organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,3-diaminium–2-carb­oxy­pyridine-6-carboxyl­ate–pyridine-2,6-di­carboxylic acid–water (1/2/2/8)

aFaculty of Science, Department of Chemistry, Ilam University, Iran, bFaculty of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran, cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, and dDepartment of Chemistry, Sheffield University, Sheffield S3 7HF, England
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 13 November 2007; accepted 3 December 2007; online 12 December 2007)

The title proton-transfer compound, C3H12N22+·2C7H4NO4·2C7H5NO4·8H2O or (pnH2)(pydcH)2.2(pydcH2)·8H2O, was obtained by the reaction of pyridine-2,6-dicarboxylic acid (pydcH2) and propane-1,3-diamine (pn) in aqueous solution. Both neutral and monoanionic forms of the diacid are observed in the crystal structure. The negative charge of two monoanions is balanced by the dicationic propane-1,3-diaminium species. In addition, considerable ππ stacking inter­actions between the aromatic rings of the (pydcH) and (pydcH2) fragments [with centroid–centroid distances of 3.5108 (11)–3.5949 (11) Å] are observed. The most important feature of this crystal structure is the presence of a large number of O—H⋯O, O—H⋯N, N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds, with DA ranging from 2.445 (2) to 3.485 (3) Å. These inter­actions as well as ion pairing and ππ stacking connect the various fragments into a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi, Ghasemikhah & Soleimannejad (2007[Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803-m1804.]); Aghabozorg, Attar Gharamaleki, Ghasemikhah, Ghadermazi & Soleimannejad, 2007[Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710-m1711.]; Aghabozorg, Daneshvar et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]).

[Scheme 1]

Experimental

Crystal data
  • C3H12N22+·2C7H4NO4·2C7H5NO4·8H2O

  • Mr = 886.73

  • Monoclinic, P 21 /c

  • a = 13.5425 (2) Å

  • b = 13.5237 (2) Å

  • c = 21.7538 (3) Å

  • β = 99.914 (1)°

  • V = 3924.60 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 (2) K

  • 0.26 × 0.12 × 0.12 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.985

  • 56174 measured reflections

  • 9031 independent reflections

  • 6702 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.139

  • S = 1.02

  • 9031 reflections

  • 550 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O19 0.95 1.94 2.830 (2) 154
O5—H5AA⋯O20 0.95 1.67 2.592 (2) 164
O7—H7A⋯O3 0.95 1.51 2.455 (2) 177
O7—H7A⋯O4 0.95 2.57 3.119 (2) 117
O9—H9A⋯O22 0.95 1.64 2.588 (2) 172
O11—H11A⋯O13i 0.95 1.50 2.445 (2) 177
O11—H11A⋯O14i 0.95 2.61 3.181 (2) 119
O16—H16A⋯O24 0.95 1.60 2.551 (2) 174
O17—H17A⋯O15 0.95 1.90 2.838 (2) 167
O17—H17A⋯N4 0.95 2.43 2.956 (2) 115
O17—H17B⋯O14 0.95 1.87 2.821 (2) 175
O18—H18B⋯O1 0.95 1.89 2.815 (2) 164
O18—H18A⋯O17ii 0.95 1.88 2.809 (2) 166
O19—H19B⋯N1 0.95 2.22 3.092 (2) 152
O19—H19A⋯O13i 0.95 2.34 3.174 (2) 146
O20—H20B⋯O12iii 0.95 1.87 2.793 (2) 164
O20—H20A⋯O22 0.95 1.95 2.875 (3) 165
O21—H21B⋯O10 0.95 1.89 2.834 (2) 170
O21—H21A⋯O19iii 0.95 1.85 2.784 (2) 166
O22—H22A⋯O21 0.95 1.88 2.818 (2) 168
O22—H22B⋯O17iv 0.95 1.81 2.742 (2) 167
O23—H23B⋯O6 0.95 1.85 2.749 (2) 157
O23—H23A⋯O12iii 0.95 1.96 2.899 (2) 170
O24—H24B⋯O18v 0.95 1.79 2.706 (2) 161
O24—H24A⋯O12vi 0.95 1.86 2.761 (2) 157
N5—H5A⋯N2 0.95 2.40 3.342 (3) 171
N5—H5A⋯O6 0.95 2.61 3.227 (2) 123
N5—H5B⋯O4 0.95 1.95 2.879 (2) 166
N5—H5C⋯O23vii 0.95 2.06 2.991 (3) 166
N6—H6A⋯O14i 0.95 2.01 2.938 (2) 164
N6—H6B⋯O21viii 0.95 1.90 2.849 (2) 174
N6—H6C⋯N3 0.95 2.17 3.070 (2) 158
C5—H5⋯O18iii 0.95 2.56 3.429 (3) 153
C10—H10⋯O1ix 0.95 2.50 3.335 (3) 147
C11—H11⋯O18ix 0.95 2.52 3.427 (3) 159
C19—H19⋯O15x 0.95 2.46 3.266 (3) 143
C25—H25⋯O24xi 0.95 2.56 3.485 (3) 165
C26—H26⋯O16xi 0.95 2.56 3.287 (3) 134
C31—H31A⋯N2 0.99 2.52 3.391 (3) 146
C31—H31B⋯O10 0.99 2.54 3.175 (3) 122
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x+1, -y+2, -z; (viii) -x+1, -y+1, -z; (ix) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (x) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (xi) -x, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2005[Bruker (2005). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Intermolecular interactions, such as hydrogen bonding, π-π stacking, ion pairing and donor-acceptor interactions, are famous for making aggregates of molecules. Hydrogen bonding has been described as the most important interaction in supramolecular chemistry. Dicarboxylic acids possess a good potential to be used as proton donors in the synthesis of proton transfer compounds. Among these diacids, pyridine-2,6-dicarboxylic acid has been used by our research group for preparing of such compounds. For example, (pydaH)(pydcH) in which pyridine-2,6-diamine (pyda) was used as a proton acceptor. The resulting compounds with some remaining sites as electron donors can coordinate to metallic ions (Aghabozorg, Attar Gharamaleki, Ghadermazi, Ghasemikhah & Soleimannejad, 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah, Ghadermazi & Soleimannejad, 2007; Aghabozorg, Daneshvar et al., 2007).

Here we report a new proton transfer compound obtained from (pydcH2) as a proton donor and propane-1,3-diamine (pn) as an acceptor. The molecular structure of the title compound is shown in Fig. 1. The intermolecular hydrogen bond distances are listed in Table 1.

The structure of this compound contains two neutral pydcH2 molecules, two monoanionic (pydcH)-, one (pnH2)2+ species and eight uncoordinated water molecules. The negative charge of two monoanions is neutralized by dicationic propane-1,3-diaminium fragments.

A considerable π-π stacking interactions between aromatic rings of (pydcH2) and (pydcH)- fragments with centroid-centroid distances of 3.5108 (11)–3.5949 (11) Å are observed in the prepared compound (Fig. 2). A remarkable feature in the crystal structure of compound (I) is the presence of a large number of O—H···O, O—H···N, N—H···O, N—H···N, C—H···O and C—H···N hydrogen bonds interactions ranging from 2.450 (2) to 3.488 (3) Å. The shortest hydrogen bond is O11—H11A···O13 (-x + 1, y + 1/2, -z + 1/2) with D···A = 2.450 (2) Å, a very strong interaction (Table 1). These extensive hydrogen bond interactions as well as ion pairing and π-π stacking connect the different components to form a three-dimensional supramolecular structure (Fig. 3).

Related literature top

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi, Ghasemikhah & Soleimannejad (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah, Ghadermazi & Soleimannejad, 2007; Aghabozorg, Daneshvar et al. (2007).

Experimental top

The reaction of pyridine-2,6-dicarboxylic acid (pydcH2) (330 mg, 2 mmol) with propane-1,3-diamine (pn) (76 mg, 1 mmol) in a 2:1 molar ratio in tetrahydrofuran (THF) led to the formation of a white precipitate which was filtered off and dried. The resulting powder was dissolved in water to give colorless crystals of the title compound after four weeks.

Structure description top

Intermolecular interactions, such as hydrogen bonding, π-π stacking, ion pairing and donor-acceptor interactions, are famous for making aggregates of molecules. Hydrogen bonding has been described as the most important interaction in supramolecular chemistry. Dicarboxylic acids possess a good potential to be used as proton donors in the synthesis of proton transfer compounds. Among these diacids, pyridine-2,6-dicarboxylic acid has been used by our research group for preparing of such compounds. For example, (pydaH)(pydcH) in which pyridine-2,6-diamine (pyda) was used as a proton acceptor. The resulting compounds with some remaining sites as electron donors can coordinate to metallic ions (Aghabozorg, Attar Gharamaleki, Ghadermazi, Ghasemikhah & Soleimannejad, 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah, Ghadermazi & Soleimannejad, 2007; Aghabozorg, Daneshvar et al., 2007).

Here we report a new proton transfer compound obtained from (pydcH2) as a proton donor and propane-1,3-diamine (pn) as an acceptor. The molecular structure of the title compound is shown in Fig. 1. The intermolecular hydrogen bond distances are listed in Table 1.

The structure of this compound contains two neutral pydcH2 molecules, two monoanionic (pydcH)-, one (pnH2)2+ species and eight uncoordinated water molecules. The negative charge of two monoanions is neutralized by dicationic propane-1,3-diaminium fragments.

A considerable π-π stacking interactions between aromatic rings of (pydcH2) and (pydcH)- fragments with centroid-centroid distances of 3.5108 (11)–3.5949 (11) Å are observed in the prepared compound (Fig. 2). A remarkable feature in the crystal structure of compound (I) is the presence of a large number of O—H···O, O—H···N, N—H···O, N—H···N, C—H···O and C—H···N hydrogen bonds interactions ranging from 2.450 (2) to 3.488 (3) Å. The shortest hydrogen bond is O11—H11A···O13 (-x + 1, y + 1/2, -z + 1/2) with D···A = 2.450 (2) Å, a very strong interaction (Table 1). These extensive hydrogen bond interactions as well as ion pairing and π-π stacking connect the different components to form a three-dimensional supramolecular structure (Fig. 3).

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi, Ghasemikhah & Soleimannejad (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah, Ghadermazi & Soleimannejad, 2007; Aghabozorg, Daneshvar et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I), displacement ellipsoids are drawn at the 50% probability level. Water molecules are omitted for clarity.
[Figure 2] Fig. 2. π-π Stacking interactions between aromatic rings of (pydcH2) and (pydcH)- fragments with centroid-centroid distances of: X1A···.X1B, 3.5949 (11) Å (x, y, z); X1B···.X1C, 3.5191 (11) Å (1 - x, -1/2 + y, 1/2 - z); X1C···.X1D, 3.5789 (11) Å (1 - x, 1/2 + y, 1/2 - z); X1A···.X1D, 3.5108 (11) Å (x, 1 + y, z).
[Figure 3] Fig. 3. Unit-cell packing diagram of the compound (I). Hydrogen bonds are indicated by dashed lines.
Propane-1,3-diaminium–2-carboxypyridine-6-carboxylate– pyridine-2,6-dicarboxylic acid–water (1/2/2/8) top
Crystal data top
C3H12N22+·2C7H4NO4·2C7H5NO4·8H2OF(000) = 1864
Mr = 886.73Dx = 1.501 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.5425 (2) ÅCell parameters from 9156 reflections
b = 13.5237 (2) Åθ = 2.4–29.1°
c = 21.7538 (3) ŵ = 0.13 mm1
β = 99.914 (1)°T = 150 K
V = 3924.60 (10) Å3Block, colourless
Z = 40.26 × 0.12 × 0.12 mm
Data collection top
Bruker SMART 1000
diffractometer
9031 independent reflections
Radiation source: fine-focus sealed tube6702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 100 pixels mm-1θmax = 27.5°, θmin = 1.5°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1717
Tmin = 0.967, Tmax = 0.985l = 2828
56174 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0592P)2 + 3.5811P]
where P = (Fo2 + 2Fc2)/3
9031 reflections(Δ/σ)max < 0.001
550 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C3H12N22+·2C7H4NO4·2C7H5NO4·8H2OV = 3924.60 (10) Å3
Mr = 886.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5425 (2) ŵ = 0.13 mm1
b = 13.5237 (2) ÅT = 150 K
c = 21.7538 (3) Å0.26 × 0.12 × 0.12 mm
β = 99.914 (1)°
Data collection top
Bruker SMART 1000
diffractometer
9031 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
6702 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.985Rint = 0.054
56174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.84 e Å3
9031 reflectionsΔρmin = 0.51 e Å3
550 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.90840 (11)0.77843 (12)0.54180 (7)0.0254 (3)
O20.74609 (11)0.79981 (11)0.51063 (7)0.0249 (3)
H2A0.69580.80870.47480.030*
O30.60302 (12)0.87473 (13)0.31596 (7)0.0307 (4)
O40.68349 (11)0.88557 (12)0.23488 (7)0.0262 (3)
O50.18211 (12)0.78608 (13)0.00659 (7)0.0320 (4)
H5AA0.20270.77230.04530.038*
O60.33622 (12)0.84668 (13)0.02551 (7)0.0292 (4)
O70.45325 (11)0.89020 (13)0.23505 (7)0.0298 (4)
H7A0.50960.88380.26750.036*
O80.35911 (12)0.86950 (14)0.30873 (7)0.0333 (4)
O90.15292 (11)0.52710 (12)0.01050 (6)0.0245 (3)
H9A0.17990.52330.04800.029*
O100.31288 (12)0.55101 (13)0.03474 (7)0.0315 (4)
O110.39207 (11)0.63847 (12)0.24320 (6)0.0262 (3)
H11A0.44560.63390.27760.031*
O120.28767 (11)0.61399 (11)0.31033 (6)0.0235 (3)
O130.46668 (11)0.12691 (14)0.17039 (7)0.0322 (4)
O140.37185 (11)0.11228 (12)0.24412 (6)0.0258 (3)
O150.02539 (11)0.06135 (12)0.19062 (7)0.0255 (3)
O160.04375 (11)0.02480 (12)0.09246 (6)0.0248 (3)
H16A0.10190.00610.10860.030*
O170.18876 (11)0.09699 (12)0.28868 (7)0.0263 (3)
H17A0.14160.08060.25250.032*
H17B0.24900.10580.27260.032*
O180.85758 (12)0.72397 (12)0.65729 (7)0.0276 (3)
H18B0.86420.74970.61760.033*
H18A0.83080.78220.67250.033*
O190.55978 (12)0.80178 (13)0.42843 (7)0.0337 (4)
H19B0.62210.83110.42440.040*
H19A0.52390.75330.40190.040*
O200.20445 (14)0.74513 (13)0.11979 (8)0.0385 (4)
H20B0.24370.78660.14130.046*
H20A0.22060.67700.12160.046*
O210.42936 (12)0.54219 (13)0.06159 (7)0.0338 (4)
H21B0.39700.54180.02620.041*
H21A0.46780.60110.06070.041*
O220.22400 (13)0.53350 (13)0.11351 (7)0.0348 (4)
H22A0.29480.53730.10210.042*
H22B0.20140.49110.14790.042*
O230.42837 (14)0.89677 (16)0.07328 (8)0.0464 (5)
H23B0.38520.89380.04320.056*
H23A0.38660.88660.11250.056*
O240.20133 (11)0.03538 (11)0.13049 (7)0.0236 (3)
H24B0.18840.10000.14700.028*
H24A0.22940.00310.15970.028*
C10.83900 (16)0.79459 (15)0.49983 (9)0.0200 (4)
C20.85368 (15)0.80829 (15)0.43368 (9)0.0187 (4)
C30.94700 (16)0.79837 (15)0.41643 (10)0.0213 (4)
H31.00490.78440.44650.026*
C40.95318 (17)0.80945 (16)0.35423 (10)0.0244 (5)
H41.01560.80190.34050.029*
C50.86744 (16)0.83174 (15)0.31202 (10)0.0222 (4)
H50.87020.83970.26900.027*
C60.77715 (16)0.84232 (15)0.33360 (9)0.0196 (4)
C70.68120 (16)0.86929 (16)0.29052 (9)0.0223 (4)
C80.25328 (15)0.82141 (16)0.03516 (9)0.0207 (4)
C90.22600 (15)0.82952 (15)0.09889 (9)0.0179 (4)
C100.12850 (15)0.81571 (15)0.10843 (9)0.0199 (4)
H100.07670.79940.07470.024*
C110.10811 (15)0.82621 (15)0.16848 (10)0.0215 (4)
H110.04170.81910.17650.026*
C120.18632 (16)0.84712 (15)0.21610 (10)0.0212 (4)
H120.17480.85430.25770.025*
C130.28225 (15)0.85764 (15)0.20248 (9)0.0193 (4)
C140.36955 (16)0.87368 (16)0.25443 (10)0.0228 (4)
C150.22408 (15)0.54705 (16)0.03722 (9)0.0209 (4)
C160.18464 (15)0.56360 (15)0.09693 (9)0.0177 (4)
C170.08312 (15)0.55850 (15)0.09973 (10)0.0204 (4)
H170.03500.54650.06330.024*
C180.05401 (16)0.57144 (16)0.15715 (10)0.0224 (4)
H180.01480.56800.16080.027*
C190.12607 (15)0.58934 (15)0.20898 (9)0.0197 (4)
H190.10790.59730.24900.024*
C200.22577 (15)0.59546 (14)0.20150 (9)0.0172 (4)
C210.30780 (15)0.61719 (15)0.25620 (9)0.0190 (4)
C220.38272 (15)0.11248 (16)0.18930 (9)0.0208 (4)
C230.29575 (15)0.09393 (14)0.13742 (9)0.0178 (4)
C240.30923 (15)0.08566 (15)0.07564 (9)0.0192 (4)
H240.37380.09250.06470.023*
C250.22567 (16)0.06715 (15)0.03039 (9)0.0201 (4)
H250.23200.06140.01230.024*
C260.13305 (16)0.05727 (15)0.04837 (9)0.0197 (4)
H260.07460.04520.01830.024*
C270.12751 (15)0.06546 (14)0.11150 (9)0.0173 (4)
C280.03140 (15)0.05113 (15)0.13594 (9)0.0193 (4)
C290.57849 (17)0.82728 (18)0.08483 (10)0.0278 (5)
H29A0.64720.84720.08030.033*
H29B0.53710.82450.04270.033*
C300.58164 (16)0.72587 (18)0.11447 (10)0.0266 (5)
H30A0.61950.72970.15760.032*
H30B0.61760.67980.09070.032*
C310.47782 (16)0.68576 (17)0.11606 (10)0.0255 (5)
H31A0.44350.72950.14220.031*
H31B0.43850.68610.07330.031*
N10.76996 (13)0.82962 (13)0.39359 (8)0.0192 (4)
N20.30298 (13)0.85093 (12)0.14479 (8)0.0185 (3)
N30.25553 (12)0.58254 (12)0.14653 (7)0.0172 (3)
N40.20715 (12)0.08387 (12)0.15546 (7)0.0172 (3)
N50.53588 (15)0.90263 (15)0.12309 (8)0.0285 (4)
H5A0.46820.88580.12450.034*
H5B0.57700.90260.16310.034*
H5C0.53590.96840.10780.034*
N60.48067 (13)0.58346 (14)0.14140 (8)0.0230 (4)
H6A0.52100.58420.18170.028*
H6B0.50840.53740.11610.028*
H6C0.41550.56760.14900.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (8)0.0309 (9)0.0189 (7)0.0012 (6)0.0019 (6)0.0031 (6)
O20.0228 (8)0.0324 (9)0.0200 (7)0.0025 (6)0.0051 (6)0.0006 (6)
O30.0221 (8)0.0496 (11)0.0201 (8)0.0014 (7)0.0027 (6)0.0003 (7)
O40.0266 (8)0.0358 (9)0.0157 (7)0.0062 (7)0.0017 (6)0.0001 (6)
O50.0288 (9)0.0478 (11)0.0183 (8)0.0069 (7)0.0008 (6)0.0078 (7)
O60.0266 (8)0.0433 (10)0.0188 (7)0.0046 (7)0.0074 (6)0.0021 (7)
O70.0195 (8)0.0508 (11)0.0184 (7)0.0055 (7)0.0007 (6)0.0019 (7)
O80.0287 (9)0.0554 (11)0.0162 (8)0.0009 (8)0.0048 (6)0.0034 (7)
O90.0243 (8)0.0328 (9)0.0156 (7)0.0044 (6)0.0007 (6)0.0031 (6)
O100.0249 (8)0.0493 (11)0.0212 (8)0.0053 (7)0.0066 (6)0.0076 (7)
O110.0165 (7)0.0465 (10)0.0151 (7)0.0009 (7)0.0014 (6)0.0020 (7)
O120.0285 (8)0.0276 (8)0.0153 (7)0.0007 (6)0.0066 (6)0.0005 (6)
O130.0181 (8)0.0608 (12)0.0173 (7)0.0034 (7)0.0022 (6)0.0041 (7)
O140.0211 (8)0.0402 (9)0.0157 (7)0.0010 (7)0.0022 (6)0.0008 (6)
O150.0225 (8)0.0363 (9)0.0187 (7)0.0022 (6)0.0065 (6)0.0048 (6)
O160.0193 (7)0.0366 (9)0.0186 (7)0.0064 (6)0.0035 (6)0.0035 (6)
O170.0251 (8)0.0379 (9)0.0163 (7)0.0009 (7)0.0050 (6)0.0014 (6)
O180.0338 (9)0.0276 (8)0.0234 (8)0.0022 (7)0.0107 (7)0.0040 (6)
O190.0290 (9)0.0442 (10)0.0285 (9)0.0022 (7)0.0061 (7)0.0040 (7)
O200.0527 (11)0.0310 (9)0.0367 (10)0.0008 (8)0.0213 (8)0.0039 (7)
O210.0350 (9)0.0400 (10)0.0301 (9)0.0047 (8)0.0156 (7)0.0063 (7)
O220.0425 (10)0.0408 (10)0.0223 (8)0.0057 (8)0.0087 (7)0.0043 (7)
O230.0338 (10)0.0815 (15)0.0254 (9)0.0036 (10)0.0095 (7)0.0090 (9)
O240.0228 (8)0.0285 (8)0.0205 (7)0.0024 (6)0.0060 (6)0.0031 (6)
C10.0236 (11)0.0171 (10)0.0190 (10)0.0004 (8)0.0035 (8)0.0001 (8)
C20.0215 (10)0.0160 (10)0.0188 (10)0.0015 (8)0.0043 (8)0.0009 (8)
C30.0209 (10)0.0189 (10)0.0237 (10)0.0004 (8)0.0027 (8)0.0010 (8)
C40.0252 (11)0.0234 (11)0.0269 (11)0.0000 (9)0.0104 (9)0.0010 (9)
C50.0275 (11)0.0213 (11)0.0192 (10)0.0028 (8)0.0075 (8)0.0014 (8)
C60.0258 (11)0.0158 (10)0.0169 (9)0.0039 (8)0.0033 (8)0.0023 (8)
C70.0236 (11)0.0239 (11)0.0188 (10)0.0064 (8)0.0019 (8)0.0028 (8)
C80.0200 (10)0.0221 (10)0.0195 (10)0.0009 (8)0.0020 (8)0.0004 (8)
C90.0208 (10)0.0155 (9)0.0176 (9)0.0003 (8)0.0037 (8)0.0009 (8)
C100.0208 (10)0.0174 (10)0.0205 (10)0.0015 (8)0.0002 (8)0.0033 (8)
C110.0177 (10)0.0205 (10)0.0275 (11)0.0004 (8)0.0072 (8)0.0035 (8)
C120.0244 (11)0.0208 (10)0.0195 (10)0.0020 (8)0.0073 (8)0.0010 (8)
C130.0218 (10)0.0183 (10)0.0180 (10)0.0006 (8)0.0034 (8)0.0001 (8)
C140.0217 (11)0.0268 (11)0.0202 (10)0.0008 (9)0.0042 (8)0.0024 (8)
C150.0222 (11)0.0224 (10)0.0180 (10)0.0022 (8)0.0030 (8)0.0009 (8)
C160.0190 (10)0.0168 (10)0.0172 (9)0.0004 (8)0.0030 (7)0.0012 (8)
C170.0197 (10)0.0174 (10)0.0226 (10)0.0009 (8)0.0004 (8)0.0002 (8)
C180.0177 (10)0.0219 (11)0.0288 (11)0.0006 (8)0.0073 (8)0.0011 (9)
C190.0206 (10)0.0192 (10)0.0211 (10)0.0010 (8)0.0083 (8)0.0001 (8)
C200.0198 (10)0.0161 (10)0.0165 (9)0.0021 (7)0.0051 (8)0.0015 (7)
C210.0222 (10)0.0188 (10)0.0166 (9)0.0027 (8)0.0053 (8)0.0003 (8)
C220.0184 (10)0.0261 (11)0.0176 (10)0.0006 (8)0.0023 (8)0.0032 (8)
C230.0198 (10)0.0162 (10)0.0171 (9)0.0002 (8)0.0023 (8)0.0009 (8)
C240.0210 (10)0.0188 (10)0.0188 (10)0.0000 (8)0.0059 (8)0.0002 (8)
C250.0272 (11)0.0190 (10)0.0146 (9)0.0025 (8)0.0049 (8)0.0005 (8)
C260.0222 (10)0.0186 (10)0.0175 (9)0.0028 (8)0.0014 (8)0.0008 (8)
C270.0192 (10)0.0149 (9)0.0179 (9)0.0002 (7)0.0036 (8)0.0010 (7)
C280.0219 (10)0.0183 (10)0.0177 (10)0.0014 (8)0.0036 (8)0.0002 (8)
C290.0225 (11)0.0417 (14)0.0202 (10)0.0082 (10)0.0064 (9)0.0055 (10)
C300.0169 (10)0.0398 (13)0.0235 (11)0.0014 (9)0.0046 (8)0.0042 (10)
C310.0187 (10)0.0327 (12)0.0249 (11)0.0005 (9)0.0033 (8)0.0008 (9)
N10.0226 (9)0.0185 (9)0.0168 (8)0.0022 (7)0.0036 (7)0.0006 (7)
N20.0205 (9)0.0185 (8)0.0171 (8)0.0006 (7)0.0043 (7)0.0010 (7)
N30.0188 (8)0.0176 (8)0.0160 (8)0.0001 (7)0.0053 (6)0.0001 (7)
N40.0183 (8)0.0179 (8)0.0153 (8)0.0010 (6)0.0028 (6)0.0002 (6)
N50.0297 (10)0.0355 (11)0.0199 (9)0.0053 (8)0.0034 (8)0.0007 (8)
N60.0186 (9)0.0329 (10)0.0181 (8)0.0010 (7)0.0052 (7)0.0035 (7)
Geometric parameters (Å, º) top
O1—C11.212 (3)C8—C91.499 (3)
O2—C11.321 (2)C9—N21.345 (3)
O2—H2A0.9499C9—C101.384 (3)
O3—C71.278 (3)C10—C111.388 (3)
O4—C71.236 (2)C10—H100.9500
O5—C81.296 (3)C11—C121.377 (3)
O5—H5AA0.9501C11—H110.9500
O6—C81.226 (3)C12—C131.389 (3)
O7—C141.295 (3)C12—H120.9500
O7—H7A0.9501C13—N21.335 (3)
O8—C141.215 (3)C13—C141.504 (3)
O9—C151.317 (2)C15—C161.504 (3)
O9—H9A0.9499C16—N31.340 (3)
O10—C151.214 (3)C16—C171.388 (3)
O11—C211.255 (2)C17—C181.384 (3)
O11—H11A0.9499C17—H170.9500
O12—C211.254 (2)C18—C191.380 (3)
O13—C221.289 (2)C18—H180.9500
O14—C221.227 (2)C19—C201.390 (3)
O15—C281.214 (2)C19—H190.9500
O16—C281.314 (2)C20—N31.338 (2)
O16—H16A0.9500C20—C211.510 (3)
O17—H17A0.9500C22—C231.505 (3)
O17—H17B0.9499C23—N41.332 (3)
O18—H18B0.9501C23—C241.392 (3)
O18—H18A0.9499C24—C251.389 (3)
O19—H19B0.9501C24—H240.9500
O19—H19A0.9500C25—C261.383 (3)
O20—H20B0.9502C25—H250.9500
O20—H20A0.9501C26—C271.393 (3)
O21—H21B0.9500C26—H260.9500
O21—H21A0.9500C27—N41.336 (3)
O22—H22A0.9500C27—C281.501 (3)
O22—H22B0.9500C29—N51.493 (3)
O23—H23B0.9500C29—C301.513 (3)
O23—H23A0.9499C29—H29A0.9900
O24—H24B0.9500C29—H29B0.9900
O24—H24A0.9501C30—C311.513 (3)
C1—C21.498 (3)C30—H30A0.9900
C2—N11.337 (3)C30—H30B0.9900
C2—C31.385 (3)C31—N61.487 (3)
C3—C41.378 (3)C31—H31A0.9900
C3—H30.9500C31—H31B0.9900
C4—C51.384 (3)N5—H5A0.9500
C4—H40.9500N5—H5B0.9500
C5—C61.391 (3)N5—H5C0.9500
C5—H50.9500N6—H6A0.9502
C6—N11.336 (3)N6—H6B0.9499
C6—C71.510 (3)N6—H6C0.9500
C1—O2—H2A115.5C19—C18—H18120.4
C8—O5—H5AA113.4C17—C18—H18120.4
C14—O7—H7A112.3C18—C19—C20118.65 (18)
C15—O9—H9A110.5C18—C19—H19120.7
C21—O11—H11A114.1C20—C19—H19120.7
C28—O16—H16A113.3N3—C20—C19123.04 (18)
H17A—O17—H17B102.8N3—C20—C21115.83 (17)
H18B—O18—H18A96.6C19—C20—C21121.13 (17)
H19B—O19—H19A127.0O12—C21—O11124.91 (19)
H20B—O20—H20A113.5O12—C21—C20118.92 (18)
H21B—O21—H21A108.4O11—C21—C20116.17 (17)
H22A—O22—H22B114.4O14—C22—O13124.81 (19)
H23B—O23—H23A105.7O14—C22—C23121.27 (18)
H24B—O24—H24A108.7O13—C22—C23113.92 (17)
O1—C1—O2120.96 (18)N4—C23—C24123.43 (18)
O1—C1—C2122.15 (19)N4—C23—C22115.11 (17)
O2—C1—C2116.88 (17)C24—C23—C22121.44 (18)
N1—C2—C3123.70 (18)C25—C24—C23118.21 (18)
N1—C2—C1114.54 (17)C25—C24—H24120.9
C3—C2—C1121.76 (18)C23—C24—H24120.9
C4—C3—C2117.9 (2)C26—C25—C24119.01 (18)
C4—C3—H3121.1C26—C25—H25120.5
C2—C3—H3121.1C24—C25—H25120.5
C3—C4—C5119.3 (2)C25—C26—C27118.46 (19)
C3—C4—H4120.4C25—C26—H26120.8
C5—C4—H4120.4C27—C26—H26120.8
C4—C5—C6118.98 (19)N4—C27—C26123.16 (18)
C4—C5—H5120.5N4—C27—C28114.39 (17)
C6—C5—H5120.5C26—C27—C28122.43 (18)
N1—C6—C5122.19 (19)O15—C28—O16124.19 (19)
N1—C6—C7115.94 (18)O15—C28—C27122.74 (18)
C5—C6—C7121.87 (18)O16—C28—C27113.06 (17)
O4—C7—O3125.2 (2)N5—C29—C30111.50 (17)
O4—C7—C6119.12 (19)N5—C29—H29A109.3
O3—C7—C6115.69 (18)C30—C29—H29A109.3
O6—C8—O5125.11 (19)N5—C29—H29B109.3
O6—C8—C9121.12 (18)C30—C29—H29B109.3
O5—C8—C9113.76 (18)H29A—C29—H29B108.0
N2—C9—C10123.73 (18)C29—C30—C31112.13 (19)
N2—C9—C8114.79 (17)C29—C30—H30A109.2
C10—C9—C8121.48 (18)C31—C30—H30A109.2
C9—C10—C11118.47 (19)C29—C30—H30B109.2
C9—C10—H10120.8C31—C30—H30B109.2
C11—C10—H10120.8H30A—C30—H30B107.9
C12—C11—C10118.49 (19)N6—C31—C30112.15 (18)
C12—C11—H11120.8N6—C31—H31A109.2
C10—C11—H11120.8C30—C31—H31A109.2
C11—C12—C13119.14 (19)N6—C31—H31B109.2
C11—C12—H12120.4C30—C31—H31B109.2
C13—C12—H12120.4H31A—C31—H31B107.9
N2—C13—C12123.32 (19)C6—N1—C2117.92 (18)
N2—C13—C14116.79 (18)C13—N2—C9116.79 (17)
C12—C13—C14119.84 (18)C20—N3—C16117.42 (17)
O8—C14—O7125.4 (2)C23—N4—C27117.72 (16)
O8—C14—C13121.05 (19)C29—N5—H5A108.8
O7—C14—C13113.53 (17)C29—N5—H5B106.8
O10—C15—O9124.74 (19)H5A—N5—H5B112.7
O10—C15—C16122.26 (18)C29—N5—H5C114.9
O9—C15—C16113.00 (17)H5A—N5—H5C107.1
N3—C16—C17123.50 (18)H5B—N5—H5C106.6
N3—C16—C15114.34 (17)C31—N6—H6A107.8
C17—C16—C15122.16 (18)C31—N6—H6B112.5
C18—C17—C16118.13 (19)H6A—N6—H6B108.7
C18—C17—H17120.9C31—N6—H6C108.0
C16—C17—H17120.9H6A—N6—H6C104.2
C19—C18—C17119.23 (19)H6B—N6—H6C115.1
O1—C1—C2—N1177.34 (19)C18—C19—C20—C21178.60 (19)
O2—C1—C2—N13.4 (3)N3—C20—C21—O12168.41 (18)
O1—C1—C2—C33.2 (3)C19—C20—C21—O1211.4 (3)
O2—C1—C2—C3176.03 (18)N3—C20—C21—O1112.3 (3)
N1—C2—C3—C41.2 (3)C19—C20—C21—O11167.82 (19)
C1—C2—C3—C4178.17 (19)O14—C22—C23—N44.0 (3)
C2—C3—C4—C51.3 (3)O13—C22—C23—N4176.68 (19)
C3—C4—C5—C60.0 (3)O14—C22—C23—C24174.4 (2)
C4—C5—C6—N11.5 (3)O13—C22—C23—C244.9 (3)
C4—C5—C6—C7178.33 (19)N4—C23—C24—C250.8 (3)
N1—C6—C7—O4177.41 (19)C22—C23—C24—C25179.11 (19)
C5—C6—C7—O42.4 (3)C23—C24—C25—C260.3 (3)
N1—C6—C7—O31.6 (3)C24—C25—C26—C270.6 (3)
C5—C6—C7—O3178.6 (2)C25—C26—C27—N41.0 (3)
O6—C8—C9—N210.0 (3)C25—C26—C27—C28177.05 (18)
O5—C8—C9—N2169.95 (18)N4—C27—C28—O154.3 (3)
O6—C8—C9—C10170.0 (2)C26—C27—C28—O15177.5 (2)
O5—C8—C9—C1010.1 (3)N4—C27—C28—O16174.48 (17)
N2—C9—C10—C111.2 (3)C26—C27—C28—O163.7 (3)
C8—C9—C10—C11178.76 (19)N5—C29—C30—C3165.6 (2)
C9—C10—C11—C121.8 (3)C29—C30—C31—N6176.28 (17)
C10—C11—C12—C130.4 (3)C5—C6—N1—C21.6 (3)
C11—C12—C13—N21.7 (3)C7—C6—N1—C2178.23 (18)
C11—C12—C13—C14175.90 (19)C3—C2—N1—C60.2 (3)
N2—C13—C14—O8171.6 (2)C1—C2—N1—C6179.62 (17)
C12—C13—C14—O86.2 (3)C12—C13—N2—C92.3 (3)
N2—C13—C14—O77.5 (3)C14—C13—N2—C9175.36 (18)
C12—C13—C14—O7174.77 (19)C10—C9—N2—C130.8 (3)
O10—C15—C16—N30.2 (3)C8—C9—N2—C13179.19 (18)
O9—C15—C16—N3179.01 (17)C19—C20—N3—C160.5 (3)
O10—C15—C16—C17179.6 (2)C21—C20—N3—C16179.69 (17)
O9—C15—C16—C170.4 (3)C17—C16—N3—C201.1 (3)
N3—C16—C17—C181.5 (3)C15—C16—N3—C20178.31 (17)
C15—C16—C17—C18177.83 (19)C24—C23—N4—C270.4 (3)
C16—C17—C18—C190.4 (3)C22—C23—N4—C27178.80 (17)
C17—C18—C19—C201.1 (3)C26—C27—N4—C230.5 (3)
C18—C19—C20—N31.6 (3)C28—C27—N4—C23177.68 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O190.951.942.830 (2)154
O5—H5AA···O200.951.672.592 (2)164
O7—H7A···O30.951.512.455 (2)177
O7—H7A···O40.952.573.119 (2)117
O9—H9A···O220.951.642.588 (2)172
O11—H11A···O13i0.951.502.445 (2)177
O11—H11A···O14i0.952.613.181 (2)119
O16—H16A···O240.951.602.551 (2)174
O17—H17A···O150.951.902.838 (2)167
O17—H17A···N40.952.432.956 (2)115
O17—H17B···O140.951.872.821 (2)175
O18—H18B···O10.951.892.815 (2)164
O18—H18A···O17ii0.951.882.809 (2)166
O19—H19B···N10.952.223.092 (2)152
O19—H19A···O13i0.952.343.174 (2)146
O20—H20B···O12iii0.951.872.793 (2)164
O20—H20A···O220.951.952.875 (3)165
O21—H21B···O100.951.892.834 (2)170
O21—H21A···O19iii0.951.852.784 (2)166
O22—H22A···O210.951.882.818 (2)168
O22—H22B···O17iv0.951.812.742 (2)167
O23—H23B···O60.951.852.749 (2)157
O23—H23A···O12iii0.951.962.899 (2)170
O24—H24B···O18v0.951.792.706 (2)161
O24—H24A···O12vi0.951.862.761 (2)157
N5—H5A···N20.952.403.342 (3)171
N5—H5A···O60.952.613.227 (2)123
N5—H5B···O40.951.952.879 (2)166
N5—H5C···O23vii0.952.062.991 (3)166
N6—H6A···O14i0.952.012.938 (2)164
N6—H6B···O21viii0.951.902.849 (2)174
N6—H6C···N30.952.173.070 (2)158
C5—H5···O18iii0.952.563.429 (3)153
C10—H10···O1ix0.952.503.335 (3)147
C11—H11···O18ix0.952.523.427 (3)159
C19—H19···O15x0.952.463.266 (3)143
C25—H25···O24xi0.952.563.485 (3)165
C26—H26···O16xi0.952.563.287 (3)134
C31—H31A···N20.992.523.391 (3)146
C31—H31B···O100.992.543.175 (3)122
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z1/2; (v) x1, y+1/2, z1/2; (vi) x, y1/2, z+1/2; (vii) x+1, y+2, z; (viii) x+1, y+1, z; (ix) x1, y+3/2, z1/2; (x) x, y+1/2, z+1/2; (xi) x, y, z.

Experimental details

Crystal data
Chemical formulaC3H12N22+·2C7H4NO4·2C7H5NO4·8H2O
Mr886.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)13.5425 (2), 13.5237 (2), 21.7538 (3)
β (°) 99.914 (1)
V3)3924.60 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.26 × 0.12 × 0.12
Data collection
DiffractometerBruker SMART 1000
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.967, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
56174, 9031, 6702
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 1.02
No. of reflections9031
No. of parameters550
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.51

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O190.951.942.830 (2)154.3
O5—H5AA···O200.951.672.592 (2)163.9
O7—H7A···O30.951.512.455 (2)176.5
O7—H7A···O40.952.573.119 (2)116.8
O9—H9A···O220.951.642.588 (2)171.9
O11—H11A···O13i0.951.502.445 (2)177.3
O11—H11A···O14i0.952.613.181 (2)118.9
O16—H16A···O240.951.602.551 (2)173.7
O17—H17A···O150.951.902.838 (2)166.7
O17—H17A···N40.952.432.956 (2)114.9
O17—H17B···O140.951.872.821 (2)174.8
O18—H18B···O10.951.892.815 (2)164.3
O18—H18A···O17ii0.951.882.809 (2)165.8
O19—H19B···N10.952.223.092 (2)152.4
O19—H19A···O13i0.952.343.174 (2)146.1
O20—H20B···O12iii0.951.872.793 (2)164.4
O20—H20A···O220.951.952.875 (3)164.7
O21—H21B···O100.951.892.834 (2)169.8
O21—H21A···O19iii0.951.852.784 (2)165.8
O22—H22A···O210.951.882.818 (2)167.5
O22—H22B···O17iv0.951.812.742 (2)166.7
O23—H23B···O60.951.852.749 (2)156.8
O23—H23A···O12iii0.951.962.899 (2)169.9
O24—H24B···O18v0.951.792.706 (2)161.3
O24—H24A···O12vi0.951.862.761 (2)156.5
N5—H5A···N20.952.403.342 (3)171.1
N5—H5A···O60.952.613.227 (2)123.4
N5—H5B···O40.951.952.879 (2)166.3
N5—H5C···O23vii0.952.062.991 (3)166.1
N6—H6A···O14i0.952.012.938 (2)164.3
N6—H6B···O21viii0.951.902.849 (2)173.5
N6—H6C···N30.952.173.070 (2)158.3
C5—H5···O18iii0.952.563.429 (3)153
C10—H10···O1ix0.952.503.335 (3)147
C11—H11···O18ix0.952.523.427 (3)159
C19—H19···O15x0.952.463.266 (3)143
C25—H25···O24xi0.952.563.485 (3)165
C26—H26···O16xi0.952.563.287 (3)134
C31—H31A···N20.992.523.391 (3)146
C31—H31B···O100.992.543.175 (3)122
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z1/2; (v) x1, y+1/2, z1/2; (vi) x, y1/2, z+1/2; (vii) x+1, y+2, z; (viii) x+1, y+1, z; (ix) x1, y+3/2, z1/2; (x) x, y+1/2, z+1/2; (xi) x, y, z.
 

Acknowledgements

Financial support from Ilam University and the Teacher Training University is gratefully acknowledged.

References

First citationAghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds