organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­bromo-2-hy­droxy­benzoic acid

aCollege of Environmental and Chemical Engineering, Nanchang University of Aeronautics, Nanchang 330063, People's Republic of China, bDepartment of Chemistry, Nanchang University, Nanchang 330047, People's Republic of China, and cState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
*Correspondence e-mail: hlwen70@163.com

(Received 16 November 2007; accepted 22 November 2007; online 6 December 2007)

The title compound, C7H4Br2O3, has an intra­molecular O—H⋯O=C hydrogen bond and aggregates to form hydrogen-bonded dimers via O—H⋯O inter­actions. The formation of zigzag one-dimensional mol­ecular tapes via C—H⋯Br inter­actions and ππ stacking inter­actions (inter­planar separation = 3.42 Å) completes the crystal structure.

Related literature

For related literature, see: Chiari et al. (1981[Chiari, G., Fronczek, F. R., Davis, S. T. & Gandour, R. D. (1981). Acta Cryst. B37, 1623-1625.]); Jin & Xiao (2005[Jin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1198-o1199.]).

[Scheme 1]

Experimental

Crystal data
  • C7H4Br2O3

  • Mr = 295.92

  • Monoclinic, C 2/c

  • a = 10.770 (3) Å

  • b = 11.082 (3) Å

  • c = 14.879 (4) Å

  • β = 105.606 (3)°

  • V = 1710.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 9.44 mm−1

  • T = 293 (2) K

  • 0.50 × 0.31 × 0.21 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.088, Tmax = 0.243 (expected range = 0.050–0.138)

  • 6362 measured reflections

  • 1599 independent reflections

  • 1286 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.061

  • S = 1.79

  • 1599 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.87 2.684 (3) 175
O3—H3⋯O2 0.82 1.93 2.648 (3) 145
C3—H3A⋯Br1ii 0.93 2.89 3.810 (3) 172
Symmetry codes: (i) [-x+{\script{5\over 2}}, -y-{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{5\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SHELXTL, SAINT and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SHELXTL, SAINT and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SHELXTL, SAINT and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compound 2-hydroxybenzoic acid (salicylic acid) and its derivatives have been widely studied as medicines or important active pharmaceutical intermediates (Chiari et al., 1981; Jin & Xiao, 2005). Herein, we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), the atoms O1, O2, O3, Br1, Br2, C1 and aromatic ring {C2,···,C7} are essentially coplanar with a mean deviation of 0.014 Å. The crystal packing is stabilized by intramolecular and intermolecular O—H···O and C—H···Br hydrogen bonds (Table 1).

Related literature top

For related literature, see: Chiari et al. (1981); Jin & Xiao (2005).

Experimental top

Crystals appropriate for data collection were obtained by recrystallization from ethanol (m.p. 500–501 K).

Refinement top

The hydroxyl H atom and the carboxylate H atom were located from difference Fourier map but were refined using the riding model with O—H distance restrained to 0.82Å and Uiso(H) = 1.5Ueq(O); while all other H atoms were placed at geometrical idealized positions with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The compound 2-hydroxybenzoic acid (salicylic acid) and its derivatives have been widely studied as medicines or important active pharmaceutical intermediates (Chiari et al., 1981; Jin & Xiao, 2005). Herein, we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), the atoms O1, O2, O3, Br1, Br2, C1 and aromatic ring {C2,···,C7} are essentially coplanar with a mean deviation of 0.014 Å. The crystal packing is stabilized by intramolecular and intermolecular O—H···O and C—H···Br hydrogen bonds (Table 1).

For related literature, see: Chiari et al. (1981); Jin & Xiao (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound depicted with 30% probability displacement ellipsoids.
3,5-Dibromo-2-hydroxybenzoic acid top
Crystal data top
C7H4Br2O3F(000) = 1120
Mr = 295.92Dx = 2.298 Mg m3
Monoclinic, C2/cMelting point: 500 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 10.770 (3) ÅCell parameters from 2346 reflections
b = 11.082 (3) Åθ = 2.7–26.3°
c = 14.879 (4) ŵ = 9.44 mm1
β = 105.606 (3)°T = 293 K
V = 1710.4 (8) Å3Block, light-yellow
Z = 80.50 × 0.31 × 0.21 mm
Data collection top
Bruker SMART CCD
diffractometer
1599 independent reflections
Radiation source: fine-focus sealed tube1286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.088, Tmax = 0.243k = 1313
6362 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.79 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
1599 reflections(Δ/σ)max = 0.001
111 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
C7H4Br2O3V = 1710.4 (8) Å3
Mr = 295.92Z = 8
Monoclinic, C2/cMo Kα radiation
a = 10.770 (3) ŵ = 9.44 mm1
b = 11.082 (3) ÅT = 293 K
c = 14.879 (4) Å0.50 × 0.31 × 0.21 mm
β = 105.606 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1599 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1286 reflections with I > 2σ(I)
Tmin = 0.088, Tmax = 0.243Rint = 0.032
6362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.79Δρmax = 0.82 e Å3
1599 reflectionsΔρmin = 0.81 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.06441 (4)0.35585 (3)0.42603 (3)0.07017 (19)
Br20.68570 (4)0.02983 (4)0.22295 (3)0.05891 (17)
O11.2480 (2)0.0861 (2)0.49804 (18)0.0543 (7)
H11.28750.14640.52190.081*
O21.1105 (2)0.2248 (2)0.41973 (16)0.0545 (7)
O30.8866 (2)0.1506 (2)0.31093 (18)0.0560 (7)
H30.94220.20050.33410.084*
C11.1390 (3)0.1185 (3)0.4393 (2)0.0422 (9)
C21.0523 (3)0.0171 (3)0.3998 (2)0.0376 (8)
C31.0907 (3)0.1018 (3)0.4246 (2)0.0403 (9)
H3A1.17120.11720.46540.048*
C41.0092 (3)0.1959 (3)0.3885 (2)0.0412 (9)
C50.8890 (3)0.1766 (3)0.3280 (2)0.0414 (9)
H50.83490.24100.30400.050*
C60.8509 (3)0.0593 (3)0.3040 (2)0.0395 (9)
C70.9306 (3)0.0390 (3)0.3386 (2)0.0387 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0482 (3)0.0329 (2)0.1040 (4)0.00311 (18)0.0233 (2)0.0025 (2)
Br20.0371 (2)0.0526 (3)0.0726 (3)0.00593 (18)0.0101 (2)0.0044 (2)
O10.0511 (16)0.0353 (14)0.0606 (17)0.0064 (12)0.0126 (13)0.0036 (12)
O20.0583 (17)0.0327 (15)0.0596 (17)0.0041 (12)0.0064 (13)0.0017 (12)
O30.0514 (16)0.0348 (15)0.0690 (18)0.0019 (12)0.0056 (13)0.0074 (13)
C10.039 (2)0.043 (2)0.041 (2)0.0019 (17)0.0051 (17)0.0040 (17)
C20.040 (2)0.033 (2)0.037 (2)0.0013 (16)0.0032 (17)0.0044 (15)
C30.0332 (19)0.037 (2)0.043 (2)0.0024 (16)0.0032 (16)0.0013 (16)
C40.041 (2)0.0296 (19)0.047 (2)0.0045 (15)0.0024 (18)0.0026 (16)
C50.0325 (19)0.036 (2)0.050 (2)0.0017 (16)0.0011 (17)0.0028 (17)
C60.0326 (19)0.041 (2)0.041 (2)0.0032 (16)0.0026 (16)0.0023 (16)
C70.042 (2)0.035 (2)0.037 (2)0.0032 (17)0.0082 (17)0.0017 (16)
Geometric parameters (Å, º) top
Br1—C41.905 (3)C2—C31.401 (4)
Br2—C61.890 (3)C2—C71.402 (5)
O1—C11.311 (4)C3—C41.375 (5)
O1—H10.8200C3—H3A0.9300
O2—C11.233 (4)C4—C51.381 (5)
O3—C71.348 (4)C5—C61.380 (4)
O3—H30.8200C5—H50.9300
C1—C21.478 (5)C6—C71.397 (5)
C1—O1—H1109.5C3—C4—Br1118.3 (3)
C7—O3—H3109.5C5—C4—Br1119.9 (3)
O2—C1—O1122.7 (3)C6—C5—C4118.4 (3)
O2—C1—C2122.9 (3)C6—C5—H5120.8
O1—C1—C2114.4 (3)C4—C5—H5120.8
C3—C2—C7119.5 (3)C5—C6—C7122.0 (3)
C3—C2—C1120.0 (3)C5—C6—Br2119.4 (3)
C7—C2—C1120.4 (3)C7—C6—Br2118.6 (3)
C4—C3—C2119.9 (3)O3—C7—C6118.2 (3)
C4—C3—H3A120.1O3—C7—C2123.2 (3)
C2—C3—H3A120.1C6—C7—C2118.5 (3)
C3—C4—C5121.7 (3)
O2—C1—C2—C3179.7 (3)C4—C5—C6—C70.5 (5)
O1—C1—C2—C31.3 (5)C4—C5—C6—Br2179.0 (3)
O2—C1—C2—C71.2 (6)C5—C6—C7—O3179.3 (3)
O1—C1—C2—C7177.8 (3)Br2—C6—C7—O31.2 (4)
C7—C2—C3—C40.3 (5)C5—C6—C7—C20.5 (5)
C1—C2—C3—C4179.3 (3)Br2—C6—C7—C2179.0 (2)
C2—C3—C4—C50.2 (5)C3—C2—C7—O3179.7 (3)
C2—C3—C4—Br1178.9 (2)C1—C2—C7—O31.2 (5)
C3—C4—C5—C60.2 (5)C3—C2—C7—C60.1 (5)
Br1—C4—C5—C6178.5 (2)C1—C2—C7—C6179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.872.684 (3)175
O3—H3···O20.821.932.648 (3)145
C3—H3A···Br1ii0.932.893.810 (3)172
Symmetry codes: (i) x+5/2, y1/2, z+1; (ii) x+5/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC7H4Br2O3
Mr295.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)10.770 (3), 11.082 (3), 14.879 (4)
β (°) 105.606 (3)
V3)1710.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)9.44
Crystal size (mm)0.50 × 0.31 × 0.21
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.088, 0.243
No. of measured, independent and
observed [I > 2σ(I)] reflections
6362, 1599, 1286
Rint0.032
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.061, 1.79
No. of reflections1599
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.81

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.872.684 (3)175
O3—H3···O20.821.932.648 (3)145
C3—H3A···Br1ii0.932.893.810 (3)172
Symmetry codes: (i) x+5/2, y1/2, z+1; (ii) x+5/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20662007).

References

First citationBruker (1998). SHELXTL, SAINT and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiari, G., Fronczek, F. R., Davis, S. T. & Gandour, R. D. (1981). Acta Cryst. B37, 1623–1625.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1198–o1199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds