organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl-N-{4-[5-(4-pyrid­yl)-1,3,4-oxa­diazol-2-yl]phen­yl}aniline

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and bKey Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, People's Republic of China
*Correspondence e-mail: lib020@ciomp.ac.cn

(Received 21 November 2007; accepted 3 December 2007; online 12 December 2007)

The title compound, C25H18N4O, is a non-planar bipolar ligand containing triphenyl­amine and 1,3,4-oxadiazole units. In the mol­ecule, the benzene ring, the 1,3,4-oxadiazole ring, and the pyridine ring are twisted slightly with respect to each other [dihedral angle between the benzene and 1,3,4-oxadiazole rings = 9.4 (4) and between the 1,3,4-oxadiazole and pyridine rings = 3.0 (4)°]. Moreover, the dihedral angles between the two phenyl rings and the benzene ring are 88.2 (4) and 113.3 (4)°, and that between the two phenyl rings is 67.9 (4)°. The closest distances between the pyridine ring and the 1,3,4-oxadiazole and benzene rings in adjacent mol­ecules are 3.316 and 3.363 Å, respectively, indicating the existence of ππ inter­actions.

Related literature

For related literature, see: Tang et al. (1987[Tang, C. W. & Vanslyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.]); Yeh et al. (2005[Yeh, S. J., Wu, M. F., Chen, C. T., Song, Y. H., Chi, Y., Ho, M. H., Hsu, S. F. & Chen, C. H. (2005). Adv. Mater. 17, 285-289.]); Xiang et al. (2006[Xiang, N. J., Lee, T. H., Gong, M. L., Tong, K. L., So, S. K. & Leung, L. M. (2006). Synth. Met. 156, 270-275.]); Chan et al. (1999[Chan, W. K., Ng, P. K., Gong, X. & Hou, S. J. (1999). Appl. Phys. Lett. 75, 3920-3922.]); Gong et al. (1998[Gong, X., Ng, P. K. & Chan, W. K. (1998). Adv. Mater. 10, 1337-1340.]); Tamoto et al. (1997[Tamoto, N., Adachi, C. & Nagai, K. (1997). Chem. Mater. 9, 1077-1085.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18N4O

  • Mr = 390.43

  • Orthorhombic, P n a 21

  • a = 10.7125 (9) Å

  • b = 14.1797 (12) Å

  • c = 12.7835 (11) Å

  • V = 1941.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 (2) K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Version 2.03. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.98

  • 10383 measured reflections

  • 2015 independent reflections

  • 1655 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.083

  • S = 0.99

  • 2015 reflections

  • 271 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organic light-emitting diodes (OLEDs) have attracted considerable attentions due to potentially practical applications in large-area flat-panel display technologies, as well as to their numerous advantages, such as low cost, light weight, fast response, wide-viewing-angle, and compatibility with flexible substrates (Tang et al., 1987; Yeh et al., 2005).

It is well known that OLED produces light via recombination of electrons and holes, which are injected from electrodes on opposite sides of the device. Furthermore, the balance between the injection and transportation of electron and hole carriers leads to a high luminescence efficiency. Because triphenylamine and the 1,3,4-oxadiazol group possess good properties of hole transportation and electron deficiency, respectively, the compound containing these two groups should be of an increased electron affinity and transporting properties, resulting in a more balanced charge recombination in the emissive layer (Xiang et al., 2006; Chan et al., 1999; Gong et al., 1998). In this contribution, we have synthesized the title compound, C25H18N4O, with both a triphenylamine and a 1,3,4-oxadiazol moieties. This compound emits bright blue-green light under excitation of UV light, which implies its potential application in OLEDs.

The molecular skeleton of the title compound is non-planar (Fig.1), with the benzene (A), the 1,3,4-oxadiazol (B) and the pyridine (C) rings being slightly twisted with respect to each other (dihedral angles: (A),(B): 9.4 (4)°; (B),(C): 3.0 (4)°). Between the two adjacent molecules, the closest distances of C3-to-C7 and C4-to-C9 are 3.316 and 3.363 Å, respectively, indicating the existence of ππ interactions. (Fig 2).

Related literature top

For related literature, see: Tang et al. (1987); Yeh et al. (2005); Xiang et al. (2006); Chan et al. (1999); Gong et al. (1998); Tamoto et al. (1997).

Experimental top

The title compound was synthesized via a tetrazole intermediate pathway. Amongst, the 4-tetrazoyltriphenylamine was prepared according to the procedures described elsewhere (Tamoto et al., 1997).

Firstly, the 150 ml water solution of 4-phenylpyridine (1 ml) and KMnO4 (3.16 g) was heated for 12 h. After removal of brown precipitate by filtration, the addition of concentrated hydrochloric acid into solution led to the deposition of white crystals. This solid was filtered, washed with water, and dried in the vacuo, and then was refluxed with thionyl chloride (15 ml) for 5 h. Isonicotinoyl chloride could be achieved by removing the solution by rotary evaporation.

A mixture of isonicotinoyl chloride (0.14 g), 4-tetrazolytriphenylamine (0.31 g), and dry pyridine (30 ml) was refluxed for one day under nitrogen atmosphere. After cooling, the reaction mixture was poured into water, and then filtered to collect the solid. The crude product was purified by column chromatography on silica gel with ethyl acetate/petroleum ether (1/5, v/v) as the eluent. Crystals suitable for X-ray diffraction study were obtained by slow evaporation of ethyl acetate/petroleum ether (1/5, v/v) solution.

Refinement top

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C). In the absence of significant anomalous scattering effects Friedel pairs have been merged

Structure description top

Organic light-emitting diodes (OLEDs) have attracted considerable attentions due to potentially practical applications in large-area flat-panel display technologies, as well as to their numerous advantages, such as low cost, light weight, fast response, wide-viewing-angle, and compatibility with flexible substrates (Tang et al., 1987; Yeh et al., 2005).

It is well known that OLED produces light via recombination of electrons and holes, which are injected from electrodes on opposite sides of the device. Furthermore, the balance between the injection and transportation of electron and hole carriers leads to a high luminescence efficiency. Because triphenylamine and the 1,3,4-oxadiazol group possess good properties of hole transportation and electron deficiency, respectively, the compound containing these two groups should be of an increased electron affinity and transporting properties, resulting in a more balanced charge recombination in the emissive layer (Xiang et al., 2006; Chan et al., 1999; Gong et al., 1998). In this contribution, we have synthesized the title compound, C25H18N4O, with both a triphenylamine and a 1,3,4-oxadiazol moieties. This compound emits bright blue-green light under excitation of UV light, which implies its potential application in OLEDs.

The molecular skeleton of the title compound is non-planar (Fig.1), with the benzene (A), the 1,3,4-oxadiazol (B) and the pyridine (C) rings being slightly twisted with respect to each other (dihedral angles: (A),(B): 9.4 (4)°; (B),(C): 3.0 (4)°). Between the two adjacent molecules, the closest distances of C3-to-C7 and C4-to-C9 are 3.316 and 3.363 Å, respectively, indicating the existence of ππ interactions. (Fig 2).

For related literature, see: Tang et al. (1987); Yeh et al. (2005); Xiang et al. (2006); Chan et al. (1999); Gong et al. (1998); Tamoto et al. (1997).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids drawn at a 30% probability level. H atoms omitted for clarity.
[Figure 2] Fig. 2. Packing view of (I) showing stacking interactions between neighbouring molecules. H atoms omitted for clarity.
N-Phenyl-N-{4-[5-(4-pyridyl)-1,3,4-oxadiazol-2-yl]phenyl}aniline top
Crystal data top
C25H18N4OF(000) = 816
Mr = 390.43Dx = 1.336 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2767 reflections
a = 10.7125 (9) Åθ = 1.0–26.1°
b = 14.1797 (12) ŵ = 0.08 mm1
c = 12.7835 (11) ÅT = 291 K
V = 1941.8 (3) Å3Block, yellow
Z = 40.40 × 0.30 × 0.25 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
2015 independent reflections
Radiation source: fine-focus sealed tube1655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 26.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.970, Tmax = 0.98k = 917
10383 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.037P)2]
where P = (Fo2 + 2Fc2)/3
2015 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C25H18N4OV = 1941.8 (3) Å3
Mr = 390.43Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.7125 (9) ŵ = 0.08 mm1
b = 14.1797 (12) ÅT = 291 K
c = 12.7835 (11) Å0.40 × 0.30 × 0.25 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
2015 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1655 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.98Rint = 0.061
10383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.083H-atom parameters constrained
S = 0.99Δρmax = 0.43 e Å3
2015 reflectionsΔρmin = 0.16 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.5156 (3)0.7596 (2)1.1070 (3)0.0377 (8)
H11.57840.78601.14790.045*
C21.4338 (3)0.8198 (2)1.0564 (2)0.0342 (8)
H21.44240.88491.06270.041*
C31.4171 (3)0.6299 (2)1.0426 (3)0.0388 (8)
H31.41050.56471.03740.047*
C41.3304 (3)0.6843 (2)0.9899 (3)0.0349 (7)
H41.26740.65610.95080.042*
C51.3393 (3)0.7817 (2)0.9964 (3)0.0295 (7)
C61.2545 (3)0.8435 (2)0.9402 (2)0.0282 (7)
C71.1064 (3)0.8840 (2)0.8379 (2)0.0288 (7)
C81.0009 (3)0.8726 (2)0.7671 (2)0.0260 (7)
C90.9482 (3)0.7848 (2)0.7485 (2)0.0307 (7)
H90.98410.73110.77750.037*
C100.8425 (3)0.7771 (2)0.6870 (2)0.0311 (8)
H100.80720.71810.67510.037*
C110.9489 (3)0.9523 (2)0.7205 (2)0.0302 (7)
H110.98541.01100.73070.036*
C120.8434 (3)0.9442 (2)0.6590 (2)0.0314 (7)
H120.80890.99760.62820.038*
C130.7889 (3)0.8566 (2)0.6432 (2)0.0302 (7)
C140.7720 (3)0.8032 (2)0.4179 (3)0.0401 (8)
H140.82470.85500.42340.048*
C150.7824 (3)0.7427 (3)0.3339 (3)0.0466 (9)
H150.84370.75310.28370.056*
C160.7030 (3)0.6671 (3)0.3236 (3)0.0439 (9)
H160.70970.62680.26650.053*
C170.6136 (3)0.6518 (2)0.3988 (3)0.0401 (8)
H170.55910.60120.39170.048*
C180.6034 (3)0.7103 (2)0.4850 (3)0.0362 (8)
H180.54360.69840.53610.043*
C190.6827 (3)0.7865 (2)0.4944 (3)0.0300 (7)
C200.5715 (3)0.9019 (2)0.6056 (2)0.0303 (7)
C210.4767 (3)0.9129 (2)0.5323 (3)0.0352 (8)
H210.48560.88710.46580.042*
C220.3683 (3)0.9621 (2)0.5579 (3)0.0422 (9)
H220.30580.96910.50800.051*
C230.3527 (3)1.0006 (2)0.6560 (3)0.0431 (9)
H230.27951.03240.67300.052*
C240.4465 (3)0.9913 (2)0.7281 (3)0.0409 (8)
H240.43731.01860.79380.049*
C250.5545 (3)0.9421 (2)0.7050 (3)0.0336 (7)
H250.61630.93570.75560.040*
N11.5097 (2)0.66508 (19)1.1004 (2)0.0380 (7)
N21.2517 (2)0.93454 (17)0.9404 (2)0.0348 (6)
N31.1540 (2)0.96137 (17)0.8743 (2)0.0351 (6)
N40.6774 (2)0.84778 (18)0.58321 (19)0.0327 (6)
O11.16472 (18)0.80569 (14)0.87666 (16)0.0305 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0346 (19)0.041 (2)0.0379 (19)0.0005 (16)0.0046 (16)0.0011 (16)
C20.0351 (18)0.0318 (18)0.0356 (18)0.0032 (14)0.0042 (15)0.0010 (15)
C30.045 (2)0.0301 (18)0.042 (2)0.0010 (15)0.0019 (17)0.0038 (16)
C40.0359 (18)0.0350 (19)0.0339 (17)0.0002 (15)0.0024 (16)0.0048 (16)
C50.0289 (16)0.0333 (18)0.0264 (15)0.0002 (14)0.0040 (14)0.0003 (15)
C60.0277 (16)0.0311 (18)0.0259 (15)0.0001 (14)0.0001 (13)0.0026 (15)
C70.0333 (17)0.0258 (17)0.0272 (16)0.0017 (14)0.0043 (14)0.0007 (14)
C80.0293 (16)0.0286 (16)0.0202 (15)0.0015 (13)0.0023 (13)0.0012 (13)
C90.0405 (18)0.0240 (16)0.0276 (17)0.0045 (14)0.0001 (15)0.0010 (14)
C100.0401 (19)0.0235 (16)0.0298 (17)0.0036 (15)0.0019 (14)0.0060 (14)
C110.0370 (18)0.0215 (16)0.0320 (17)0.0020 (13)0.0016 (14)0.0014 (14)
C120.0404 (19)0.0246 (17)0.0290 (17)0.0033 (14)0.0048 (15)0.0013 (14)
C130.0331 (18)0.0319 (18)0.0255 (16)0.0032 (14)0.0013 (14)0.0046 (14)
C140.039 (2)0.043 (2)0.039 (2)0.0064 (16)0.0003 (16)0.0032 (17)
C150.045 (2)0.061 (3)0.0339 (19)0.0094 (19)0.0065 (17)0.0104 (19)
C160.046 (2)0.051 (2)0.0353 (19)0.0038 (18)0.0044 (17)0.0171 (18)
C170.042 (2)0.0353 (19)0.043 (2)0.0031 (16)0.0064 (17)0.0119 (17)
C180.0325 (17)0.043 (2)0.0335 (17)0.0034 (15)0.0020 (15)0.0056 (17)
C190.0282 (16)0.0310 (17)0.0308 (16)0.0034 (14)0.0041 (14)0.0037 (15)
C200.0330 (18)0.0243 (16)0.0337 (17)0.0055 (14)0.0009 (14)0.0037 (14)
C210.0392 (19)0.0337 (18)0.0326 (18)0.0050 (15)0.0013 (15)0.0010 (15)
C220.038 (2)0.0335 (19)0.055 (2)0.0006 (16)0.0036 (17)0.0073 (19)
C230.038 (2)0.037 (2)0.054 (2)0.0032 (16)0.0106 (18)0.0001 (18)
C240.047 (2)0.0340 (19)0.042 (2)0.0004 (17)0.0142 (18)0.0038 (16)
C250.0373 (19)0.0295 (17)0.0341 (18)0.0020 (15)0.0022 (15)0.0010 (15)
N10.0404 (16)0.0352 (16)0.0384 (16)0.0037 (14)0.0030 (14)0.0026 (14)
N20.0363 (15)0.0314 (15)0.0366 (15)0.0009 (12)0.0068 (13)0.0016 (13)
N30.0356 (15)0.0306 (15)0.0389 (15)0.0001 (12)0.0070 (13)0.0010 (13)
N40.0290 (14)0.0345 (15)0.0346 (15)0.0025 (12)0.0057 (12)0.0114 (13)
O10.0343 (12)0.0282 (12)0.0291 (11)0.0017 (9)0.0038 (10)0.0009 (10)
Geometric parameters (Å, º) top
C1—N11.344 (4)C13—N41.425 (4)
C1—C21.384 (4)C14—C151.380 (4)
C1—H10.9300C14—C191.388 (4)
C2—C51.380 (4)C14—H140.9300
C2—H20.9300C15—C161.375 (5)
C3—N11.333 (4)C15—H150.9300
C3—C41.382 (4)C16—C171.374 (5)
C3—H30.9300C16—H160.9300
C4—C51.387 (4)C17—C181.383 (4)
C4—H40.9300C17—H170.9300
C5—C61.452 (4)C18—C191.380 (4)
C6—N21.292 (3)C18—H180.9300
C6—O11.368 (3)C19—N41.430 (4)
C7—N31.296 (4)C20—C211.390 (4)
C7—O11.367 (3)C20—N41.399 (4)
C7—C81.456 (4)C20—C251.405 (4)
C8—C91.387 (4)C21—C221.393 (4)
C8—C111.393 (4)C21—H210.9300
C9—C101.383 (4)C22—C231.379 (5)
C9—H90.9300C22—H220.9300
C10—C131.384 (4)C23—C241.370 (5)
C10—H100.9300C23—H230.9300
C11—C121.381 (4)C24—C251.383 (4)
C11—H110.9300C24—H240.9300
C12—C131.388 (4)C25—H250.9300
C12—H120.9300N2—N31.398 (3)
N1—C1—C2123.8 (3)C19—C14—H14120.0
N1—C1—H1118.1C16—C15—C14120.6 (3)
C2—C1—H1118.1C16—C15—H15119.7
C5—C2—C1118.8 (3)C14—C15—H15119.7
C5—C2—H2120.6C17—C16—C15119.2 (3)
C1—C2—H2120.6C17—C16—H16120.4
N1—C3—C4124.2 (3)C15—C16—H16120.4
N1—C3—H3117.9C16—C17—C18121.2 (3)
C4—C3—H3117.9C16—C17—H17119.4
C3—C4—C5118.7 (3)C18—C17—H17119.4
C3—C4—H4120.7C19—C18—C17119.4 (3)
C5—C4—H4120.7C19—C18—H18120.3
C2—C5—C4118.3 (3)C17—C18—H18120.3
C2—C5—C6119.8 (3)C18—C19—C14119.7 (3)
C4—C5—C6121.9 (3)C18—C19—N4121.3 (3)
N2—C6—O1112.1 (3)C14—C19—N4118.9 (3)
N2—C6—C5128.1 (3)C21—C20—N4121.1 (3)
O1—C6—C5119.8 (3)C21—C20—C25118.0 (3)
N3—C7—O1112.2 (3)N4—C20—C25120.8 (3)
N3—C7—C8128.5 (3)C20—C21—C22120.4 (3)
O1—C7—C8119.3 (3)C20—C21—H21119.8
C9—C8—C11119.4 (3)C22—C21—H21119.8
C9—C8—C7121.4 (3)C23—C22—C21120.9 (3)
C11—C8—C7119.1 (3)C23—C22—H22119.6
C10—C9—C8120.2 (3)C21—C22—H22119.6
C10—C9—H9119.9C24—C23—C22119.0 (3)
C8—C9—H9119.9C24—C23—H23120.5
C9—C10—C13120.3 (3)C22—C23—H23120.5
C9—C10—H10119.8C23—C24—C25121.2 (3)
C13—C10—H10119.8C23—C24—H24119.4
C12—C11—C8120.3 (3)C25—C24—H24119.4
C12—C11—H11119.9C24—C25—C20120.4 (3)
C8—C11—H11119.9C24—C25—H25119.8
C11—C12—C13120.1 (3)C20—C25—H25119.8
C11—C12—H12120.0C3—N1—C1116.3 (3)
C13—C12—H12120.0C6—N2—N3106.8 (2)
C10—C13—C12119.8 (3)C7—N3—N2106.3 (2)
C10—C13—N4119.6 (3)C20—N4—C13121.4 (2)
C12—C13—N4120.6 (3)C20—N4—C19121.8 (2)
C15—C14—C19119.9 (3)C13—N4—C19116.6 (2)
C15—C14—H14120.0C7—O1—C6102.6 (2)
N1—C1—C2—C50.8 (5)N4—C20—C21—C22176.1 (3)
N1—C3—C4—C50.3 (5)C25—C20—C21—C220.3 (4)
C1—C2—C5—C40.2 (5)C20—C21—C22—C230.2 (5)
C1—C2—C5—C6178.3 (3)C21—C22—C23—C241.2 (5)
C3—C4—C5—C20.7 (5)C22—C23—C24—C251.7 (5)
C3—C4—C5—C6177.8 (3)C23—C24—C25—C201.2 (5)
C2—C5—C6—N22.4 (5)C21—C20—C25—C240.2 (4)
C4—C5—C6—N2179.2 (3)N4—C20—C25—C24176.6 (3)
C2—C5—C6—O1176.7 (3)C4—C3—N1—C10.7 (5)
C4—C5—C6—O11.7 (4)C2—C1—N1—C31.2 (5)
N3—C7—C8—C9169.3 (3)O1—C6—N2—N30.7 (3)
O1—C7—C8—C98.3 (4)C5—C6—N2—N3179.8 (3)
N3—C7—C8—C118.1 (5)O1—C7—N3—N21.0 (3)
O1—C7—C8—C11174.3 (3)C8—C7—N3—N2178.8 (3)
C11—C8—C9—C102.2 (4)C6—N2—N3—C71.0 (3)
C7—C8—C9—C10175.2 (3)C21—C20—N4—C13162.2 (3)
C8—C9—C10—C130.3 (4)C25—C20—N4—C1321.5 (4)
C9—C8—C11—C122.1 (4)C21—C20—N4—C1912.8 (4)
C7—C8—C11—C12175.4 (3)C25—C20—N4—C19163.5 (3)
C8—C11—C12—C130.2 (4)C10—C13—N4—C20126.7 (3)
C9—C10—C13—C121.6 (4)C12—C13—N4—C2052.7 (4)
C9—C10—C13—N4177.7 (3)C10—C13—N4—C1958.1 (4)
C11—C12—C13—C101.6 (4)C12—C13—N4—C19122.6 (3)
C11—C12—C13—N4177.7 (3)C18—C19—N4—C2063.3 (4)
C19—C14—C15—C161.6 (5)C14—C19—N4—C20118.5 (3)
C14—C15—C16—C170.7 (5)C18—C19—N4—C13121.5 (3)
C15—C16—C17—C180.8 (5)C14—C19—N4—C1356.7 (4)
C16—C17—C18—C191.3 (5)N3—C7—O1—C60.6 (3)
C17—C18—C19—C140.4 (5)C8—C7—O1—C6178.6 (2)
C17—C18—C19—N4178.6 (3)N2—C6—O1—C70.1 (3)
C15—C14—C19—C181.1 (5)C5—C6—O1—C7179.3 (3)
C15—C14—C19—N4177.2 (3)

Experimental details

Crystal data
Chemical formulaC25H18N4O
Mr390.43
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)291
a, b, c (Å)10.7125 (9), 14.1797 (12), 12.7835 (11)
V3)1941.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
10383, 2015, 1655
Rint0.061
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.083, 0.99
No. of reflections2015
No. of parameters271
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.16

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

 

Acknowledgements

The authors acknowledge financial support from the One Hundred Talents Project of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Project 20571071).

References

First citationBruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, W. K., Ng, P. K., Gong, X. & Hou, S. J. (1999). Appl. Phys. Lett. 75, 3920–3922.  Web of Science CrossRef CAS Google Scholar
First citationGong, X., Ng, P. K. & Chan, W. K. (1998). Adv. Mater. 10, 1337–1340.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Version 2.03. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTamoto, N., Adachi, C. & Nagai, K. (1997). Chem. Mater. 9, 1077–1085.  CrossRef CAS Web of Science Google Scholar
First citationTang, C. W. & Vanslyke, S. A. (1987). Appl. Phys. Lett. 51, 913–915.  CrossRef CAS Web of Science Google Scholar
First citationXiang, N. J., Lee, T. H., Gong, M. L., Tong, K. L., So, S. K. & Leung, L. M. (2006). Synth. Met. 156, 270–275.  Web of Science CrossRef CAS Google Scholar
First citationYeh, S. J., Wu, M. F., Chen, C. T., Song, Y. H., Chi, Y., Ho, M. H., Hsu, S. F. & Chen, C. H. (2005). Adv. Mater. 17, 285–289.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds