organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A triclinic modification of 5,5′-di­nitro-2,2′-di­thio­di­pyridine

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstituto de Bio-Orgánica 'Antonio González', Universidad de la Laguna, Astrofísico Francisco Sánchez No. 2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 21 November 2007; accepted 23 November 2007; online 6 December 2007)

The asymmetric unit of the title compound, C10H6N4O4S2, contains two independent but similar mol­ecules. The structure is a triclinic polymorph of the monoclinic structure reported previously [Brito, Mundaca, Cárdenas, López-Rodríguez & Vargas (2007[Brito, I., Mundaca, A., Cárdenas, A., López-Rodríguez, M. & Vargas, D. (2007). Acta Cryst. E63, o3351-o3352.]). Acta Cryst. E63, o3351–o3352]. The most obvious difference between the two polymorphs is the C—S—S—C torsion angle [−80.13 (16), −79.8 (2) and 0° for the two mol­ecules of the triclinic polymorph and the monoclinic polymorph, respectively]. The crystal structure of the title compound has two intra­molecular C—H⋯S inter­actions with average H⋯S distances of 2.69 Å, whereas this kind of inter­action is not evident in the monoclinic polymorph.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Brito et al. (2007[Brito, I., Mundaca, A., Cárdenas, A., López-Rodríguez, M. & Vargas, D. (2007). Acta Cryst. E63, o3351-o3352.]); Glidewell et al. (2000[Glidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. B56, 893-905.]); Shefter (1970[Shefter, E. J. (1970). J. Chem. Soc. B, pp. 903-905.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6N4O4S2

  • Mr = 310.31

  • Triclinic, [P \overline 1]

  • a = 7.7832 (12) Å

  • b = 11.8515 (11) Å

  • c = 14.513 (2) Å

  • α = 82.353 (4)°

  • β = 82.095 (5)°

  • γ = 72.460 (9)°

  • V = 1258.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.937, Tmax = 0.948

  • 11205 measured reflections

  • 4931 independent reflections

  • 4101 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.209

  • S = 1.16

  • 4931 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected torsion angles (°)

C4—S1—S2—C6 −80.13 (16)
C11—S3—S4—C16 −79.8 (2)
S2—S1—C4—N2 173.4 (2)
S2—S1—C4—C3 −7.1 (3)
S1—S2—C6—N3 6.6 (3)
S1—S2—C6—C7 −173.5 (3)
S4—S3—C11—N6 −177.7 (3)
S4—S3—C11—C12 4.1 (4)
S3—S4—C16—N7 9.5 (4)
S3—S4—C16—C17 −172.8 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯S2 0.93 2.68 3.173 (4) 114
C8—H8⋯O1i 0.93 2.44 3.098 (5) 127
C12—H12⋯S4 0.93 2.70 3.189 (5) 113
C18—H18⋯O5i 0.93 2.50 3.171 (6) 129
Symmetry code: (i) x, y-1, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This paper forms part of our continuing study of the synthesis and structural characterization of divalent sulfur compounds (Brito et al., 2007 and references therein). We are particularly interested in the utility of the title compound of as flexible ligand, and its binding modes, for the fabrication of different coordination polymers topologies. We report here the structure of a new polymorph of 5,5'-Dinitro-2,2'-dithiodipyridine isolated during attempts to synthetize coordination polymers with silver trifluoromethanesulfonate of the ligand (Fig. 1, Table 1). The bond lenghts and the conformation are significantly different from those found in the monoclinic modification (Brito et al., 2007). The observed difference between (I) and the previously reported polymorph is in the torsion angle C—S—S—C [80.0 (2) and 0°, respectively]. A database survey of C—S—S—C fragments (Allen et al., 1987) found that S—S bond distances are bimodally distributed: for torsion angles in the ranges 75–105 and 0–20°, the mean S—S bond distances are 2.031 (15) and 2.070 (22) Å, respectively. The corresponding value in the title compound is 2.025 (2) Å and 2.0719 (11) Å for the previously polymorph placing it in the lower quartile for Allen's first set. In both polymorphs the torsion angles X—C—S—S (where X=N or C) are close to 0 or 180° and within the range found in other substituted aromatic disulfides with an equatorial conformation according to the Shefter classification (Shefter, 1970).

The molecular conformations are dominated by near orthogonality of the lone pairs on the two adjacent S atoms (Glidewell et al., 2000). The molecular packing in the title compound is completely different from that of the monoclinic polymorph. Only in the triclinic form the phenyl rings participant in significant intramolecular C—H···S interactions with average H···S distances of 2.69 Å. These interactions may stabilize the conformation adopted by the molecules in the solid state (Fig. 1). The molecules are linked into chains by two intermolecular C—H···O hydrogen bond. Atoms C8 and C18 in the molecules at (x,y,z) acts as hydrogen bonds donor vía atom H8 and H18 to atoms O1 and O5 in the molecule at (x,-1 + y,z) respectively, so generating by translation two C(12) chains running parallel to [010] direction (Bernstein et al., 1995), (Fig. 2, Table 2). The triclinic modification is much less compact, as noted from the lower density (1.638 Mg m-3 compared with 1.725 Mg m-3 for the monoclinic form).

Related literature top

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Brito et al. (2007); Glidewell et al. (2000); Shefter (1970).

Experimental top

All reactions were carried out under an atmosphere of purified nitrogen. Solvents were dried and distilled prior to use. 5,5'-dinitro-2,2'-dithiodipyridine and silver trifluoromethanesulfonate were purchased from Aldrich. The title compound was obtained as light yellow prismatic crystals, in an attempts to prepare coordination polymers with silver trifluoromethanesulfonate of the ligand. A mixture of 5,5'-dinitro-2,2'-dithiodipyridine (1 mmol, 310 mg) and silver trifluoromethanesulfonate (1 mmol, 256.9 mg) in methanol (20 ml) was refluxed for 8 h. After slow cooling of the reaction system to room temperature, light yellow prismatic crystals of (I) were formed that were filtered off and washed with cold diethyl ether. FT–IR (KBr pellet, cm-1): ν (w, C—H) 3082, ν(s, N=O of NO2 asymmetric) 1578, ν (v.s. of NO2 symmetric) 1356, ν(w, C—H disubstitution 1,4) 1964, ν(s, C—H disubstitution 1,4) 856, ν (w, C—N) 1101, ν(s, C=C) 1600, ν (w, C—H) 1014, (s, C=N) 1512, ν (w, C—S) 743, ν(w S—S) 555.

Refinement top

H atoms were positioned geometrically. In the final cycles of the refinement, all H atoms were constrained to ride on their parent atoms, with C—H distances of 0.93 Å and with Uiso(H) = 1.2 Ueq(C).

The material was difficult to obtain in a suitable crystalline form and the best available specimen was lost during data collection, resulting in 95% completeness.

Structure description top

This paper forms part of our continuing study of the synthesis and structural characterization of divalent sulfur compounds (Brito et al., 2007 and references therein). We are particularly interested in the utility of the title compound of as flexible ligand, and its binding modes, for the fabrication of different coordination polymers topologies. We report here the structure of a new polymorph of 5,5'-Dinitro-2,2'-dithiodipyridine isolated during attempts to synthetize coordination polymers with silver trifluoromethanesulfonate of the ligand (Fig. 1, Table 1). The bond lenghts and the conformation are significantly different from those found in the monoclinic modification (Brito et al., 2007). The observed difference between (I) and the previously reported polymorph is in the torsion angle C—S—S—C [80.0 (2) and 0°, respectively]. A database survey of C—S—S—C fragments (Allen et al., 1987) found that S—S bond distances are bimodally distributed: for torsion angles in the ranges 75–105 and 0–20°, the mean S—S bond distances are 2.031 (15) and 2.070 (22) Å, respectively. The corresponding value in the title compound is 2.025 (2) Å and 2.0719 (11) Å for the previously polymorph placing it in the lower quartile for Allen's first set. In both polymorphs the torsion angles X—C—S—S (where X=N or C) are close to 0 or 180° and within the range found in other substituted aromatic disulfides with an equatorial conformation according to the Shefter classification (Shefter, 1970).

The molecular conformations are dominated by near orthogonality of the lone pairs on the two adjacent S atoms (Glidewell et al., 2000). The molecular packing in the title compound is completely different from that of the monoclinic polymorph. Only in the triclinic form the phenyl rings participant in significant intramolecular C—H···S interactions with average H···S distances of 2.69 Å. These interactions may stabilize the conformation adopted by the molecules in the solid state (Fig. 1). The molecules are linked into chains by two intermolecular C—H···O hydrogen bond. Atoms C8 and C18 in the molecules at (x,y,z) acts as hydrogen bonds donor vía atom H8 and H18 to atoms O1 and O5 in the molecule at (x,-1 + y,z) respectively, so generating by translation two C(12) chains running parallel to [010] direction (Bernstein et al., 1995), (Fig. 2, Table 2). The triclinic modification is much less compact, as noted from the lower density (1.638 Mg m-3 compared with 1.725 Mg m-3 for the monoclinic form).

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Brito et al. (2007); Glidewell et al. (2000); Shefter (1970).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing both molecules in the asymmetric unit with displacement ellipsoids draw at the 30% probability level. Dashed lines indicate the intramolecular C–H···S hydrogen bonds. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the formation of two C(12) chains. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) -x, -y, 1 - z].
5,5'-dinitro-2,2'-dithiodipyridine top
Crystal data top
C10H6N4O4S2Z = 4
Mr = 310.31F(000) = 632
Triclinic, P1Dx = 1.638 Mg m3
Hall symbol: -P 1Melting point: 420 K
a = 7.7832 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8515 (11) ÅCell parameters from 11236 reflections
c = 14.513 (2) Åθ = 1.4–26.5°
α = 82.353 (4)°µ = 0.44 mm1
β = 82.095 (5)°T = 298 K
γ = 72.460 (9)°Prismatic, light yellow
V = 1258.4 (3) Å30.20 × 0.10 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
4931 independent reflections
Radiation source: fine-focus sealed tube4101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
φ scans, and ω scans with κ offsetsθmax = 26.5°, θmin = 1.4°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 99
Tmin = 0.937, Tmax = 0.948k = 1214
11205 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.088 w = 1/[σ2(Fo2) + (0.0368P)2 + 1.5007P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.209(Δ/σ)max = 0.007
S = 1.16Δρmax = 0.33 e Å3
4931 reflectionsΔρmin = 0.28 e Å3
362 parameters
Crystal data top
C10H6N4O4S2γ = 72.460 (9)°
Mr = 310.31V = 1258.4 (3) Å3
Triclinic, P1Z = 4
a = 7.7832 (12) ÅMo Kα radiation
b = 11.8515 (11) ŵ = 0.44 mm1
c = 14.513 (2) ÅT = 298 K
α = 82.353 (4)°0.20 × 0.10 × 0.10 mm
β = 82.095 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4931 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4101 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.948Rint = 0.062
11205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 1.16Δρmax = 0.33 e Å3
4931 reflectionsΔρmin = 0.28 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28532 (14)0.36598 (9)0.47963 (7)0.0648 (3)
S20.33244 (12)0.21846 (9)0.55311 (8)0.0597 (3)
S30.2159 (2)0.37139 (15)0.72593 (9)0.1008 (5)
S40.17109 (18)0.22078 (14)0.79400 (11)0.0932 (5)
O10.1425 (5)0.7608 (3)0.7099 (3)0.0932 (11)
O20.2430 (7)0.6621 (3)0.8270 (3)0.1114 (15)
O30.5190 (4)0.0383 (3)0.6160 (3)0.1013 (14)
O40.4123 (4)0.1761 (3)0.6849 (3)0.0830 (10)
O50.3423 (6)0.7628 (3)0.9636 (3)0.1124 (14)
O60.2541 (7)0.6562 (3)1.0807 (3)0.1078 (13)
O71.0125 (5)0.0429 (5)0.8735 (4)0.143 (2)
O80.8920 (5)0.1686 (3)0.9535 (3)0.0985 (12)
N10.2025 (5)0.6797 (3)0.7443 (3)0.0695 (10)
N20.2166 (5)0.5481 (3)0.5290 (3)0.0675 (9)
N30.0258 (4)0.1755 (2)0.5594 (2)0.0485 (7)
N40.3948 (4)0.0788 (3)0.6427 (2)0.0562 (8)
N50.2906 (5)0.6772 (3)0.9981 (3)0.0765 (11)
N60.2519 (6)0.5608 (4)0.7817 (3)0.0945 (15)
N70.5273 (5)0.1785 (3)0.8105 (3)0.0725 (10)
N80.8822 (6)0.0777 (4)0.9035 (3)0.0798 (11)
C10.2263 (5)0.5991 (3)0.6821 (3)0.0536 (9)
C20.2820 (6)0.5018 (3)0.7196 (3)0.0607 (10)
H20.30620.48770.7840.073*
C30.3013 (5)0.4261 (3)0.6612 (3)0.0570 (9)
H30.33660.35860.68460.078 (6)*
C40.2670 (4)0.4527 (3)0.5671 (3)0.0521 (9)
C50.1959 (5)0.6208 (3)0.5874 (3)0.0632 (11)
H50.15980.68760.56270.078 (6)*
C60.1129 (4)0.1300 (3)0.5804 (2)0.0448 (7)
C70.0971 (5)0.0159 (3)0.6229 (3)0.0503 (8)
H70.19820.01210.63660.078 (6)*
C80.0692 (5)0.0546 (3)0.6443 (3)0.0483 (8)
H80.08510.13160.67280.058*
C90.2126 (4)0.0072 (3)0.6222 (2)0.0425 (7)
C100.1881 (5)0.1059 (3)0.5803 (3)0.0505 (8)
H100.28770.13530.56580.061*
C110.2288 (6)0.4547 (4)0.8158 (3)0.0728 (13)
C120.2218 (6)0.4174 (4)0.9095 (3)0.0706 (12)
H120.20540.34360.93130.078 (6)*
C130.2395 (6)0.4909 (4)0.9697 (3)0.0691 (11)
H130.23420.46851.03370.083*
C140.2653 (6)0.5984 (4)0.9348 (3)0.0680 (11)
C150.2697 (7)0.6302 (5)0.8413 (4)0.0888 (16)
H150.2860.70380.81840.107*
C160.3897 (6)0.1317 (4)0.8230 (3)0.0690 (11)
C170.4031 (6)0.0156 (4)0.8614 (4)0.0771 (13)
H170.30320.01360.86880.078 (6)*
C180.5647 (6)0.0536 (4)0.8877 (3)0.0708 (11)
H180.57880.13150.91370.085*
C190.7070 (5)0.0059 (3)0.8749 (3)0.0586 (9)
C200.6845 (6)0.1087 (4)0.8371 (3)0.0686 (11)
H200.78310.13920.82980.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0590 (6)0.0586 (6)0.0625 (6)0.0052 (5)0.0153 (5)0.0013 (5)
S20.0394 (5)0.0547 (6)0.0817 (7)0.0040 (4)0.0121 (4)0.0117 (5)
S30.0942 (10)0.1143 (11)0.0657 (8)0.0208 (8)0.0239 (7)0.0129 (7)
S40.0649 (8)0.1047 (10)0.1078 (11)0.0014 (7)0.0275 (7)0.0382 (8)
O10.090 (2)0.0562 (18)0.140 (3)0.0325 (17)0.023 (2)0.0072 (19)
O20.192 (5)0.070 (2)0.087 (3)0.056 (3)0.024 (3)0.0074 (19)
O30.0428 (16)0.090 (2)0.167 (4)0.0267 (16)0.0314 (19)0.040 (2)
O40.0621 (18)0.0593 (18)0.115 (3)0.0056 (14)0.0246 (17)0.0246 (18)
O50.114 (3)0.083 (2)0.153 (4)0.057 (2)0.017 (3)0.014 (2)
O60.157 (4)0.080 (2)0.092 (3)0.044 (3)0.017 (3)0.001 (2)
O70.064 (2)0.148 (4)0.205 (5)0.039 (3)0.031 (3)0.056 (4)
O80.097 (3)0.074 (2)0.113 (3)0.0104 (19)0.024 (2)0.013 (2)
N10.069 (2)0.0378 (17)0.103 (3)0.0172 (15)0.021 (2)0.0058 (18)
N20.060 (2)0.057 (2)0.071 (2)0.0063 (16)0.0025 (17)0.0161 (17)
N30.0421 (15)0.0390 (14)0.0646 (18)0.0129 (12)0.0090 (13)0.0010 (13)
N40.0443 (17)0.0510 (18)0.072 (2)0.0121 (14)0.0162 (14)0.0044 (15)
N50.071 (2)0.057 (2)0.097 (3)0.0150 (18)0.014 (2)0.005 (2)
N60.095 (3)0.092 (3)0.064 (2)0.003 (2)0.002 (2)0.027 (2)
N70.072 (2)0.065 (2)0.076 (2)0.0121 (18)0.0121 (19)0.0057 (18)
N80.073 (3)0.070 (2)0.091 (3)0.016 (2)0.009 (2)0.003 (2)
C10.0452 (19)0.0357 (17)0.075 (3)0.0060 (14)0.0102 (17)0.0040 (16)
C20.074 (3)0.0427 (19)0.063 (2)0.0202 (18)0.0015 (19)0.0056 (17)
C30.067 (2)0.0396 (18)0.063 (2)0.0177 (17)0.0033 (18)0.0037 (16)
C40.0350 (17)0.0418 (18)0.068 (2)0.0017 (14)0.0067 (15)0.0060 (16)
C50.054 (2)0.045 (2)0.084 (3)0.0157 (17)0.007 (2)0.019 (2)
C60.0363 (16)0.0450 (18)0.0523 (19)0.0070 (13)0.0070 (14)0.0104 (14)
C70.0410 (18)0.0476 (19)0.065 (2)0.0199 (15)0.0026 (15)0.0033 (16)
C80.0481 (19)0.0377 (17)0.059 (2)0.0153 (14)0.0053 (15)0.0011 (15)
C90.0374 (16)0.0399 (16)0.0516 (18)0.0112 (13)0.0096 (14)0.0039 (14)
C100.0406 (18)0.0445 (18)0.070 (2)0.0198 (15)0.0090 (16)0.0027 (16)
C110.057 (2)0.077 (3)0.061 (2)0.011 (2)0.0061 (19)0.003 (2)
C120.082 (3)0.061 (3)0.060 (3)0.015 (2)0.001 (2)0.005 (2)
C130.073 (3)0.061 (2)0.063 (3)0.013 (2)0.003 (2)0.009 (2)
C140.055 (2)0.061 (2)0.075 (3)0.0069 (19)0.003 (2)0.011 (2)
C150.091 (4)0.072 (3)0.081 (3)0.005 (3)0.001 (3)0.021 (3)
C160.063 (3)0.075 (3)0.068 (3)0.009 (2)0.006 (2)0.029 (2)
C170.061 (3)0.083 (3)0.096 (3)0.030 (2)0.001 (2)0.029 (3)
C180.072 (3)0.059 (2)0.084 (3)0.023 (2)0.002 (2)0.014 (2)
C190.057 (2)0.059 (2)0.059 (2)0.0137 (18)0.0014 (18)0.0117 (18)
C200.062 (3)0.061 (2)0.082 (3)0.018 (2)0.004 (2)0.005 (2)
Geometric parameters (Å, º) top
S1—C41.781 (4)C1—C21.372 (5)
S1—S22.0275 (15)C2—C31.367 (6)
S2—C61.781 (3)C2—H20.93
S3—C111.768 (5)C3—C41.368 (5)
S3—S42.023 (2)C3—H30.93
S4—C161.784 (5)C5—H50.93
O1—N11.213 (4)C6—C71.387 (5)
O2—N11.205 (5)C7—C81.363 (5)
O3—N41.200 (4)C7—H70.93
O4—N41.211 (4)C8—C91.376 (4)
O5—N51.223 (5)C8—H80.93
O6—N51.204 (5)C9—C101.366 (4)
O7—N81.213 (5)C10—H100.93
O8—N81.204 (5)C11—C121.371 (6)
N1—C11.464 (6)C12—C131.360 (6)
N2—C41.334 (5)C12—H120.93
N2—C51.342 (6)C13—C141.369 (6)
N3—C61.329 (4)C13—H130.93
N3—C101.333 (4)C14—C151.358 (7)
N4—C91.464 (4)C15—H150.93
N5—C141.463 (6)C16—C171.393 (6)
N6—C151.317 (8)C17—C181.351 (6)
N6—C111.343 (6)C17—H170.93
N7—C201.329 (6)C18—C191.369 (6)
N7—C161.329 (6)C18—H180.93
N8—C191.455 (6)C19—C201.365 (5)
C1—C51.365 (6)C20—H200.93
C4—S1—S2104.06 (13)C6—C7—H7120.6
C6—S2—S1103.36 (12)C7—C8—C9117.4 (3)
C11—S3—S4104.51 (17)C7—C8—H8121.3
C16—S4—S3104.02 (18)C9—C8—H8121.3
O2—N1—O1123.3 (4)C10—C9—C8120.9 (3)
O2—N1—C1118.6 (3)C10—C9—N4119.0 (3)
O1—N1—C1118.2 (4)C8—C9—N4120.0 (3)
C4—N2—C5117.4 (3)N3—C10—C9122.0 (3)
C6—N3—C10117.2 (3)N3—C10—H10119
O3—N4—O4123.5 (3)C9—C10—H10119
O3—N4—C9118.3 (3)N6—C11—C12122.5 (5)
O4—N4—C9118.1 (3)N6—C11—S3111.9 (4)
O6—N5—O5123.8 (5)C12—C11—S3125.6 (4)
O6—N5—C14118.2 (4)C13—C12—C11118.5 (4)
O5—N5—C14117.9 (4)C13—C12—H12120.8
C15—N6—C11118.0 (4)C11—C12—H12120.8
C20—N7—C16116.7 (4)C12—C13—C14119.0 (4)
O8—N8—O7123.4 (5)C12—C13—H13120.5
O8—N8—C19119.3 (4)C14—C13—H13120.5
O7—N8—C19117.3 (4)C15—C14—C13119.5 (5)
C5—C1—C2119.9 (4)C15—C14—N5120.6 (5)
C5—C1—N1120.7 (3)C13—C14—N5119.9 (4)
C2—C1—N1119.4 (4)N6—C15—C14122.5 (5)
C3—C2—C1119.1 (4)N6—C15—H15118.7
C3—C2—H2120.5C14—C15—H15118.7
C1—C2—H2120.5N7—C16—C17123.7 (4)
C2—C3—C4117.8 (3)N7—C16—S4119.9 (4)
C2—C3—H3121.1C17—C16—S4116.5 (4)
C4—C3—H3121.1C18—C17—C16118.5 (4)
N2—C4—C3124.1 (4)C18—C17—H17120.8
N2—C4—S1111.2 (3)C16—C17—H17120.8
C3—C4—S1124.7 (3)C17—C18—C19118.2 (4)
N2—C5—C1121.7 (3)C17—C18—H18120.9
N2—C5—H5119.2C19—C18—H18120.9
C1—C5—H5119.2C20—C19—C18120.4 (4)
N3—C6—C7123.6 (3)C20—C19—N8120.0 (4)
N3—C6—S2119.2 (3)C18—C19—N8119.5 (4)
C7—C6—S2117.3 (2)N7—C20—C19122.6 (4)
C8—C7—C6118.8 (3)N7—C20—H20118.7
C8—C7—H7120.6C19—C20—H20118.7
C4—S1—S2—C680.13 (16)N4—C9—C10—N3179.7 (3)
C11—S3—S4—C1679.8 (2)C15—N6—C11—C120.5 (7)
O2—N1—C1—C5174.8 (4)C15—N6—C11—S3177.8 (4)
O1—N1—C1—C55.3 (5)S4—S3—C11—N6177.7 (3)
O2—N1—C1—C24.4 (6)S4—S3—C11—C124.1 (4)
O1—N1—C1—C2175.5 (4)N6—C11—C12—C130.2 (7)
C5—C1—C2—C31.8 (6)S3—C11—C12—C13177.9 (4)
N1—C1—C2—C3179.0 (4)C11—C12—C13—C140.6 (7)
C1—C2—C3—C41.2 (6)C12—C13—C14—C151.1 (7)
C5—N2—C4—C31.1 (5)C12—C13—C14—N5178.0 (4)
C5—N2—C4—S1179.4 (3)O6—N5—C14—C15167.0 (5)
C2—C3—C4—N20.2 (6)O5—N5—C14—C1510.7 (7)
C2—C3—C4—S1179.7 (3)O6—N5—C14—C1313.9 (6)
S2—S1—C4—N2173.4 (2)O5—N5—C14—C13168.3 (4)
S2—S1—C4—C37.1 (3)C11—N6—C15—C140.1 (8)
C4—N2—C5—C10.5 (6)C13—C14—C15—N60.7 (8)
C2—C1—C5—N20.9 (6)N5—C14—C15—N6178.4 (5)
N1—C1—C5—N2179.9 (3)C20—N7—C16—C170.3 (7)
C10—N3—C6—C70.6 (5)C20—N7—C16—S4177.3 (3)
C10—N3—C6—S2179.4 (3)S3—S4—C16—N79.5 (4)
S1—S2—C6—N36.6 (3)S3—S4—C16—C17172.8 (3)
S1—S2—C6—C7173.5 (3)N7—C16—C17—C180.1 (7)
N3—C6—C7—C80.4 (6)S4—C16—C17—C18177.6 (4)
S2—C6—C7—C8179.6 (3)C16—C17—C18—C190.1 (7)
C6—C7—C8—C90.1 (5)C17—C18—C19—C200.4 (7)
C7—C8—C9—C100.1 (5)C17—C18—C19—N8179.2 (4)
C7—C8—C9—N4179.5 (3)O8—N8—C19—C20164.9 (4)
O3—N4—C9—C105.0 (6)O7—N8—C19—C2016.6 (7)
O4—N4—C9—C10175.6 (4)O8—N8—C19—C1814.0 (7)
O3—N4—C9—C8174.3 (4)O7—N8—C19—C18164.5 (5)
O4—N4—C9—C85.0 (5)C16—N7—C20—C190.5 (7)
C6—N3—C10—C90.6 (5)C18—C19—C20—N70.6 (7)
C8—C9—C10—N30.4 (6)N8—C19—C20—N7179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···S20.932.683.173 (4)114
C8—H8···O1i0.932.443.098 (5)127
C12—H12···S40.932.703.189 (5)113
C18—H18···O5i0.932.503.171 (6)129
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H6N4O4S2
Mr310.31
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.7832 (12), 11.8515 (11), 14.513 (2)
α, β, γ (°)82.353 (4), 82.095 (5), 72.460 (9)
V3)1258.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.937, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
11205, 4931, 4101
Rint0.062
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.209, 1.16
No. of reflections4931
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Selected torsion angles (º) top
C4—S1—S2—C680.13 (16)S1—S2—C6—C7173.5 (3)
C11—S3—S4—C1679.8 (2)S4—S3—C11—N6177.7 (3)
S2—S1—C4—N2173.4 (2)S4—S3—C11—C124.1 (4)
S2—S1—C4—C37.1 (3)S3—S4—C16—N79.5 (4)
S1—S2—C6—N36.6 (3)S3—S4—C16—C17172.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···S20.932.683.173 (4)114
C8—H8···O1i0.932.443.098 (5)127
C12—H12···S40.932.703.189 (5)113
C18—H18···O5i0.932.503.171 (6)129
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This work was supported by a grant from the Universidad de Antofagasta (DI-1324-06). The authors thank the Spanish Research Council (CSIC) for the provision of a free-of-charge licence for the Cambridge Structural Database. AM thanks the Universidad de Antofagasta for a PhD fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrito, I., Mundaca, A., Cárdenas, A., López-Rodríguez, M. & Vargas, D. (2007). Acta Cryst. E63, o3351–o3352.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. B56, 893–905.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShefter, E. J. (1970). J. Chem. Soc. B, pp. 903–905.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds