metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­[2,5-di­chloro-N-(1,5-di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)benzene­sulfonamidato-κN]zinc(II)

aDepartamento de Química–Universidade Federal de Mato Grosso–UFMT, 78060-900 Cuiabá, MT, Brazil, and bClemens Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany
*Correspondence e-mail: foro@tu-darmstadt.de

(Received 19 November 2007; accepted 21 November 2007; online 6 December 2007)

In the title compound, [Zn(C17H14Cl2N3O3S)2(H2O)2], the ZnII ion has a tetra­hedral coordination formed by the two N atoms of the sulfonamide groups and the two water mol­ecules. Two inter- and two intra­molecular O—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For related literature, see: Burdulene et al. (1999[Burdulene, D., Palaima, A., Stumbryavichyute, Z. & Talaikite, Z. (1999). Pharm. Chem J., 33, 191-193.]); Hernández-Delgadillo & Cruz (2006[Hernández-Delgadillo, G. P. & Cruz, S. L. (2006). Eur. J. Pharmacol., 546, 54-59.]); Macías et al. (2003[Macías, B., García, I., Villa, M. V., Borrás, J., Castiñeiras, A. & Sanz, F. (2003). Z. Anorg. Allg. Chem. 629, 255-260.]); Nardelli (1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]); Prasad & Agarwal (2007[Prasad, S. & Agarwal, R. K. (2007). Transition Met. Chem. 32, 143-149.]); Raman et al. (2003[Raman, N., Kilandaisamy, A. & Thangaraja, C. (2003). Transition Met. Chem. 28, 29-36.]); Xue et al. (2000[Xue, G., Bradshaw, J. S., Dalley, N. K., Savage, P. B., Izatt, R. M., Prodi, L., Montalti, M. & Zaccheroni, N. (2000). Tetrahedron, 58, 4809-4815.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C17H14Cl2N3O3S)2(H2O)2]

  • Mr = 923.95

  • Monoclinic, P 21 /n

  • a = 15.0683 (7) Å

  • b = 12.3009 (5) Å

  • c = 21.8256 (9) Å

  • β = 104.681 (4)°

  • V = 3913.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 299 (2) K

  • 0.50 × 0.42 × 0.36 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.597, Tmax = 0.698

  • 29052 measured reflections

  • 7987 independent reflections

  • 5392 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.118

  • S = 1.09

  • 7987 reflections

  • 512 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Zn1 2.024 (2)
N4—Zn1 2.031 (3)
O1—Zn1 2.028 (3)
O2—Zn1 2.004 (3)
O2—Zn1—N1 108.83 (12)
O2—Zn1—O1 114.56 (15)
N1—Zn1—O1 105.49 (11)
O2—Zn1—N4 114.00 (13)
N1—Zn1—N4 112.12 (10)
O1—Zn1—N4 101.44 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11O⋯O5i 0.884 (18) 2.52 (3) 3.277 (4) 145 (4)
O1—H12O⋯O8 0.896 (18) 2.06 (2) 2.914 (4) 160 (4)
O2—H21O⋯O4 0.883 (19) 2.22 (3) 2.928 (4) 137 (4)
O2—H22O⋯O8i 0.881 (19) 2.05 (3) 2.868 (4) 154 (5)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The interest to develop the coordination chemistry of pyrazolone derivatives is because of their biological and medicinal properties. They present a variety of biological activities ranging from anti-tumour, fungicide, bactericide, antiinflamatory and anti-viral activities (Prasad and Agarwal, 2007; Hernández-Delgadillo et al., 2006; Raman et al., 2003; Burdulene et al., 1999). As part of our efforts to investigate transition metal (II) complexes based on 4-aminoantypirine derivatives and sulfonamide pharmacophoric group, we describe the X-ray characterization of the title compound, (I).

The ZnII ion has a tetrahedral coordination formed by the two sulfonamide N atoms and the two water molecules (Table 1). The bond angles around the central Zn atom are close to the 109° angle of an ideal tetrahedral value. Both hydrogen atoms of each water molecule are involved in an intermolecular O—H···O [O—H···O = 2.52 (3) Å, O—H···O = 2.05 (3) Å, respectively] and an intramolecular O—H···O [O—H···O = 2.06 (2) Å, O—H···O = 2.22 (3) Å, respectively] hydrogen bonds (Table 2).

Related literature top

For related literature, see: Burdulene et al. (1999); Hernández-Delgadillo & Cruz (2006); Macías et al. (2003); Nardelli (1999); Prasad & Agarwal (2007); Raman et al. (2003); Xue et al. (2000).

Experimental top

The ligand was obtained according to the procedure previously described (Xue et al., 2000). Compound (I) was prepared by a literature procedure (Macías et al., 2003). Single crystals of (I) suitable for X-ray data collection appeared after a few days from a methanol solution.

Refinement top

The O-bound H atoms were located in difference map and were refined with restrained geometry (Nardelli, 1999), viz. O—H distances were restrained to 0.85 (2) Å and H···H distances were restrained to 1.365 (2) Å, thus leading to the angle of 107°.

The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93Å (aromatic), 0.96Å (methyl). All H atoms were refined with isotropic displacement parameters (set to 1.2 or 1.5 times of the Ueq of the parent atom).

Structure description top

The interest to develop the coordination chemistry of pyrazolone derivatives is because of their biological and medicinal properties. They present a variety of biological activities ranging from anti-tumour, fungicide, bactericide, antiinflamatory and anti-viral activities (Prasad and Agarwal, 2007; Hernández-Delgadillo et al., 2006; Raman et al., 2003; Burdulene et al., 1999). As part of our efforts to investigate transition metal (II) complexes based on 4-aminoantypirine derivatives and sulfonamide pharmacophoric group, we describe the X-ray characterization of the title compound, (I).

The ZnII ion has a tetrahedral coordination formed by the two sulfonamide N atoms and the two water molecules (Table 1). The bond angles around the central Zn atom are close to the 109° angle of an ideal tetrahedral value. Both hydrogen atoms of each water molecule are involved in an intermolecular O—H···O [O—H···O = 2.52 (3) Å, O—H···O = 2.05 (3) Å, respectively] and an intramolecular O—H···O [O—H···O = 2.06 (2) Å, O—H···O = 2.22 (3) Å, respectively] hydrogen bonds (Table 2).

For related literature, see: Burdulene et al. (1999); Hernández-Delgadillo & Cruz (2006); Macías et al. (2003); Nardelli (1999); Prasad & Agarwal (2007); Raman et al. (2003); Xue et al. (2000).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.
Diaquabis[2,5-dichloro-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yl)benzenesulfonamidato-κN]zinc(II) top
Crystal data top
[Zn(C17H14Cl2N3O3S)2(H2O)2]F(000) = 1888
Mr = 923.95Dx = 1.568 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8931 reflections
a = 15.0683 (7) Åθ = 1.9–25.0°
b = 12.3009 (5) ŵ = 1.07 mm1
c = 21.8256 (9) ÅT = 299 K
β = 104.681 (4)°Prism, colourless
V = 3913.4 (3) Å30.50 × 0.42 × 0.36 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
7987 independent reflections
Radiation source: fine-focus sealed tube5392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1818
Tmin = 0.597, Tmax = 0.698k = 1115
29052 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0463P)2 + 4.1837P]
where P = (Fo2 + 2Fc2)/3
7987 reflections(Δ/σ)max = 0.001
512 parametersΔρmax = 0.73 e Å3
6 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Zn(C17H14Cl2N3O3S)2(H2O)2]V = 3913.4 (3) Å3
Mr = 923.95Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.0683 (7) ŵ = 1.07 mm1
b = 12.3009 (5) ÅT = 299 K
c = 21.8256 (9) Å0.50 × 0.42 × 0.36 mm
β = 104.681 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
7987 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
5392 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.698Rint = 0.023
29052 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.73 e Å3
7987 reflectionsΔρmin = 0.56 e Å3
512 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5603 (2)0.6796 (3)0.28912 (16)0.0409 (7)
C20.5768 (2)0.6727 (3)0.35422 (16)0.0440 (8)
H20.53010.65170.37250.053*
C30.6630 (2)0.6972 (3)0.39213 (17)0.0494 (9)
C40.7332 (2)0.7298 (3)0.36661 (19)0.0527 (9)
H40.79020.74810.39270.063*
C50.7176 (2)0.7347 (3)0.3020 (2)0.0530 (9)
H50.76470.75540.28410.064*
C60.6323 (2)0.7093 (3)0.26338 (17)0.0469 (8)
C70.4364 (2)0.4486 (2)0.24139 (14)0.0333 (7)
C80.5111 (2)0.3709 (3)0.25951 (14)0.0346 (7)
C90.3639 (2)0.4081 (3)0.25942 (15)0.0383 (7)
C100.5135 (2)0.1837 (3)0.30486 (14)0.0389 (7)
C110.6071 (2)0.1694 (3)0.32822 (15)0.0439 (8)
H110.64640.22900.33440.053*
C120.6417 (3)0.0660 (3)0.34219 (17)0.0528 (9)
H120.70460.05600.35760.063*
C130.5844 (3)0.0222 (3)0.33367 (18)0.0583 (10)
H130.60830.09130.34420.070*
C140.4915 (3)0.0087 (3)0.3095 (2)0.0577 (10)
H140.45270.06870.30290.069*
C150.4561 (2)0.0943 (3)0.29522 (17)0.0477 (8)
H150.39320.10360.27900.057*
C160.2069 (2)0.3622 (3)0.00350 (14)0.0396 (7)
C170.1821 (2)0.2601 (3)0.02154 (16)0.0466 (8)
H170.22090.22200.04080.056*
C180.1005 (3)0.2152 (4)0.0180 (2)0.0654 (11)
C190.0418 (3)0.2701 (5)0.0092 (2)0.0807 (15)
H190.01390.23900.01060.097*
C200.0652 (3)0.3710 (5)0.0345 (2)0.0777 (15)
H200.02530.40870.05310.093*
C210.1481 (2)0.4170 (3)0.03238 (17)0.0557 (10)
C220.4052 (2)0.2880 (2)0.08708 (13)0.0334 (7)
C230.4841 (2)0.2373 (3)0.07336 (14)0.0350 (7)
C240.3656 (2)0.2139 (3)0.11794 (14)0.0360 (7)
C250.5654 (2)0.0663 (3)0.11081 (16)0.0399 (7)
C260.6037 (2)0.0348 (3)0.06249 (17)0.0479 (8)
H260.57500.05180.02060.057*
C270.6851 (3)0.0223 (3)0.0771 (2)0.0608 (10)
H270.71170.04340.04490.073*
C280.7271 (3)0.0482 (3)0.1386 (2)0.0641 (11)
H280.78240.08600.14810.077*
C290.6876 (3)0.0182 (3)0.1860 (2)0.0616 (10)
H290.71560.03710.22770.074*
C300.6065 (2)0.0399 (3)0.17273 (17)0.0492 (8)
H300.58020.06090.20510.059*
C310.2695 (2)0.4531 (3)0.25029 (19)0.0547 (9)
H31A0.25630.50150.21460.066*
H31B0.26560.49200.28760.066*
H31C0.22580.39460.24270.066*
C320.3580 (3)0.2902 (4)0.34843 (19)0.0653 (11)
H32A0.38420.22320.36730.078*
H32B0.29240.28650.34010.078*
H32C0.38030.34920.37690.078*
C330.2803 (2)0.2221 (3)0.14020 (16)0.0452 (8)
H33A0.29290.19950.18370.054*
H33B0.23400.17600.11470.054*
H33C0.25920.29600.13660.054*
C340.3762 (3)0.0120 (3)0.1241 (2)0.0578 (10)
H34A0.42330.04110.13950.069*
H34B0.34600.00360.08080.069*
H34C0.33240.00960.14930.069*
N10.44014 (18)0.5439 (2)0.20587 (12)0.0362 (6)
N20.47815 (17)0.2898 (2)0.29227 (12)0.0380 (6)
N30.38412 (17)0.3080 (2)0.28874 (13)0.0418 (6)
N40.37893 (17)0.3976 (2)0.07149 (11)0.0359 (6)
N50.48516 (17)0.1322 (2)0.09505 (12)0.0382 (6)
N60.41734 (17)0.1203 (2)0.12843 (12)0.0391 (6)
O10.5833 (2)0.4718 (3)0.12585 (15)0.0683 (8)
H11O0.625 (2)0.516 (3)0.118 (2)0.082*
H12O0.582 (3)0.418 (2)0.0979 (17)0.082*
O20.4242 (3)0.6670 (3)0.07039 (15)0.0901 (11)
H21O0.431 (4)0.721 (3)0.0980 (18)0.108*
H22O0.451 (3)0.692 (4)0.0415 (17)0.108*
O30.39205 (16)0.6519 (2)0.28993 (11)0.0501 (6)
O40.42301 (18)0.74189 (19)0.19750 (12)0.0553 (6)
O50.34501 (15)0.3405 (2)0.04321 (10)0.0480 (6)
O60.30904 (17)0.5236 (2)0.01506 (11)0.0535 (6)
O70.58658 (14)0.3693 (2)0.24759 (11)0.0461 (6)
O80.54446 (15)0.27471 (18)0.04963 (11)0.0441 (5)
Cl10.68388 (7)0.68768 (11)0.47414 (5)0.0732 (3)
Cl20.62100 (8)0.71621 (9)0.18265 (5)0.0690 (3)
Cl30.07311 (10)0.08467 (13)0.04885 (9)0.1168 (6)
Cl40.17694 (9)0.54153 (11)0.06876 (6)0.0899 (4)
S10.44404 (6)0.65578 (7)0.24313 (4)0.03951 (19)
S20.31731 (5)0.41072 (7)0.00093 (4)0.03802 (19)
Zn10.45325 (3)0.52527 (3)0.116433 (17)0.03809 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0483 (19)0.0283 (16)0.0476 (19)0.0001 (14)0.0150 (15)0.0068 (15)
C20.0430 (18)0.0366 (18)0.054 (2)0.0020 (14)0.0149 (16)0.0062 (16)
C30.052 (2)0.044 (2)0.051 (2)0.0089 (16)0.0104 (17)0.0064 (17)
C40.0405 (19)0.043 (2)0.072 (3)0.0043 (16)0.0109 (18)0.0070 (19)
C50.049 (2)0.039 (2)0.077 (3)0.0023 (16)0.0265 (19)0.0066 (19)
C60.061 (2)0.0317 (17)0.054 (2)0.0056 (16)0.0260 (18)0.0063 (16)
C70.0366 (16)0.0326 (16)0.0326 (15)0.0011 (13)0.0127 (13)0.0015 (13)
C80.0351 (16)0.0368 (17)0.0328 (15)0.0030 (13)0.0101 (13)0.0013 (14)
C90.0386 (17)0.0355 (17)0.0437 (17)0.0072 (14)0.0158 (14)0.0043 (15)
C100.0437 (18)0.0388 (18)0.0346 (16)0.0035 (14)0.0108 (14)0.0083 (14)
C110.0434 (18)0.045 (2)0.0407 (17)0.0015 (15)0.0048 (14)0.0002 (16)
C120.048 (2)0.055 (2)0.048 (2)0.0158 (18)0.0000 (16)0.0009 (18)
C130.072 (3)0.041 (2)0.060 (2)0.013 (2)0.013 (2)0.0081 (19)
C140.061 (2)0.038 (2)0.073 (3)0.0053 (17)0.015 (2)0.0061 (19)
C150.0412 (18)0.042 (2)0.058 (2)0.0020 (15)0.0092 (16)0.0106 (17)
C160.0343 (16)0.050 (2)0.0336 (16)0.0065 (14)0.0068 (13)0.0073 (15)
C170.0419 (19)0.052 (2)0.0443 (19)0.0029 (16)0.0073 (15)0.0061 (17)
C180.048 (2)0.072 (3)0.070 (3)0.011 (2)0.004 (2)0.015 (2)
C190.040 (2)0.122 (5)0.080 (3)0.009 (3)0.016 (2)0.019 (3)
C200.043 (2)0.129 (5)0.065 (3)0.027 (3)0.022 (2)0.010 (3)
C210.049 (2)0.073 (3)0.046 (2)0.0192 (19)0.0139 (16)0.0030 (19)
C220.0346 (15)0.0334 (16)0.0321 (15)0.0023 (13)0.0083 (12)0.0006 (13)
C230.0352 (16)0.0356 (17)0.0349 (16)0.0033 (13)0.0104 (13)0.0035 (14)
C240.0367 (16)0.0393 (18)0.0327 (15)0.0031 (14)0.0102 (13)0.0008 (14)
C250.0431 (18)0.0289 (16)0.0489 (19)0.0004 (14)0.0139 (15)0.0008 (15)
C260.0486 (19)0.045 (2)0.052 (2)0.0025 (16)0.0163 (16)0.0065 (17)
C270.060 (2)0.048 (2)0.083 (3)0.0109 (19)0.032 (2)0.007 (2)
C280.052 (2)0.043 (2)0.097 (3)0.0128 (18)0.019 (2)0.010 (2)
C290.067 (3)0.049 (2)0.065 (2)0.005 (2)0.009 (2)0.016 (2)
C300.055 (2)0.043 (2)0.051 (2)0.0042 (17)0.0167 (17)0.0036 (17)
C310.043 (2)0.056 (2)0.071 (2)0.0095 (17)0.0243 (18)0.012 (2)
C320.067 (3)0.073 (3)0.069 (3)0.014 (2)0.041 (2)0.029 (2)
C330.0418 (18)0.052 (2)0.0458 (18)0.0006 (16)0.0184 (15)0.0066 (17)
C340.062 (2)0.046 (2)0.074 (3)0.0101 (18)0.034 (2)0.002 (2)
N10.0462 (15)0.0300 (14)0.0340 (13)0.0019 (11)0.0133 (11)0.0005 (11)
N20.0339 (13)0.0354 (15)0.0464 (15)0.0016 (11)0.0133 (12)0.0086 (12)
N30.0370 (14)0.0426 (16)0.0515 (16)0.0043 (12)0.0215 (12)0.0135 (13)
N40.0387 (14)0.0328 (14)0.0356 (13)0.0014 (11)0.0081 (11)0.0045 (12)
N50.0389 (14)0.0349 (15)0.0462 (15)0.0005 (11)0.0206 (12)0.0058 (12)
N60.0411 (14)0.0342 (15)0.0475 (15)0.0002 (12)0.0211 (12)0.0076 (12)
O10.0611 (17)0.072 (2)0.080 (2)0.0129 (15)0.0329 (15)0.0137 (16)
O20.156 (3)0.055 (2)0.062 (2)0.009 (2)0.033 (2)0.0071 (16)
O30.0474 (13)0.0563 (15)0.0507 (13)0.0042 (11)0.0197 (11)0.0130 (12)
O40.0726 (17)0.0336 (13)0.0566 (15)0.0086 (12)0.0109 (13)0.0037 (12)
O50.0466 (13)0.0632 (16)0.0385 (12)0.0005 (12)0.0187 (10)0.0028 (12)
O60.0624 (15)0.0448 (14)0.0498 (14)0.0028 (12)0.0074 (12)0.0156 (12)
O70.0323 (12)0.0529 (15)0.0562 (14)0.0009 (10)0.0170 (10)0.0070 (12)
O80.0415 (12)0.0425 (13)0.0549 (14)0.0006 (10)0.0244 (11)0.0090 (11)
Cl10.0562 (6)0.1051 (9)0.0530 (6)0.0131 (6)0.0042 (4)0.0111 (6)
Cl20.0884 (7)0.0679 (7)0.0600 (6)0.0338 (6)0.0361 (5)0.0118 (5)
Cl30.0875 (9)0.0850 (10)0.1688 (15)0.0411 (8)0.0159 (9)0.0023 (10)
Cl40.0998 (9)0.0860 (9)0.0894 (8)0.0301 (7)0.0343 (7)0.0232 (7)
S10.0458 (4)0.0321 (4)0.0415 (4)0.0033 (3)0.0126 (3)0.0032 (3)
S20.0391 (4)0.0404 (5)0.0346 (4)0.0002 (3)0.0096 (3)0.0048 (4)
Zn10.0460 (2)0.0346 (2)0.0361 (2)0.00316 (17)0.01467 (16)0.00228 (16)
Geometric parameters (Å, º) top
C1—C21.382 (5)C23—O81.243 (3)
C1—C61.391 (5)C23—N51.375 (4)
C1—S11.809 (3)C24—N61.377 (4)
C2—C31.385 (5)C24—C331.487 (4)
C2—H20.9300C25—C301.375 (5)
C3—C41.374 (5)C25—C261.380 (5)
C3—Cl11.741 (4)C25—N51.423 (4)
C4—C51.370 (5)C26—C271.379 (5)
C4—H40.9300C26—H260.9300
C5—C61.383 (5)C27—C281.368 (6)
C5—H50.9300C27—H270.9300
C6—Cl21.729 (4)C28—C291.370 (6)
C7—C91.348 (4)C28—H280.9300
C7—N11.414 (4)C29—C301.381 (5)
C7—C81.452 (4)C29—H290.9300
C8—O71.230 (3)C30—H300.9300
C8—N21.390 (4)C31—H31A0.9600
C9—N31.386 (4)C31—H31B0.9600
C9—C311.492 (4)C31—H31C0.9600
C10—C151.383 (5)C32—N31.470 (4)
C10—C111.384 (4)C32—H32A0.9600
C10—N21.410 (4)C32—H32B0.9600
C11—C121.379 (5)C32—H32C0.9600
C11—H110.9300C33—H33A0.9600
C12—C131.370 (5)C33—H33B0.9600
C12—H120.9300C33—H33C0.9600
C13—C141.375 (5)C34—N61.462 (4)
C13—H130.9300C34—H34A0.9600
C14—C151.380 (5)C34—H34B0.9600
C14—H140.9300C34—H34C0.9600
C15—H150.9300N1—S11.592 (3)
C16—C171.382 (5)N1—Zn12.024 (2)
C16—C211.386 (5)N2—N31.417 (3)
C16—S21.781 (3)N4—S21.592 (3)
C17—C181.369 (5)N4—Zn12.031 (3)
C17—H170.9300N5—N61.405 (3)
C18—C191.362 (7)O1—Zn12.028 (3)
C18—Cl31.750 (5)O1—H11O0.884 (18)
C19—C201.367 (7)O1—H12O0.896 (18)
C19—H190.9300O2—Zn12.004 (3)
C20—C211.384 (6)O2—H21O0.883 (19)
C20—H200.9300O2—H22O0.881 (19)
C21—Cl41.729 (4)O3—S11.437 (2)
C22—C241.358 (4)O4—S11.433 (2)
C22—N41.422 (4)O5—S21.433 (2)
C22—C231.440 (4)O6—S21.430 (3)
C2—C1—C6118.5 (3)C28—C27—C26120.6 (4)
C2—C1—S1117.2 (2)C28—C27—H27119.7
C6—C1—S1124.3 (3)C26—C27—H27119.7
C1—C2—C3119.8 (3)C27—C28—C29119.8 (4)
C1—C2—H2120.1C27—C28—H28120.1
C3—C2—H2120.1C29—C28—H28120.1
C4—C3—C2121.6 (3)C28—C29—C30120.8 (4)
C4—C3—Cl1118.6 (3)C28—C29—H29119.6
C2—C3—Cl1119.8 (3)C30—C29—H29119.6
C5—C4—C3118.7 (3)C25—C30—C29118.9 (3)
C5—C4—H4120.6C25—C30—H30120.6
C3—C4—H4120.6C29—C30—H30120.6
C4—C5—C6120.6 (3)C9—C31—H31A109.5
C4—C5—H5119.7C9—C31—H31B109.5
C6—C5—H5119.7H31A—C31—H31B109.5
C5—C6—C1120.8 (3)C9—C31—H31C109.5
C5—C6—Cl2116.6 (3)H31A—C31—H31C109.5
C1—C6—Cl2122.6 (3)H31B—C31—H31C109.5
C9—C7—N1127.9 (3)N3—C32—H32A109.5
C9—C7—C8107.8 (3)N3—C32—H32B109.5
N1—C7—C8124.0 (3)H32A—C32—H32B109.5
O7—C8—N2124.6 (3)N3—C32—H32C109.5
O7—C8—C7130.3 (3)H32A—C32—H32C109.5
N2—C8—C7105.0 (2)H32B—C32—H32C109.5
C7—C9—N3111.3 (3)C24—C33—H33A109.5
C7—C9—C31129.8 (3)C24—C33—H33B109.5
N3—C9—C31118.8 (3)H33A—C33—H33B109.5
C15—C10—C11119.7 (3)C24—C33—H33C109.5
C15—C10—N2121.0 (3)H33A—C33—H33C109.5
C11—C10—N2119.3 (3)H33B—C33—H33C109.5
C12—C11—C10119.5 (3)N6—C34—H34A109.5
C12—C11—H11120.3N6—C34—H34B109.5
C10—C11—H11120.3H34A—C34—H34B109.5
C13—C12—C11120.7 (3)N6—C34—H34C109.5
C13—C12—H12119.7H34A—C34—H34C109.5
C11—C12—H12119.7H34B—C34—H34C109.5
C12—C13—C14120.2 (4)C7—N1—S1116.0 (2)
C12—C13—H13119.9C7—N1—Zn1117.49 (19)
C14—C13—H13119.9S1—N1—Zn1126.19 (14)
C13—C14—C15119.7 (4)C8—N2—C10126.7 (3)
C13—C14—H14120.2C8—N2—N3110.0 (2)
C15—C14—H14120.2C10—N2—N3118.7 (2)
C14—C15—C10120.3 (3)C9—N3—N2105.4 (2)
C14—C15—H15119.8C9—N3—C32117.7 (3)
C10—C15—H15119.8N2—N3—C32114.7 (3)
C17—C16—C21118.8 (3)C22—N4—S2112.7 (2)
C17—C16—S2117.0 (2)C22—N4—Zn1122.10 (19)
C21—C16—S2124.1 (3)S2—N4—Zn1120.23 (14)
C18—C17—C16120.1 (4)C23—N5—N6109.3 (2)
C18—C17—H17120.0C23—N5—C25123.6 (2)
C16—C17—H17120.0N6—N5—C25120.0 (2)
C19—C18—C17121.1 (4)C24—N6—N5106.4 (2)
C19—C18—Cl3120.5 (4)C24—N6—C34122.6 (3)
C17—C18—Cl3118.4 (4)N5—N6—C34114.4 (3)
C18—C19—C20119.7 (4)Zn1—O1—H11O120 (3)
C18—C19—H19120.1Zn1—O1—H12O108 (3)
C20—C19—H19120.1H11O—O1—H12O102 (2)
C19—C20—C21120.0 (4)Zn1—O2—H21O110 (3)
C19—C20—H20120.0Zn1—O2—H22O126 (4)
C21—C20—H20120.0H21O—O2—H22O103 (3)
C20—C21—C16120.2 (4)O4—S1—O3117.03 (15)
C20—C21—Cl4118.1 (3)O4—S1—N1108.11 (14)
C16—C21—Cl4121.6 (3)O3—S1—N1112.20 (14)
C24—C22—N4128.6 (3)O4—S1—C1106.15 (16)
C24—C22—C23107.6 (3)O3—S1—C1103.70 (15)
N4—C22—C23123.8 (3)N1—S1—C1109.20 (14)
O8—C23—N5123.1 (3)O6—S2—O5116.33 (15)
O8—C23—C22131.0 (3)O6—S2—N4109.16 (14)
N5—C23—C22105.9 (2)O5—S2—N4113.04 (14)
C22—C24—N6110.0 (3)O6—S2—C16107.99 (15)
C22—C24—C33129.9 (3)O5—S2—C16104.64 (15)
N6—C24—C33120.1 (3)N4—S2—C16104.83 (14)
C30—C25—C26120.9 (3)O2—Zn1—N1108.83 (12)
C30—C25—N5121.0 (3)O2—Zn1—O1114.56 (15)
C26—C25—N5118.0 (3)N1—Zn1—O1105.49 (11)
C27—C26—C25119.1 (4)O2—Zn1—N4114.00 (13)
C27—C26—H26120.4N1—Zn1—N4112.12 (10)
C25—C26—H26120.4O1—Zn1—N4101.44 (11)
C6—C1—C2—C31.3 (5)C11—C10—N2—C847.2 (5)
S1—C1—C2—C3175.7 (3)C15—C10—N2—N319.4 (4)
C1—C2—C3—C40.8 (5)C11—C10—N2—N3159.5 (3)
C1—C2—C3—Cl1179.6 (3)C7—C9—N3—N23.9 (4)
C2—C3—C4—C52.0 (5)C31—C9—N3—N2178.1 (3)
Cl1—C3—C4—C5178.4 (3)C7—C9—N3—C32133.2 (3)
C3—C4—C5—C61.2 (5)C31—C9—N3—C3248.8 (5)
C4—C5—C6—C10.9 (5)C8—N2—N3—C96.6 (3)
C4—C5—C6—Cl2179.0 (3)C10—N2—N3—C9164.0 (3)
C2—C1—C6—C52.1 (5)C8—N2—N3—C32137.7 (3)
S1—C1—C6—C5174.7 (3)C10—N2—N3—C3265.0 (4)
C2—C1—C6—Cl2177.8 (3)C24—C22—N4—S296.7 (3)
S1—C1—C6—Cl25.4 (4)C23—C22—N4—S285.3 (3)
C9—C7—C8—O7172.7 (3)C24—C22—N4—Zn1108.1 (3)
N1—C7—C8—O72.0 (5)C23—C22—N4—Zn169.8 (3)
C9—C7—C8—N24.2 (3)O8—C23—N5—N6170.1 (3)
N1—C7—C8—N2178.8 (3)C22—C23—N5—N67.3 (3)
N1—C7—C9—N3174.5 (3)O8—C23—N5—C2519.9 (5)
C8—C7—C9—N30.1 (4)C22—C23—N5—C25157.6 (3)
N1—C7—C9—C313.2 (6)C30—C25—N5—C23109.5 (4)
C8—C7—C9—C31177.7 (3)C26—C25—N5—C2367.0 (4)
C15—C10—C11—C120.7 (5)C30—C25—N5—N637.8 (4)
N2—C10—C11—C12178.3 (3)C26—C25—N5—N6145.8 (3)
C10—C11—C12—C130.5 (5)C22—C24—N6—N58.0 (3)
C11—C12—C13—C141.6 (6)C33—C24—N6—N5172.4 (3)
C12—C13—C14—C151.4 (6)C22—C24—N6—C34142.5 (3)
C13—C14—C15—C100.2 (6)C33—C24—N6—C3438.0 (4)
C11—C10—C15—C140.9 (5)C23—N5—N6—C249.5 (3)
N2—C10—C15—C14178.1 (3)C25—N5—N6—C24161.0 (3)
C21—C16—C17—C180.5 (5)C23—N5—N6—C34148.1 (3)
S2—C16—C17—C18176.4 (3)C25—N5—N6—C3460.4 (4)
C16—C17—C18—C190.9 (6)C7—N1—S1—O4164.9 (2)
C16—C17—C18—Cl3178.7 (3)Zn1—N1—S1—O421.9 (2)
C17—C18—C19—C201.1 (7)C7—N1—S1—O334.3 (3)
Cl3—C18—C19—C20178.4 (4)Zn1—N1—S1—O3152.46 (17)
C18—C19—C20—C210.1 (7)C7—N1—S1—C180.1 (2)
C19—C20—C21—C161.5 (6)Zn1—N1—S1—C193.1 (2)
C19—C20—C21—Cl4176.6 (4)C2—C1—S1—O4133.1 (3)
C17—C16—C21—C201.6 (5)C6—C1—S1—O443.7 (3)
S2—C16—C21—C20177.2 (3)C2—C1—S1—O39.2 (3)
C17—C16—C21—Cl4176.3 (3)C6—C1—S1—O3167.6 (3)
S2—C16—C21—Cl40.8 (4)C2—C1—S1—N1110.6 (3)
C24—C22—C23—O8174.8 (3)C6—C1—S1—N172.6 (3)
N4—C22—C23—O83.5 (5)C22—N4—S2—O6168.7 (2)
C24—C22—C23—N52.3 (3)Zn1—N4—S2—O613.0 (2)
N4—C22—C23—N5179.4 (3)C22—N4—S2—O537.5 (2)
N4—C22—C24—N6174.6 (3)Zn1—N4—S2—O5118.13 (17)
C23—C22—C24—N63.6 (3)C22—N4—S2—C1675.8 (2)
N4—C22—C24—C335.0 (5)Zn1—N4—S2—C16128.50 (17)
C23—C22—C24—C33176.9 (3)C17—C16—S2—O6139.8 (2)
C30—C25—C26—C271.1 (5)C21—C16—S2—O644.6 (3)
N5—C25—C26—C27175.3 (3)C17—C16—S2—O515.3 (3)
C25—C26—C27—C280.5 (6)C21—C16—S2—O5169.1 (3)
C26—C27—C28—C290.7 (6)C17—C16—S2—N4103.9 (3)
C27—C28—C29—C301.3 (6)C21—C16—S2—N471.7 (3)
C26—C25—C30—C290.5 (5)C7—N1—Zn1—O2165.5 (2)
N5—C25—C30—C29175.8 (3)S1—N1—Zn1—O221.4 (2)
C28—C29—C30—C250.7 (6)C7—N1—Zn1—O171.1 (2)
C9—C7—N1—S176.1 (4)S1—N1—Zn1—O1101.98 (19)
C8—C7—N1—S1110.3 (3)C7—N1—Zn1—N438.4 (2)
C9—C7—N1—Zn1110.1 (3)S1—N1—Zn1—N4148.45 (17)
C8—C7—N1—Zn163.5 (3)C22—N4—Zn1—O2163.1 (2)
O7—C8—N2—C1015.3 (5)S2—N4—Zn1—O29.8 (2)
C7—C8—N2—C10161.8 (3)C22—N4—Zn1—N172.6 (2)
O7—C8—N2—N3170.4 (3)S2—N4—Zn1—N1134.01 (15)
C7—C8—N2—N36.6 (3)C22—N4—Zn1—O139.5 (2)
C15—C10—N2—C8133.8 (3)S2—N4—Zn1—O1113.89 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11O···O5i0.88 (2)2.52 (3)3.277 (4)145 (4)
O1—H12O···O80.90 (2)2.06 (2)2.914 (4)160 (4)
O2—H21O···O40.88 (2)2.22 (3)2.928 (4)137 (4)
O2—H22O···O8i0.88 (2)2.05 (3)2.868 (4)154 (5)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C17H14Cl2N3O3S)2(H2O)2]
Mr923.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)15.0683 (7), 12.3009 (5), 21.8256 (9)
β (°) 104.681 (4)
V3)3913.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.50 × 0.42 × 0.36
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.597, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
29052, 7987, 5392
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.118, 1.09
No. of reflections7987
No. of parameters512
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.56

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
N1—Zn12.024 (2)O1—Zn12.028 (3)
N4—Zn12.031 (3)O2—Zn12.004 (3)
O2—Zn1—N1108.83 (12)O2—Zn1—N4114.00 (13)
O2—Zn1—O1114.56 (15)N1—Zn1—N4112.12 (10)
N1—Zn1—O1105.49 (11)O1—Zn1—N4101.44 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11O···O5i0.884 (18)2.52 (3)3.277 (4)145 (4)
O1—H12O···O80.896 (18)2.06 (2)2.914 (4)160 (4)
O2—H21O···O40.883 (19)2.22 (3)2.928 (4)137 (4)
O2—H22O···O8i0.881 (19)2.05 (3)2.868 (4)154 (5)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank Professor Dr. Hartmut Fuess, Technische Universität Darmstadt, for diffractometer time.

References

First citationBurdulene, D., Palaima, A., Stumbryavichyute, Z. & Talaikite, Z. (1999). Pharm. Chem J., 33, 191–193.  CrossRef CAS Google Scholar
First citationHernández-Delgadillo, G. P. & Cruz, S. L. (2006). Eur. J. Pharmacol., 546, 54–59.  Web of Science PubMed Google Scholar
First citationMacías, B., García, I., Villa, M. V., Borrás, J., Castiñeiras, A. & Sanz, F. (2003). Z. Anorg. Allg. Chem. 629, 255–260.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPrasad, S. & Agarwal, R. K. (2007). Transition Met. Chem. 32, 143–149.  Web of Science CrossRef CAS Google Scholar
First citationRaman, N., Kilandaisamy, A. & Thangaraja, C. (2003). Transition Met. Chem. 28, 29–36.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, G., Bradshaw, J. S., Dalley, N. K., Savage, P. B., Izatt, R. M., Prodi, L., Montalti, M. & Zaccheroni, N. (2000). Tetrahedron, 58, 4809–4815.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds