0.0195 (7) | 0.0021 (7) | −0.0042 (6) | 0.0031 (5) |
C9 | 0.0280 (10) | 0.0290 (9) | 0.0190 (8) | −0.0017 (10) | −0.0025 (8) | −0.0035 (7) |
O10 | 0.0317 (8) | 0.0217 (6) | 0.0171 (6) | −0.0023 (7) | 0.0037 (6) | −0.0005 (5) |
C11 | 0.0430 (12) | 0.0232 (9) | 0.0176 (9) | −0.0003 (10) | 0.0063 (9) | −0.0023 (7) |
O12 | 0.0458 (9) | 0.0237 (7) | 0.0172 (7) | −0.0011 (7) | −0.0037 (7) | −0.0004 (5) |
C13 | 0.0550 (16) | 0.0391 (13) | 0.0345 (13) | −0.0082 (12) | 0.0226 (12) | −0.0031 (11) |
C14 | 0.0671 (18) | 0.0324 (11) | 0.0226 (10) | 0.0087 (12) | −0.0016 (11) | 0.0031 (9) |
C15 | 0.0399 (13) | 0.0294 (10) | 0.0307 (11) | 0.0070 (10) | 0.0012 (10) | −0.0042 (9) |
C1—C2 | 1.547 (3) | C9—H91 | 0.998 |
C1—C6 | 1.513 (3) | C9—H92 | 0.975 |
C1—O12 | 1.435 (2) | C9—H93 | 0.990 |
C1—C15 | 1.511 (3) | O10—C11 | 1.431 (2) |
C2—C3 | 1.526 (3) | C11—O12 | 1.426 (2) |
C2—O10 | 1.430 (2) | C11—C13 | 1.526 (3) |
C2—H21 | 0.987 | C11—C14 | 1.499 (3) |
C3—C4 | 1.538 (3) | C13—H131 | 1.005 |
C3—O8 | 1.431 (2) | C13—H132 | 1.010 |
C3—C9 | 1.512 (3) | C13—H133 | 0.992 |
C4—O5 | 1.335 (3) | C14—H141 | 0.991 |
C4—O7 | 1.212 (3) | C14—H142 | 0.980 |
O5—C6 | 1.459 (3) | C14—H143 | 0.974 |
C6—H61 | 1.002 | C15—H151 | 0.960 |
C6—H62 | 1.025 | C15—H152 | 0.965 |
O8—H1 | 0.880 | C15—H153 | 0.979 |
C2—C1—C6 | 111.59 (16) | H91—C9—H92 | 107.9 |
C2—C1—O12 | 103.50 (14) | C3—C9—H93 | 106.8 |
C6—C1—O12 | 107.74 (17) | H91—C9—H93 | 111.4 |
C2—C1—C15 | 114.17 (18) | H92—C9—H93 | 111.6 |
C6—C1—C15 | 109.17 (17) | C2—O10—C11 | 106.50 (14) |
O12—C1—C15 | 110.37 (16) | O10—C11—O12 | 104.39 (15) |
C1—C2—C3 | 113.57 (16) | O10—C11—C13 | 110.36 (19) |
C1—C2—O10 | 104.26 (14) | O12—C11—C13 | 110.94 (19) |
C3—C2—O10 | 107.03 (15) | O10—C11—C14 | 108.53 (17) |
C1—C2—H21 | 111.8 | O12—C11—C14 | 109.1 (2) |
C3—C2—H21 | 108.3 | C13—C11—C14 | 113.12 (19) |
O10—C2—H21 | 111.9 | C1—O12—C11 | 109.79 (15) |
C2—C3—C4 | 107.53 (16) | C11—C13—H131 | 108.8 |
C2—C3—O8 | 106.69 (15) | C11—C13—H132 | 106.8 |
C4—C3—O8 | 107.58 (16) | H131—C13—H132 | 112.2 |
C2—C3—C9 | 111.74 (16) | C11—C13—H133 | 107.3 |
C4—C3—C9 | 110.67 (17) | H131—C13—H133 | 111.4 |
O8—C3—C9 | 112.38 (15) | H132—C13—H133 | 110.1 |
C3—C4—O5 | 116.88 (18) | C11—C14—H141 | 110.7 |
C3—C4—O7 | 124.15 (19) | C11—C14—H142 | 107.3 |
O5—C4—O7 | 118.97 (19) | H141—C14—H142 | 110.6 |
C4—O5—C6 | 118.67 (16) | C11—C14—H143 | 108.6 |
C1—C6—O5 | 113.22 (16) | H141—C14—H143 | 110.3 |
C1—C6—H61 | 109.9 | H142—C14—H143 | 109.3 |
O5—C6—H61 | 108.0 | C1—C15—H151 | 110.7 |
C1—C6—H62 | 108.7 | C1—C15—H152 | 108.3 |
O5—C6—H62 | 106.1 | H151—C15—H152 | 106.3 |
H61—C6—H62 | 110.9 | C1—C15—H153 | 110.7 |
C3—O8—H1 | 111.6 | H151—C15—H153 | 111.9 |
C3—C9—H91 | 107.9 | H152—C15—H153 | 108.8 |
C3—C9—H92 | 111.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H1···O7i | 0.88 | 1.99 | 2.870 (2) | 178 |
Symmetry code: (i) x−1/2, −y+3/2, −z. |
Acknowledgements
A generous gift of 2-C-methyl-D-ribonolactone from Novartis Pharma AG Basel is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Barrett, A. G. M., Bezuidenhoudt, B. C. B., Dhanak, D., Gasiecki, A. F., Howell, A. R., Lee, A. C. & Russell, M. A. (1989). J. Org. Chem. 54, 3321–3324. CrossRef CAS Web of Science Google Scholar
Barrett, A. G. M. & Dhanak, D. (1987). Tetrahedron Lett. 28, 3327–3330. CrossRef CAS Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Booth, V. K., Best, D., Jenkinson, S. F. & Fleet, G. W. J. (2007). In preparation. Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. J. (2006). Biosci. Bioeng. 101, 369–371. Web of Science CrossRef CAS Google Scholar
Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318. Web of Science CrossRef CAS Google Scholar
Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 517–520. Web of Science CrossRef CAS Google Scholar
Hotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464. Web of Science CrossRef CAS Google Scholar
Menavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granstrom, T. B., Takada, G. & Izumori, K. J. (2006). Biosci. Bioeng. 101, 340–345. Web of Science CrossRef CAS Google Scholar
Nakajima, Y., Gotanda, T., Uchimiya, H., Furukawa, T., Haraguchi, M., Ikeda, R., Sumizawa, T., Yoshida, H. & Akiyama, S. (2004). Cancer Res. 64, 1794–1801. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Skytte, U. P. (2002). Cereal Foods World, 47, 224. Google Scholar
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759. Web of Science CrossRef CAS Google Scholar
Sorbera, L. A., Castaner, J. & Leeson, P. A. (2006). Drugs Future, 31, 320-324. Web of Science CrossRef CAS Google Scholar
Sun, Y. X., Hayakawa, S., Ogawa, M. & Izumori, K. (2007). Food Contr. 18, 220–227. Web of Science CrossRef CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.