metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-4,4′-Diazenediyldiphthalato-κ2O2:O2′-bis­­[penta­aqua­manganese(II)] tetra­hydrate

aCollege of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and bDepartment of Chemistry, SiChuan University of Science & Engineering, Zigong 643000, People's Republic of China
*Correspondence e-mail: lulusczg@126.com

(Received 13 November 2007; accepted 20 November 2007; online 6 December 2007)

The dinuclear complex in the title compound, [Mn2(C16H6N2O8)(H2O)10]·4H2O, lies on an inversion center. Two delocalized carboxyl­ate groups are each connected in a monodentate fashion to two similar penta­aqua­manganese units, whereas the other two localized carboxyl­ate groups are uncoordinated. The metal ion has octa­hedral coordination, with the O atom of a carboxyl­ate group and three coordinated water mol­ecules forming the equatorial plane [Mn—OCOO = 2.143 (4) Å] and two water mol­ecules occupying the axial positions. The architecture is further consolidated by extensive hydrogen bonds for which coordinated water mol­ecules serve as donors or acceptors.

Related literature

For related literature, see: Gokel et al. (2004[Gokel, G. W., Leevy, W. M. & Weber, W. E. (2004). Chem. Rev. 104, 2723-2750.]); Lassahn et al. (2004[Lassahn, P.-G., Lozan, V., Timco, G. A., Christian, P., Janiak, C. & Winpenny, R. E. P. (2004). J. Catal. 222, 260-267.]); Liu & Xu (2005[Liu, -Q. Y. & Xu, L. (2005). Eur. J. Inorg. Chem. pp. 3458-3466.]); Shan et al. (2001[Shan, B. Z., Zhao, O., Goswami, N., Eichhorn, D. M. & Rillema, D. P. (2001). Coord. Chem. Rev. 211, 117-144.]); Wang et al. (2007[Wang, J., Lu, L., Bai, J.-W. & Zhong, B.-Z. (2007). Acta Cryst. E63, o4414.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C16H6N2O8)(H2O)10]·4H2O

  • Mr = 716.33

  • Monoclinic, P 21 /c

  • a = 6.9674 (10) Å

  • b = 15.186 (2) Å

  • c = 13.5576 (19) Å

  • β = 98.812 (2)°

  • V = 1417.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 298 (2) K

  • 0.29 × 0.25 × 0.18 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 (Version 1.22), SAINT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.763, Tmax = 0.842

  • 7535 measured reflections

  • 2649 independent reflections

  • 2349 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.06

  • 2649 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O7W 0.82 1.95 2.760 (3) 170
O1W—H1WB⋯O4 0.82 1.85 2.675 (2) 176
O2W—H2WA⋯O4Wi 0.81 2.16 2.948 (2) 163
O2W—H2WA⋯O1i 0.81 2.64 3.061 (2) 114
O2W—H2WB⋯O1Wii 0.80 2.63 3.293 (3) 142
O3W—H3WB⋯O6W 0.83 2.00 2.818 (2) 171
O3W—H3WA⋯O3iii 0.81 1.89 2.696 (2) 172
O4W—H4WA⋯O2i 0.81 2.00 2.8162 (19) 174
O4W—H4WB⋯O3iv 0.82 1.94 2.758 (2) 178
O5W—H5WA⋯O2iv 0.82 1.95 2.759 (2) 169
O5W—H5WB⋯O7Wv 0.82 1.93 2.744 (2) 173
O6W—H6WA⋯O4ii 0.87 1.81 2.677 (2) 174
O6W—H6WB⋯O2i 0.87 2.03 2.894 (2) 175
O7W—H7WB⋯N1vi 0.91 1.96 2.859 (3) 174
O7W—H7WA⋯O6Wvii 0.87 1.92 2.780 (3) 169
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+3, -y+1, -z+2; (iii) [-x+3, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x-1, y, z; (vi) -x+2, -y+1, -z+1; (vii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22), SAINT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22), SAINT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.SA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition metal complexes with bipyridine derivatives are suitable models for the study of excited state dynamics. In addition, they are of interest for the development of light-energy conversion devices and optical sensors (Gokel et al., 2004; Shan et al., 2001; Lassahn et al., 2004). Although a great number of metal carboxylate have been obtained to date, the rational design and synthesis of novel metal carboxylates by employing new synthetic tools or by varying the natures of the reactants and synthetic conditions are currently under active investigation (Liu & Xu, 2005). In this context, L ligand which can exhibit a variety of coordination abilities and has a tendency to form architectures with multi-dimensional frameworks (Wang et al., 2007). In this paper, we report the synthesis and crystal structure of the title complex,(I).

The title complex (I) is arranged around a crystallographic inversion center located in the middle of the N=N bond. The metal ion is octahedrally coordinated by the oxygen atom of the carboxylate group [Mn-Ocarboxylate =2.143 (4)° A]and five coordinated water molecules. Two delocalized carboxyl –CO2 groups are each connected via monodentate fashion to two similar pentaaquamanganese units whereas the other two localized carboxyl –CO2 are free. The architecture is further consolidated by extensive hydrogen bonds for which the water molecules serves as donors or acceptors (Table 1).

Related literature top

For related literature, see: Gokel et al. (2004); Lassahn et al. (2004); Liu & Xu (2005); Shan et al. (2001); Wang et al. (2007).

Experimental top

MnSO4(0.032 g, 0.017 mmol), L(0.029 g, 0.014 mmol) and NaOH(0.048 mmol,0.12 mmol), were added in a mixed solvent of acetonitrile, the mixture was heated for six hours under reflux. During the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, a weeks later some single crystals of the size suitable for X-Ray diffraction analysis.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.84 (1)Å and H···H= 1.38 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atoms.

Structure description top

Transition metal complexes with bipyridine derivatives are suitable models for the study of excited state dynamics. In addition, they are of interest for the development of light-energy conversion devices and optical sensors (Gokel et al., 2004; Shan et al., 2001; Lassahn et al., 2004). Although a great number of metal carboxylate have been obtained to date, the rational design and synthesis of novel metal carboxylates by employing new synthetic tools or by varying the natures of the reactants and synthetic conditions are currently under active investigation (Liu & Xu, 2005). In this context, L ligand which can exhibit a variety of coordination abilities and has a tendency to form architectures with multi-dimensional frameworks (Wang et al., 2007). In this paper, we report the synthesis and crystal structure of the title complex,(I).

The title complex (I) is arranged around a crystallographic inversion center located in the middle of the N=N bond. The metal ion is octahedrally coordinated by the oxygen atom of the carboxylate group [Mn-Ocarboxylate =2.143 (4)° A]and five coordinated water molecules. Two delocalized carboxyl –CO2 groups are each connected via monodentate fashion to two similar pentaaquamanganese units whereas the other two localized carboxyl –CO2 are free. The architecture is further consolidated by extensive hydrogen bonds for which the water molecules serves as donors or acceptors (Table 1).

For related literature, see: Gokel et al. (2004); Lassahn et al. (2004); Liu & Xu (2005); Shan et al. (2001); Wang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of complex (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. H atoms are represented as small spheres of arbitrary radii. [Symmetry code (i): 1 - x,1 - y,1 - z].
µ-4,4'-Diazenediyldiphthalato-κ2O2:O2'– bis[pentaaquamanganese(II)] tetrahydrate top
Crystal data top
[Mn2(C16H6N2O8)(H2O)10]·4H2OF(000) = 740
Mr = 716.33Dx = 1.678 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2649 reflections
a = 6.9674 (10) Åθ = 2.0–25.5°
b = 15.186 (2) ŵ = 0.99 mm1
c = 13.5576 (19) ÅT = 298 K
β = 98.812 (2)°Block, yellow
V = 1417.5 (3) Å30.29 × 0.25 × 0.18 mm
Z = 2
Data collection top
Bruker APEX-II area-detector
diffractometer
2649 independent reflections
Radiation source: fine-focus sealed tube2349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scanθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 87
Tmin = 0.763, Tmax = 0.842k = 1817
7535 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.4924P]
where P = (Fo2 + 2Fc2)/3
2649 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Mn2(C16H6N2O8)(H2O)10]·4H2OV = 1417.5 (3) Å3
Mr = 716.33Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.9674 (10) ŵ = 0.99 mm1
b = 15.186 (2) ÅT = 298 K
c = 13.5576 (19) Å0.29 × 0.25 × 0.18 mm
β = 98.812 (2)°
Data collection top
Bruker APEX-II area-detector
diffractometer
2649 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2349 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.842Rint = 0.019
7535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.64 e Å3
2649 reflectionsΔρmin = 0.30 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.15210 (4)0.59508 (2)0.87665 (2)0.02864 (12)
O10.9887 (2)0.47791 (9)0.83401 (10)0.0337 (3)
O20.9981 (2)0.33199 (9)0.83063 (10)0.0333 (3)
O31.3292 (2)0.26635 (10)0.62459 (11)0.0367 (4)
O41.3672 (2)0.37832 (10)0.73190 (12)0.0388 (4)
O1W1.3818 (3)0.54312 (11)0.80243 (14)0.0528 (5)
H1WA1.46000.56800.77300.079*
H1WB1.37300.49300.77900.079*
O2W1.2906 (2)0.52547 (12)1.01240 (12)0.0484 (4)
H2WA1.23590.48301.03200.073*
H2WB1.38290.53501.05400.073*
O3W1.3327 (2)0.70714 (11)0.92397 (13)0.0479 (4)
H3WB1.35300.71490.98500.072*
H3WA1.42800.72790.90500.072*
O4W0.9230 (2)0.63843 (10)0.96205 (10)0.033
H4WA0.93700.64701.02200.050*
H4WB0.85000.67700.93700.050*
O5W0.9978 (2)0.66502 (10)0.74917 (10)0.0379 (4)
H5WA1.00610.71700.73300.057*
H5WB0.88410.65300.72800.057*
O6W1.3892 (3)0.71325 (14)1.13418 (13)0.0563 (5)
H6WA1.46200.68091.17800.085*
H6WB1.27200.70291.14500.085*
O7W1.6084 (3)0.63676 (12)0.68914 (14)0.0547 (5)
H7WB1.56800.60400.63400.082*
H7WA1.53800.68400.68000.082*
N10.5413 (2)0.47199 (12)0.47708 (12)0.0319 (4)
C10.9867 (3)0.40586 (12)0.78879 (14)0.0235 (4)
C20.9492 (3)0.40791 (12)0.67589 (14)0.0225 (4)
C41.2725 (3)0.33562 (13)0.66100 (14)0.0266 (4)
C70.7227 (3)0.44018 (14)0.52778 (14)0.0275 (4)
C60.8475 (3)0.40308 (13)0.46864 (15)0.0299 (5)
H60.81290.40120.39960.036*
C51.0234 (3)0.36904 (13)0.51324 (14)0.0284 (4)
H51.10740.34440.47370.034*
C31.0769 (3)0.37103 (13)0.61650 (14)0.0240 (4)
C80.7726 (3)0.44200 (13)0.63154 (14)0.0259 (4)
H80.68740.46610.67070.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0314 (2)0.02601 (19)0.02938 (19)0.00248 (12)0.00726 (14)0.00193 (12)
O10.0456 (9)0.0266 (8)0.0288 (7)0.0029 (6)0.0055 (6)0.0064 (6)
O20.0488 (9)0.0263 (8)0.0237 (7)0.0037 (6)0.0023 (6)0.0022 (6)
O30.0288 (8)0.0391 (9)0.0409 (9)0.0106 (6)0.0014 (7)0.0095 (7)
O40.0311 (8)0.0381 (9)0.0432 (9)0.0052 (7)0.0073 (7)0.0100 (7)
O1W0.0564 (11)0.0408 (10)0.0688 (12)0.0066 (8)0.0341 (9)0.0147 (8)
O2W0.0398 (9)0.0596 (11)0.0423 (9)0.0040 (8)0.0046 (7)0.0144 (8)
O3W0.0429 (10)0.0472 (10)0.0571 (11)0.0201 (8)0.0179 (8)0.0139 (8)
O4W0.0390.0360.0250.0070.0050.002
O5W0.0456 (9)0.0326 (8)0.0347 (8)0.0026 (7)0.0037 (7)0.0072 (7)
O6W0.0440 (10)0.0748 (13)0.0481 (10)0.0035 (9)0.0002 (8)0.0117 (9)
O7W0.0524 (11)0.0463 (11)0.0631 (12)0.0002 (8)0.0013 (9)0.0084 (9)
N10.0277 (9)0.0406 (10)0.0261 (8)0.0068 (7)0.0006 (7)0.0023 (7)
C10.0198 (9)0.0282 (11)0.0222 (9)0.0003 (7)0.0024 (8)0.0009 (8)
C20.0238 (10)0.0211 (9)0.0220 (9)0.0001 (7)0.0019 (7)0.0007 (7)
C40.0232 (10)0.0298 (11)0.0272 (10)0.0027 (8)0.0051 (8)0.0024 (8)
C70.0243 (10)0.0309 (11)0.0256 (10)0.0041 (8)0.0010 (8)0.0030 (8)
C60.0320 (11)0.0356 (12)0.0211 (9)0.0039 (9)0.0008 (8)0.0007 (8)
C50.0287 (11)0.0336 (11)0.0237 (10)0.0043 (9)0.0065 (8)0.0023 (8)
C30.0236 (10)0.0219 (10)0.0262 (10)0.0022 (7)0.0033 (8)0.0017 (8)
C80.0243 (10)0.0282 (10)0.0258 (9)0.0057 (8)0.0055 (8)0.0005 (8)
Geometric parameters (Å, º) top
Mn1—O12.1435 (15)O5W—H5WB0.8207
Mn1—O3W2.1548 (16)O6W—H6WA0.8708
Mn1—O1W2.1657 (17)O6W—H6WB0.8656
Mn1—O5W2.1683 (15)O7W—H7WB0.9061
Mn1—O4W2.2108 (14)O7W—H7WA0.8666
Mn1—O2W2.2119 (16)N1—N1i1.245 (3)
O1—C11.253 (2)N1—C71.427 (3)
O2—C11.254 (2)C1—C21.513 (3)
O3—C41.251 (2)C2—C81.385 (3)
O4—C41.259 (2)C2—C31.405 (3)
O1W—H1WA0.8156C4—C31.503 (3)
O1W—H1WB0.8230C7—C61.389 (3)
O2W—H2WA0.8145C7—C81.397 (3)
O2W—H2WB0.8008C6—C51.382 (3)
O3W—H3WB0.8259C6—H60.9300
O3W—H3WA0.8120C5—C31.393 (3)
O4W—H4WA0.8148C5—H50.9300
O4W—H4WB0.8151C8—H80.9300
O5W—H5WA0.8240
O1—Mn1—O3W176.04 (7)Mn1—O5W—H5WB120.3
O1—Mn1—O1W88.39 (6)H5WA—O5W—H5WB102.9
O3W—Mn1—O1W89.24 (7)H6WA—O6W—H6WB104.4
O1—Mn1—O5W90.78 (6)H7WB—O7W—H7WA103.9
O3W—Mn1—O5W92.65 (7)N1i—N1—C7115.7 (2)
O1W—Mn1—O5W96.88 (7)O1—C1—O2124.37 (18)
O1—Mn1—O4W89.55 (6)O1—C1—C2117.65 (16)
O3W—Mn1—O4W92.55 (6)O2—C1—C2117.72 (16)
O1W—Mn1—O4W174.90 (6)C8—C2—C3119.93 (17)
O5W—Mn1—O4W87.82 (6)C8—C2—C1116.82 (17)
O1—Mn1—O2W88.49 (6)C3—C2—C1123.04 (17)
O3W—Mn1—O2W88.24 (7)O3—C4—O4125.04 (18)
O1W—Mn1—O2W87.31 (7)O3—C4—C3117.63 (17)
O5W—Mn1—O2W175.73 (6)O4—C4—C3117.32 (18)
O4W—Mn1—O2W87.97 (6)C6—C7—C8120.53 (18)
C1—O1—Mn1145.33 (14)C6—C7—N1116.47 (17)
Mn1—O1W—H1WA130.9C8—C7—N1122.95 (17)
Mn1—O1W—H1WB120.0C5—C6—C7119.41 (18)
H1WA—O1W—H1WB104.8C5—C6—H6120.3
Mn1—O2W—H2WA118.9C7—C6—H6120.3
Mn1—O2W—H2WB134.5C6—C5—C3120.97 (18)
H2WA—O2W—H2WB106.2C6—C5—H5119.5
Mn1—O3W—H3WB114.5C3—C5—H5119.5
Mn1—O3W—H3WA132.9C5—C3—C2119.30 (18)
H3WB—O3W—H3WA103.8C5—C3—C4118.84 (17)
Mn1—O4W—H4WA125.8C2—C3—C4121.84 (17)
Mn1—O4W—H4WB116.8C2—C8—C7119.84 (18)
H4WA—O4W—H4WB105.8C2—C8—H8120.1
Mn1—O5W—H5WA129.4C7—C8—H8120.1
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O7W0.821.952.760 (3)170
O1W—H1WB···O40.821.852.675 (2)176
O2W—H2WA···O4Wii0.812.162.948 (2)163
O2W—H2WA···O1ii0.812.643.061 (2)114
O2W—H2WB···O1Wiii0.802.633.293 (3)142
O3W—H3WB···O6W0.832.002.818 (2)171
O3W—H3WA···O3iv0.811.892.696 (2)172
O4W—H4WA···O2ii0.812.002.8162 (19)174
O4W—H4WB···O3v0.821.942.758 (2)178
O5W—H5WA···O2v0.821.952.759 (2)169
O5W—H5WB···O7Wvi0.821.932.744 (2)173
O6W—H6WA···O4iii0.871.812.677 (2)174
O6W—H6WB···O2ii0.872.032.894 (2)175
O7W—H7WB···N1vii0.911.962.859 (3)174
O7W—H7WA···O6Wviii0.871.922.780 (3)169
Symmetry codes: (ii) x+2, y+1, z+2; (iii) x+3, y+1, z+2; (iv) x+3, y+1/2, z+3/2; (v) x+2, y+1/2, z+3/2; (vi) x1, y, z; (vii) x+2, y+1, z+1; (viii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn2(C16H6N2O8)(H2O)10]·4H2O
Mr716.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.9674 (10), 15.186 (2), 13.5576 (19)
β (°) 98.812 (2)
V3)1417.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.29 × 0.25 × 0.18
Data collection
DiffractometerBruker APEX-II area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.763, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
7535, 2649, 2349
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.06
No. of reflections2649
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.30

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O7W0.821.952.760 (3)170.2
O1W—H1WB···O40.821.852.675 (2)176.4
O2W—H2WA···O4Wi0.812.162.948 (2)163.2
O2W—H2WA···O1i0.812.643.061 (2)113.7
O2W—H2WB···O1Wii0.802.633.293 (3)141.5
O3W—H3WB···O6W0.832.002.818 (2)170.6
O3W—H3WA···O3iii0.811.892.696 (2)171.7
O4W—H4WA···O2i0.812.002.8162 (19)173.9
O4W—H4WB···O3iv0.821.942.758 (2)178.3
O5W—H5WA···O2iv0.821.952.759 (2)168.9
O5W—H5WB···O7Wv0.821.932.744 (2)172.6
O6W—H6WA···O4ii0.871.812.677 (2)174.2
O6W—H6WB···O2i0.872.032.894 (2)175.3
O7W—H7WB···N1vi0.911.962.859 (3)173.7
O7W—H7WA···O6Wvii0.871.922.780 (3)169.2
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+3, y+1, z+2; (iii) x+3, y+1/2, z+3/2; (iv) x+2, y+1/2, z+3/2; (v) x1, y, z; (vi) x+2, y+1, z+1; (vii) x, y+3/2, z1/2.
 

Acknowledgements

The authors are grateful to SiChuan University for financial support.

References

First citationBruker (2004). APEX2 (Version 1.22), SAINT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.SA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGokel, G. W., Leevy, W. M. & Weber, W. E. (2004). Chem. Rev. 104, 2723–2750.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLassahn, P.-G., Lozan, V., Timco, G. A., Christian, P., Janiak, C. & Winpenny, R. E. P. (2004). J. Catal. 222, 260–267.  Web of Science CrossRef CAS Google Scholar
First citationLiu, -Q. Y. & Xu, L. (2005). Eur. J. Inorg. Chem. pp. 3458–3466.  Web of Science CSD CrossRef Google Scholar
First citationShan, B. Z., Zhao, O., Goswami, N., Eichhorn, D. M. & Rillema, D. P. (2001). Coord. Chem. Rev. 211, 117–144.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWang, J., Lu, L., Bai, J.-W. & Zhong, B.-Z. (2007). Acta Cryst. E63, o4414.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds