metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[piperazinediium [aqua­bis­(μ-pyridine-2,5-di­carboxyl­ato)zincate] dihydrate]

aFaculty of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 21 November 2007; accepted 27 November 2007; online 6 December 2007)

The polymeric title compound, {(C4H12N2)[Zn(C7H3NO4)2(H2O)]·2H2O}n, was obtained by the reaction of zinc(II) nitrate hexa­hydrate with the proton-transfer compound (pipzH2)(py-2,5-dc) (where pipz is piperazine and py-2,5-dcH2 is pyridine-2,5-dicarboxylic acid) in aqueous solution. Each ZnII atom is coordinated in a distorted octa­hedral geometry by four O atoms and two N atoms from one water mol­ecule and two (py-2,5-dc)2– ligands, which also act as bridging ligands between ZnII atoms. ππ Stacking inter­actions between two aromatic rings of (py-2,5-dc)2– fragments, with centroid–centroid distances of 3.4747 (7) and 3.7081 (7) Å are observed. The crystal structure is stabilized by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Aghabozorg et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.], 2007a[Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007a). Acta Cryst. E63, m1803-m1804.],b[Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007b). Acta Cryst. E63, m1710-m1711.]); Sheshmani et al. (2007[Sheshmani, S., Aghabozorg, H. & Ghadermazi, M. (2007). Acta Cryst. E63, o2869.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)[Zn(C7H3NO4)2(H2O)]·2H2O

  • Mr = 537.78

  • Monoclinic, P 21 /c

  • a = 13.1752 (5) Å

  • b = 11.9066 (5) Å

  • c = 13.6902 (5) Å

  • β = 100.567 (1)°

  • V = 2111.19 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 100 (2) K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector' diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 (Version 2.0-1), SAINT (Version 7.23A), SADABS (Version 2004/1) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.756, Tmax = 0.808

  • 26339 measured reflections

  • 6148 independent reflections

  • 5458 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.069

  • S = 1.03

  • 6148 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.82 1.93 2.730 (1) 167
O1W—H1WB⋯O2 0.82 1.86 2.678 (2) 173
O2W—H2WA⋯O1W 0.82 1.87 2.682 (1) 174
N3—H3B⋯O8ii 0.92 1.82 2.741 (1) 177
N3—H3C⋯O1 0.92 2.46 2.912 (1) 111
N3—H3C⋯O5 0.92 1.94 2.818 (1) 158
O2W—H2WB⋯O5iii 0.82 1.99 2.805 (1) 170
N4—H4A⋯O2Wiv 0.92 1.78 2.679 (2) 164
N4—H4B⋯O3v 0.92 1.79 2.714 (1) 179
O9—H9A⋯O8vi 0.82 1.86 2.678 (1) 173
O9—H9B⋯O4vi 0.82 1.83 2.640 (1) 172
Symmetry codes: (i) -x, -y, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1; (v) [x+1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x, -y-1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 2.0-1), SAINT (Version 7.23A), SADABS (Version 2004/1) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 2.0-1), SAINT (Version 7.23A), SADABS (Version 2004/1) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2005[Bruker (2005). APEX2 (Version 2.0-1), SAINT (Version 7.23A), SADABS (Version 2004/1) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Our research group has recently focused on one-pot synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes (Aghabozorg et al., 2007, 2007a, 2007b).

The molecular structure of the title compound is shown in Fig. 1. The negative charge of the anionic complex is neutralized by dicationic piperazinediium species.

The ZnII atom is hexacoordinated by two nitrogen atoms, two O atoms from carboxylate groups of two (py-2,5-dc)2– fragments, one O atom from a bridging (py-2,5-dc)2– ligand and one O atom from a coordinated water molecule. O7 and O9 atoms occupy the axial positions, while N1, N2, O1 and O5 atoms form the equatorial plane. The O9—Zn1—O7i (i: -x + 1, y - 1/2, -z + 1/2) bond angle revealed ~7.6° deviation from linearity. There are two uncoordinated water molecules and one piperazinediium ion as counter-ion, with some hydrogen bonds to water molecules and coordinated COO- groups of (py-2,5-dc)2– fragments.

The (py-2,5-dc)2– fragments are bridging via carboxylate group, connecting the ZnII atoms together into a layered structure in which the space between the [Zn(H2O)(py-2,5-dc)2]2– species is filled by piperazinediium ions and water molecules (Fig. 2).

The dihedral angle between the aromatic rings of (py-2,5-dc)2– groups connected to the same Zn atom is 6.82 (6)°, indicating that these fragments are almost coparallel.

π-π stacking interactions between two aromatic rings of (py-2,5-dc)2–, with centroid-centroid distances of 3.4747 (7) Å (symmetry code: -x, 1/2 + y, 1/2 - z) and 3.7081 (7) Å (symmetry code: -x, -1 - y, -z) are observed in the title compound (Fig. 3).

Related literature top

For related literature, see: Aghabozorg et al. (2007, 2007a,b); Sheshmani et al. (2007).

Experimental top

The proton transfer compound was prepared by a reaction between piperazineand pyridine-2,5-dicarboxylicacid (Sheshmani, et al., 2007). A solution of Zn(NO3)2.6H2O (130 mg, 0.5 mmol) in water (15 ml) was added to an aqueous solution of (pipzH2)(py-2,5-dc) (253 mg, 1.0 mmol) in water (15 ml) in a 1:2 molar ratio. Colorless crystals were obtained after a few days at room temperature.

Refinement top

The hydrogen atoms of NH2 groups and water molecules were found in difference Fourier synthesis. Nevertheless, all hydrogen atoms were refined using a riding model with with the Uiso(H) parameters equal to 1.2 Ueq(C,N,O) and Caromatic—H = 0.95 Å, Cmethylene—H = 0.99 Å, O—H = 0.82Å and N—H = 0.92 Å.

Structure description top

Our research group has recently focused on one-pot synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes (Aghabozorg et al., 2007, 2007a, 2007b).

The molecular structure of the title compound is shown in Fig. 1. The negative charge of the anionic complex is neutralized by dicationic piperazinediium species.

The ZnII atom is hexacoordinated by two nitrogen atoms, two O atoms from carboxylate groups of two (py-2,5-dc)2– fragments, one O atom from a bridging (py-2,5-dc)2– ligand and one O atom from a coordinated water molecule. O7 and O9 atoms occupy the axial positions, while N1, N2, O1 and O5 atoms form the equatorial plane. The O9—Zn1—O7i (i: -x + 1, y - 1/2, -z + 1/2) bond angle revealed ~7.6° deviation from linearity. There are two uncoordinated water molecules and one piperazinediium ion as counter-ion, with some hydrogen bonds to water molecules and coordinated COO- groups of (py-2,5-dc)2– fragments.

The (py-2,5-dc)2– fragments are bridging via carboxylate group, connecting the ZnII atoms together into a layered structure in which the space between the [Zn(H2O)(py-2,5-dc)2]2– species is filled by piperazinediium ions and water molecules (Fig. 2).

The dihedral angle between the aromatic rings of (py-2,5-dc)2– groups connected to the same Zn atom is 6.82 (6)°, indicating that these fragments are almost coparallel.

π-π stacking interactions between two aromatic rings of (py-2,5-dc)2–, with centroid-centroid distances of 3.4747 (7) Å (symmetry code: -x, 1/2 + y, 1/2 - z) and 3.7081 (7) Å (symmetry code: -x, -1 - y, -z) are observed in the title compound (Fig. 3).

For related literature, see: Aghabozorg et al. (2007, 2007a,b); Sheshmani et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.Atoms marked with a are related by the symmetry code: -x + 1, y - 1/2, -z + 1/2.
[Figure 2] Fig. 2. Packing diagram of the title compound, the space between [Zn(H2O)(py-2,5-dc)2]2– layers, is filled by piperazinediium ions and water molecules.
[Figure 3] Fig. 3. π-π Stacking interactions between aromatic rings of pyridine-2,5-dicarboxylate fragments with centroid-centroid distances of 3.4747 (7) Å (symmetry code: -x, 1/2 + y, 1/2 - z) and 3.7081 (7) Å (symmetry code: -x, -1 - y, -z).
Poly[piperazinediium [aquabis(µ-pyridine-2,5-dicarboxylato)zincate] dihydrate] top
Crystal data top
(C4H12N2)[Zn(C7H3NO4)2(H2O)]·2H2OF(000) = 1112
Mr = 537.78Dx = 1.692 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 583 reflections
a = 13.1752 (5) Åθ = 3–30°
b = 11.9066 (5) ŵ = 1.24 mm1
c = 13.6902 (5) ÅT = 100 K
β = 100.567 (1)°Prism, colourless
V = 2111.19 (14) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector'
diffractometer
6148 independent reflections
Radiation source: fine-focus sealed tube5458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1818
Tmin = 0.756, Tmax = 0.808k = 1616
26339 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: mixed
wR(F2) = 0.069H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0365P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
6148 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
(C4H12N2)[Zn(C7H3NO4)2(H2O)]·2H2OV = 2111.19 (14) Å3
Mr = 537.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1752 (5) ŵ = 1.24 mm1
b = 11.9066 (5) ÅT = 100 K
c = 13.6902 (5) Å0.24 × 0.20 × 0.18 mm
β = 100.567 (1)°
Data collection top
Bruker APEXII CCD area-detector'
diffractometer
6148 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5458 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.808Rint = 0.029
26339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.03Δρmax = 0.83 e Å3
6148 reflectionsΔρmin = 0.38 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.157893 (10)0.413714 (11)0.162746 (10)0.00887 (5)
O10.22982 (7)0.25877 (8)0.17492 (7)0.01233 (17)
O20.20008 (9)0.07463 (9)0.15203 (11)0.0298 (3)
O30.32052 (7)0.19745 (8)0.00316 (8)0.01648 (19)
O40.28405 (7)0.37980 (8)0.01990 (8)0.01749 (19)
O50.30053 (7)0.48325 (7)0.22242 (7)0.01115 (17)
O60.38201 (7)0.64637 (8)0.26384 (8)0.0179 (2)
O70.11016 (7)0.88980 (8)0.19126 (7)0.01188 (17)
O80.17065 (7)0.73902 (8)0.10247 (7)0.01579 (19)
O90.18192 (7)0.43941 (8)0.01814 (7)0.01400 (18)
H9A0.18260.38670.02030.017*
H9B0.21710.49170.00410.017*
N10.03069 (8)0.30642 (9)0.10358 (8)0.00939 (19)
N20.11783 (8)0.58497 (8)0.17585 (8)0.00904 (19)
C10.05938 (9)0.19776 (10)0.10974 (9)0.0110 (2)
C20.01048 (10)0.11078 (11)0.08528 (10)0.0135 (2)
H2A0.01230.03490.08950.016*
C30.11439 (10)0.13610 (11)0.05445 (10)0.0134 (2)
H3A0.16370.07770.03800.016*
C40.14516 (9)0.24797 (10)0.04793 (9)0.0103 (2)
C50.06942 (9)0.33022 (10)0.07249 (9)0.0099 (2)
H5A0.08980.40680.06690.012*
C60.17291 (10)0.17423 (11)0.14852 (10)0.0141 (2)
C70.25825 (9)0.27880 (11)0.02066 (9)0.0116 (2)
C80.20087 (9)0.65035 (10)0.20725 (9)0.0093 (2)
C90.19325 (9)0.76566 (10)0.21772 (9)0.0109 (2)
H9C0.25340.81010.23770.013*
C100.09628 (9)0.81510 (10)0.19858 (9)0.0108 (2)
H10A0.08920.89380.20640.013*
C110.00939 (9)0.74839 (10)0.16771 (9)0.0094 (2)
C120.02468 (9)0.63331 (10)0.15639 (9)0.0100 (2)
H12A0.03380.58730.13380.012*
C130.30435 (9)0.59080 (10)0.23404 (9)0.0104 (2)
C140.09852 (9)0.79664 (10)0.15208 (9)0.0101 (2)
N30.35861 (8)0.31370 (9)0.36536 (8)0.0119 (2)
H3B0.29600.28630.37540.014*
H3C0.34690.35640.30840.014*
N40.49509 (8)0.22071 (9)0.53234 (8)0.0123 (2)
H4A0.50590.17770.58920.015*
H4B0.55800.24800.52330.015*
C150.42751 (10)0.21754 (11)0.35168 (10)0.0149 (2)
H15A0.39330.16960.29620.018*
H15B0.49260.24630.33470.018*
C160.45104 (10)0.14881 (11)0.44632 (10)0.0150 (2)
H16A0.50080.08860.43840.018*
H16B0.38690.11290.45880.018*
C170.42647 (10)0.31659 (11)0.54554 (10)0.0136 (2)
H17A0.36090.28790.56160.016*
H17B0.46020.36420.60140.016*
C180.40415 (10)0.38587 (11)0.45105 (10)0.0135 (2)
H18A0.46890.42020.43840.016*
H18B0.35550.44710.45890.016*
O1W0.37141 (7)0.04431 (8)0.14623 (7)0.01687 (19)
H1WA0.34910.09390.10650.020*
H1WB0.32220.00280.14860.020*
O2W0.50510 (8)0.07757 (9)0.31667 (8)0.0206 (2)
H2WA0.46100.06680.26690.025*
H2WB0.55940.05160.30520.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00708 (7)0.00737 (7)0.01160 (7)0.00038 (5)0.00023 (5)0.00018 (5)
O10.0093 (4)0.0106 (4)0.0159 (4)0.0009 (3)0.0006 (3)0.0007 (3)
O20.0161 (5)0.0113 (5)0.0573 (8)0.0044 (4)0.0058 (5)0.0039 (5)
O30.0096 (4)0.0164 (5)0.0234 (5)0.0031 (3)0.0029 (4)0.0053 (4)
O40.0101 (4)0.0143 (4)0.0279 (5)0.0001 (3)0.0030 (4)0.0020 (4)
O50.0089 (4)0.0092 (4)0.0148 (4)0.0007 (3)0.0008 (3)0.0009 (3)
O60.0098 (4)0.0143 (4)0.0277 (5)0.0015 (3)0.0013 (4)0.0024 (4)
O70.0132 (4)0.0094 (4)0.0134 (4)0.0020 (3)0.0035 (3)0.0006 (3)
O80.0097 (4)0.0159 (5)0.0209 (5)0.0020 (3)0.0001 (3)0.0068 (4)
O90.0179 (5)0.0108 (4)0.0140 (4)0.0025 (3)0.0045 (3)0.0017 (3)
N10.0086 (4)0.0095 (5)0.0100 (5)0.0000 (3)0.0015 (4)0.0007 (4)
N20.0090 (5)0.0088 (4)0.0094 (4)0.0001 (3)0.0019 (4)0.0004 (3)
C10.0103 (5)0.0105 (5)0.0118 (5)0.0009 (4)0.0010 (4)0.0002 (4)
C20.0144 (6)0.0083 (5)0.0169 (6)0.0002 (4)0.0005 (5)0.0005 (4)
C30.0124 (5)0.0114 (6)0.0161 (6)0.0030 (4)0.0014 (4)0.0003 (4)
C40.0091 (5)0.0126 (5)0.0095 (5)0.0014 (4)0.0022 (4)0.0006 (4)
C50.0096 (5)0.0097 (5)0.0103 (5)0.0000 (4)0.0014 (4)0.0003 (4)
C60.0115 (5)0.0118 (5)0.0182 (6)0.0019 (4)0.0002 (5)0.0011 (5)
C70.0083 (5)0.0156 (6)0.0110 (5)0.0009 (4)0.0024 (4)0.0002 (4)
C80.0082 (5)0.0110 (5)0.0087 (5)0.0000 (4)0.0020 (4)0.0009 (4)
C90.0097 (5)0.0103 (5)0.0126 (5)0.0016 (4)0.0021 (4)0.0002 (4)
C100.0127 (5)0.0082 (5)0.0117 (5)0.0003 (4)0.0025 (4)0.0001 (4)
C110.0093 (5)0.0098 (5)0.0093 (5)0.0011 (4)0.0027 (4)0.0007 (4)
C120.0085 (5)0.0105 (5)0.0108 (5)0.0003 (4)0.0014 (4)0.0003 (4)
C130.0093 (5)0.0116 (5)0.0103 (5)0.0007 (4)0.0019 (4)0.0011 (4)
C140.0099 (5)0.0102 (5)0.0107 (5)0.0019 (4)0.0034 (4)0.0014 (4)
N30.0084 (4)0.0138 (5)0.0125 (5)0.0001 (4)0.0004 (4)0.0021 (4)
N40.0085 (4)0.0145 (5)0.0134 (5)0.0015 (4)0.0008 (4)0.0031 (4)
C150.0136 (6)0.0173 (6)0.0134 (6)0.0029 (5)0.0013 (5)0.0012 (5)
C160.0150 (6)0.0116 (6)0.0175 (6)0.0013 (4)0.0007 (5)0.0000 (5)
C170.0116 (5)0.0161 (6)0.0130 (6)0.0028 (4)0.0019 (4)0.0001 (5)
C180.0123 (5)0.0111 (5)0.0161 (6)0.0005 (4)0.0001 (4)0.0000 (4)
O1W0.0133 (4)0.0167 (5)0.0195 (5)0.0004 (4)0.0002 (4)0.0024 (4)
O2W0.0142 (5)0.0265 (5)0.0203 (5)0.0045 (4)0.0007 (4)0.0099 (4)
Geometric parameters (Å, º) top
Zn1—O12.0668 (9)C8—C131.5208 (17)
Zn1—O52.0788 (9)C9—C101.3874 (17)
Zn1—O92.0840 (9)C9—H9C0.9500
Zn1—N22.1222 (10)C10—C111.3938 (17)
Zn1—N12.1445 (10)C10—H10A0.9500
Zn1—O7i2.2209 (9)C11—C121.3976 (16)
O1—C61.2675 (16)C11—C141.5119 (16)
O2—C61.2372 (16)C12—H12A0.9500
O3—C71.2636 (15)N3—C181.4888 (17)
O4—C71.2492 (16)N3—C151.4941 (17)
O5—C131.2903 (15)N3—H3B0.9201
O6—C131.2239 (15)N3—H3C0.9200
O7—C141.2536 (15)N4—C161.4852 (17)
O7—Zn1ii2.2209 (9)N4—C171.4877 (16)
O8—C141.2643 (15)N4—H4A0.9200
O9—H9A0.8200N4—H4B0.9199
O9—H9B0.8199C15—C161.5156 (18)
N1—C51.3399 (15)C15—H15A0.9900
N1—C11.3461 (16)C15—H15B0.9900
N2—C121.3374 (15)C16—H16A0.9900
N2—C81.3472 (15)C16—H16B0.9900
C1—C21.3852 (17)C17—C181.5167 (18)
C1—C61.5187 (17)C17—H17A0.9900
C2—C31.3898 (18)C17—H17B0.9900
C2—H2A0.9500C18—H18A0.9900
C3—C41.3904 (17)C18—H18B0.9900
C3—H3A0.9500O1W—H1WA0.8200
C4—C51.3946 (16)O1W—H1WB0.8200
C4—C71.5133 (17)O2W—H2WA0.8200
C5—H5A0.9500O2W—H2WB0.8199
C8—C91.3859 (17)
O1—Zn1—O587.46 (3)C9—C10—C11119.48 (11)
O1—Zn1—O993.46 (4)C9—C10—H10A120.3
O5—Zn1—O991.78 (4)C11—C10—H10A120.3
O1—Zn1—N2165.55 (4)C10—C11—C12117.73 (11)
O5—Zn1—N278.76 (4)C10—C11—C14121.67 (11)
O9—Zn1—N291.30 (4)C12—C11—C14120.52 (11)
O1—Zn1—N179.27 (4)N2—C12—C11123.05 (11)
O5—Zn1—N1166.71 (4)N2—C12—H12A118.5
O9—Zn1—N188.45 (4)C11—C12—H12A118.5
N2—Zn1—N1114.52 (4)O6—C13—O5126.08 (12)
O1—Zn1—O7i90.82 (4)O6—C13—C8119.08 (11)
O5—Zn1—O7i94.71 (3)O5—C13—C8114.84 (10)
O9—Zn1—O7i172.38 (4)O7—C14—O8124.83 (11)
N2—Zn1—O7i86.06 (4)O7—C14—C11117.47 (11)
N1—Zn1—O7i86.15 (4)O8—C14—C11117.67 (11)
C6—O1—Zn1116.57 (8)C18—N3—C15112.01 (10)
C13—O5—Zn1117.11 (8)C18—N3—H3B109.2
C14—O7—Zn1ii125.14 (8)C15—N3—H3B109.2
Zn1—O9—H9A121.2C18—N3—H3C109.2
Zn1—O9—H9B121.7C15—N3—H3C109.2
H9A—O9—H9B111.0H3B—N3—H3C107.9
C5—N1—C1118.15 (10)C16—N4—C17112.39 (10)
C5—N1—Zn1130.51 (8)C16—N4—H4A109.1
C1—N1—Zn1110.97 (8)C17—N4—H4A109.1
C12—N2—C8118.47 (10)C16—N4—H4B109.1
C12—N2—Zn1129.05 (8)C17—N4—H4B109.1
C8—N2—Zn1112.47 (8)H4A—N4—H4B107.9
N1—C1—C2122.48 (11)N3—C15—C16109.90 (10)
N1—C1—C6116.52 (11)N3—C15—H15A109.7
C2—C1—C6120.98 (11)C16—C15—H15A109.7
C1—C2—C3119.02 (12)N3—C15—H15B109.7
C1—C2—H2A120.5C16—C15—H15B109.7
C3—C2—H2A120.5H15A—C15—H15B108.2
C2—C3—C4119.13 (11)N4—C16—C15110.83 (11)
C2—C3—H3A120.4N4—C16—H16A109.5
C4—C3—H3A120.4C15—C16—H16A109.5
C3—C4—C5118.03 (11)N4—C16—H16B109.5
C3—C4—C7120.70 (11)C15—C16—H16B109.5
C5—C4—C7121.19 (11)H16A—C16—H16B108.1
N1—C5—C4123.18 (11)N4—C17—C18109.93 (10)
N1—C5—H5A118.4N4—C17—H17A109.7
C4—C5—H5A118.4C18—C17—H17A109.7
O2—C6—O1126.75 (12)N4—C17—H17B109.7
O2—C6—C1116.73 (12)C18—C17—H17B109.7
O1—C6—C1116.51 (11)H17A—C17—H17B108.2
O4—C7—O3124.76 (12)N3—C18—C17110.19 (10)
O4—C7—C4119.32 (11)N3—C18—H18A109.6
O3—C7—C4115.88 (11)C17—C18—H18A109.6
N2—C8—C9122.37 (11)N3—C18—H18B109.6
N2—C8—C13116.57 (10)C17—C18—H18B109.6
C9—C8—C13121.04 (11)H18A—C18—H18B108.1
C8—C9—C10118.85 (11)H1WA—O1W—H1WB105.7
C8—C9—H9C120.6H2WA—O2W—H2WB107.0
C10—C9—H9C120.6
O5—Zn1—O1—C6178.14 (10)C7—C4—C5—N1175.31 (11)
O9—Zn1—O1—C690.24 (10)Zn1—O1—C6—O2178.27 (13)
N2—Zn1—O1—C6160.74 (14)Zn1—O1—C6—C10.95 (15)
N1—Zn1—O1—C62.47 (9)N1—C1—C6—O2178.30 (13)
O7i—Zn1—O1—C683.46 (9)C2—C1—C6—O23.7 (2)
O1—Zn1—O5—C13179.97 (9)N1—C1—C6—O12.41 (17)
O9—Zn1—O5—C1386.64 (9)C2—C1—C6—O1175.64 (12)
N2—Zn1—O5—C134.33 (9)C3—C4—C7—O4176.67 (12)
N1—Zn1—O5—C13177.44 (14)C5—C4—C7—O40.21 (18)
O7i—Zn1—O5—C1389.35 (9)C3—C4—C7—O31.13 (17)
O1—Zn1—N1—C5176.42 (11)C5—C4—C7—O3177.58 (11)
O5—Zn1—N1—C5179.05 (13)C12—N2—C8—C91.56 (18)
O9—Zn1—N1—C589.77 (11)Zn1—N2—C8—C9177.67 (9)
N2—Zn1—N1—C50.96 (12)C12—N2—C8—C13176.63 (11)
O7i—Zn1—N1—C584.85 (11)Zn1—N2—C8—C134.14 (13)
O1—Zn1—N1—C13.59 (8)N2—C8—C9—C102.33 (18)
O5—Zn1—N1—C16.2 (2)C13—C8—C9—C10175.78 (11)
O9—Zn1—N1—C197.41 (9)C8—C9—C10—C111.14 (18)
N2—Zn1—N1—C1171.87 (8)C9—C10—C11—C120.67 (18)
O7i—Zn1—N1—C187.97 (8)C9—C10—C11—C14176.08 (11)
O1—Zn1—N2—C12158.72 (13)C8—N2—C12—C110.41 (18)
O5—Zn1—N2—C12176.45 (11)Zn1—N2—C12—C11179.49 (9)
O9—Zn1—N2—C1292.00 (11)C10—C11—C12—N21.51 (18)
N1—Zn1—N2—C123.11 (12)C14—C11—C12—N2175.29 (11)
O7i—Zn1—N2—C1280.84 (11)Zn1—O5—C13—O6176.62 (11)
O1—Zn1—N2—C822.2 (2)Zn1—O5—C13—C83.37 (13)
O5—Zn1—N2—C84.43 (8)N2—C8—C13—O6179.33 (12)
O9—Zn1—N2—C887.12 (8)C9—C8—C13—O61.12 (18)
N1—Zn1—N2—C8176.02 (8)N2—C8—C13—O50.67 (16)
O7i—Zn1—N2—C8100.03 (8)C9—C8—C13—O5178.89 (11)
C5—N1—C1—C20.03 (18)Zn1ii—O7—C14—O882.76 (15)
Zn1—N1—C1—C2173.79 (10)Zn1ii—O7—C14—C1195.54 (12)
C5—N1—C1—C6178.04 (11)C10—C11—C14—O718.00 (17)
Zn1—N1—C1—C64.23 (13)C12—C11—C14—O7158.66 (11)
N1—C1—C2—C30.9 (2)C10—C11—C14—O8163.58 (12)
C6—C1—C2—C3177.05 (12)C12—C11—C14—O819.76 (17)
C1—C2—C3—C40.72 (19)C18—N3—C15—C1656.65 (14)
C2—C3—C4—C50.27 (18)C17—N4—C16—C1556.30 (14)
C2—C3—C4—C7176.29 (12)N3—C15—C16—N455.00 (14)
C1—N1—C5—C41.11 (18)C16—N4—C17—C1856.56 (14)
Zn1—N1—C5—C4171.29 (9)C15—N3—C18—C1757.58 (13)
C3—C4—C5—N11.24 (18)N4—C17—C18—N356.24 (13)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3iii0.821.932.730 (1)167
O1W—H1WB···O20.821.862.678 (2)173
O2W—H2WA···O1W0.821.872.682 (1)174
N3—H3B···O8i0.921.822.741 (1)177
N3—H3C···O10.922.462.912 (1)111
N3—H3C···O50.921.942.818 (1)158
O2W—H2WB···O5iv0.821.992.805 (1)170
N4—H4A···O2Wv0.921.782.679 (2)164
N4—H4B···O3vi0.921.792.714 (1)179
O9—H9A···O8vii0.821.862.678 (1)173
O9—H9B···O4vii0.821.832.640 (1)172
Symmetry codes: (i) x, y+1/2, z+1/2; (iii) x, y, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z+1; (vi) x+1, y1/2, z+1/2; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C4H12N2)[Zn(C7H3NO4)2(H2O)]·2H2O
Mr537.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.1752 (5), 11.9066 (5), 13.6902 (5)
β (°) 100.567 (1)
V3)2111.19 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector'
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.756, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
26339, 6148, 5458
Rint0.029
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.03
No. of reflections6148
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.821.932.730 (1)167
O1W—H1WB···O20.821.862.678 (2)173
O2W—H2WA···O1W0.821.872.682 (1)174
N3—H3B···O8ii0.921.822.741 (1)177
N3—H3C···O10.922.462.912 (1)111
N3—H3C···O50.921.942.818 (1)158
O2W—H2WB···O5iii0.821.992.805 (1)170
N4—H4A···O2Wiv0.921.782.679 (2)164
N4—H4B···O3v0.921.792.714 (1)179
O9—H9A···O8vi0.821.862.678 (1)173
O9—H9B···O4vi0.821.832.640 (1)172
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y1, z.
 

References

First citationAghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007a). Acta Cryst. E63, m1803–m1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007b). Acta Cryst. E63, m1710–m1711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 (Version 2.0-1), SAINT (Version 7.23A), SADABS (Version 2004/1) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheshmani, S., Aghabozorg, H. & Ghadermazi, M. (2007). Acta Cryst. E63, o2869.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds