metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1H-Benzotriazol-3-ium (1H-benzo­triazole-κN3)tri­chloridocobaltate(II) monohydrate: a reformulation

aInstitute of General & Ecological Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland
*Correspondence e-mail: lsieron@p.lodz.pl

(Received 14 November 2007; accepted 25 November 2007; online 6 December 2007)

The asymmetric unit of the title compound, (C6H6N3)[CoCl3(C6H5N3)]·H2O, contains two crystallographically independent cations, two anions and two water mol­ecules. The structure has been reported previously [Zhang, Li, Wang, Xie, Wang & Shen (2004[Zhang, Z.-F., Li, L.-X., Wang, X.-Q., Xie, C.-Z., Wang, R.-J. & Shen, G.-Q. (2004). Acta Cryst. E60, m498-m500.]). Acta Cryst E60, m498–m500] as a neutral cobalt(III) complex accompanied by unprotonated benzotriazole mol­ecules and here has been redetermined as an anionic cobalt(II) complex accompanied by protonated benzotriazole cations. For both complex anions, a tetra­hedral CoNCl3 geometry arises. A network of N—H⋯O, N—H⋯Cl, O—H⋯O and O—H⋯Cl hydrogen bonds helps to establish the packing.

Related literature

For the previous stucture, see: Zhang et al. (2004[Zhang, Z.-F., Li, L.-X., Wang, X.-Q., Xie, C.-Z., Wang, R.-J. & Shen, G.-Q. (2004). Acta Cryst. E60, m498-m500.]). For related Co(II)-containing structures, see: Hahn et al. (1997[Hahn, F. E., Scharn, D. & Lugger, T. (1997). Z. Kristallogr. New Cryst. Struct. 212, 472.]); Krawczyk & Gdaniec (2005[Krawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o2967-o2969.]); Pan & Xu (2004[Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.]); Zhang et al. (2006[Zhang, G., Yang, G., Wu, N. & Ma, J. S. (2006). Cryst. Growth Des. 6, 229-234.]);

[Scheme 1]

Experimental

Crystal data
  • (C6H6N3)[CoCl3(C6H5N3)]·H2O

  • Mr = 422.56

  • Triclinic, P 1

  • a = 6.8760 (8) Å

  • b = 7.8033 (12) Å

  • c = 16.657 (3) Å

  • α = 95.450 (13)°

  • β = 95.962 (8)°

  • γ = 103.989 (9)°

  • V = 855.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 293 (2) K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.611, Tmax = 0.744

  • 4906 measured reflections

  • 4846 independent reflections

  • 4526 reflections with I > 2σ(I)

  • Rint = 0.078

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.08

  • 4846 reflections

  • 417 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 920 Friedel pairs

  • Flack parameter: −0.008 (13)

Table 1
Selected bond lengths (Å)

Co1—Cl1 2.2649 (13)
Co1—Cl2 2.2616 (13)
Co1—Cl3 2.2195 (16)
Co1—N1 2.027 (3)
Co2—Cl4 2.2441 (13)
Co2—Cl5 2.2450 (15)
Co2—Cl6 2.2584 (16)
Co2—N11 2.022 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯Cl6 0.82 2.79 3.279 (5) 120
O2—H2A⋯O1i 0.82 2.41 3.142 (7) 148
O2—H2B⋯Cl6 0.82 2.52 3.295 (5) 159
N3—H3⋯O2ii 0.86 1.87 2.721 (4) 173
N13—H13⋯Cl2iii 0.86 2.28 3.127 (3) 169
N21—H21⋯Cl4 0.86 2.80 3.458 (4) 134
N21—H21⋯Cl6iv 0.86 2.75 3.316 (4) 125
N23—H23⋯Cl1v 0.86 2.30 3.123 (3) 160
N31—H31⋯Cl3vi 0.86 2.61 3.214 (4) 128
N33—H33⋯O1i 0.86 1.79 2.646 (5) 170
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) x, y, z-1; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x-1, y+1, z-1.

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 2003[Bruker (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The crystal structure of the salt-like title compound, (I), C6H6N3+.[CoCl3(C6H5N3)]-.H2O, was originally modelled as a [CoCl3(C6H5N3)].C6H5N3.H2O complex (Zhang et al., 2004). A few facts point that the structure was incorrectly described as CoIII instead of CoII complex. The blue colour of the crystal and a tetrahedral coordination geometry around the central metal atom is typical for the CoIICl3N chromophore, e.g. in pyridinium trichloro-pyridine-cobalt(II) (Hahn et al., 1997), quinolinium trichloro-quinoline-cobalt(II) (Pan & Xu, 2004) and 2-aminopyridinium (2-aminopyridine)-trichloro-cobalt(II) (Zhang et al., 2006).

A decrease of the metal oxidation number in (I) from III to II requires the presence of an additional proton for charge balance. In fact, an analysis of difference Fourier maps has shown two peaks in the positions expected for missing benzotriazole H atoms (N–Q = 0.85 and 0.89 Å). Both of these are involved in short, strong N–H···Owater hydrogen bonds which confirms the supposition (Fig. 1). The N–N bond lengths in the benzimidazolium cations are practically equalized and range from 1.309 (4) to 1.316 (5) Å, indicating full delocalization of their π electrons, which is not observed in neutral benzotriazole molecules (Krawczyk & Gdaniec, 2005). The metal bond distances and hydrogen bonds are listed in Tables 1 and 2, respectively.

Related literature top

For the previous stucture, see: Zhang et al. (2006). For related Co(II)-containing structures, see: Hahn et al. (1997); Krawczyk & Gdaniec (2005); Pan & Xu (2004); Zhang et al. (2004)

Experimental top

Due to the unsuccesful attempts at the synthesis of (I), the deposited structure factors and other data have been taken from the original paper of Zhang et al. (2004).

Refinement top

All H atoms were located in difference Fourier syntheses but were repositioned with ideal geometry (C–H = 0.93, N–H = 0.86 and O–H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O).

Structure description top

The crystal structure of the salt-like title compound, (I), C6H6N3+.[CoCl3(C6H5N3)]-.H2O, was originally modelled as a [CoCl3(C6H5N3)].C6H5N3.H2O complex (Zhang et al., 2004). A few facts point that the structure was incorrectly described as CoIII instead of CoII complex. The blue colour of the crystal and a tetrahedral coordination geometry around the central metal atom is typical for the CoIICl3N chromophore, e.g. in pyridinium trichloro-pyridine-cobalt(II) (Hahn et al., 1997), quinolinium trichloro-quinoline-cobalt(II) (Pan & Xu, 2004) and 2-aminopyridinium (2-aminopyridine)-trichloro-cobalt(II) (Zhang et al., 2006).

A decrease of the metal oxidation number in (I) from III to II requires the presence of an additional proton for charge balance. In fact, an analysis of difference Fourier maps has shown two peaks in the positions expected for missing benzotriazole H atoms (N–Q = 0.85 and 0.89 Å). Both of these are involved in short, strong N–H···Owater hydrogen bonds which confirms the supposition (Fig. 1). The N–N bond lengths in the benzimidazolium cations are practically equalized and range from 1.309 (4) to 1.316 (5) Å, indicating full delocalization of their π electrons, which is not observed in neutral benzotriazole molecules (Krawczyk & Gdaniec, 2005). The metal bond distances and hydrogen bonds are listed in Tables 1 and 2, respectively.

For the previous stucture, see: Zhang et al. (2006). For related Co(II)-containing structures, see: Hahn et al. (1997); Krawczyk & Gdaniec (2005); Pan & Xu (2004); Zhang et al. (2004)

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL (Bruker, 2003); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of (I), showing displacement ellipsoids for the non-H atoms drawn at the 30% probability level.
1H-Benzotriazol-3-ium (1H-benzotriazole-κN3)trichloridocobalt(II) monohydrate top
Crystal data top
(C6H6N3)[CoCl3(C6H5N3)]·H2OZ = 2
Mr = 422.56F(000) = 426
Triclinic, P1Dx = 1.640 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8760 (8) ÅCell parameters from 28 reflections
b = 7.8033 (12) Åθ = 5.3–12.6°
c = 16.657 (3) ŵ = 1.48 mm1
α = 95.450 (13)°T = 293 K
β = 95.962 (8)°Prism, blue
γ = 103.989 (9)°0.40 × 0.40 × 0.20 mm
V = 855.8 (2) Å3
Data collection top
Bruker P4
diffractometer
4526 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω scansh = 81
Absorption correction: ψ scan
(North et al., 1968)
k = 910
Tmin = 0.611, Tmax = 0.744l = 2121
4906 measured reflections3 standard reflections every 100 reflections
4846 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.2297P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4846 reflectionsΔρmax = 0.34 e Å3
417 parametersΔρmin = 0.26 e Å3
3 restraintsAbsolute structure: Flack (1983), 920 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (13)
Crystal data top
(C6H6N3)[CoCl3(C6H5N3)]·H2Oγ = 103.989 (9)°
Mr = 422.56V = 855.8 (2) Å3
Triclinic, P1Z = 2
a = 6.8760 (8) ÅMo Kα radiation
b = 7.8033 (12) ŵ = 1.48 mm1
c = 16.657 (3) ÅT = 293 K
α = 95.450 (13)°0.40 × 0.40 × 0.20 mm
β = 95.962 (8)°
Data collection top
Bruker P4
diffractometer
4526 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.078
Tmin = 0.611, Tmax = 0.7443 standard reflections every 100 reflections
4906 measured reflections intensity decay: none
4846 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.34 e Å3
S = 1.08Δρmin = 0.26 e Å3
4846 reflectionsAbsolute structure: Flack (1983), 920 Friedel pairs
417 parametersAbsolute structure parameter: 0.008 (13)
3 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.44420 (6)0.01369 (5)0.90042 (3)0.0462 (1)
Cl10.1994 (2)0.24333 (13)0.89041 (6)0.0706 (3)
Cl20.3415 (2)0.22168 (14)0.97717 (6)0.0707 (4)
Cl30.7529 (2)0.0156 (3)0.93735 (8)0.0969 (6)
N10.4450 (5)0.0908 (4)0.78758 (16)0.0436 (8)
N20.3859 (5)0.0327 (4)0.72406 (17)0.0491 (9)
N30.3929 (5)0.0501 (4)0.65771 (17)0.0487 (9)
C40.4831 (7)0.3714 (6)0.6303 (3)0.0585 (12)
C50.5466 (8)0.5379 (6)0.6726 (3)0.0669 (16)
C60.5824 (8)0.5658 (5)0.7580 (3)0.0674 (15)
C70.5560 (6)0.4277 (5)0.8042 (2)0.0560 (11)
C80.4911 (5)0.2557 (4)0.7616 (2)0.0441 (9)
C90.4567 (5)0.2298 (5)0.6770 (2)0.0446 (9)
Co20.55479 (7)0.48473 (5)0.39999 (3)0.0484 (1)
Cl40.6620 (2)0.24123 (14)0.42163 (7)0.0745 (4)
Cl50.7823 (3)0.72314 (15)0.46890 (8)0.0979 (6)
Cl60.2402 (2)0.4745 (2)0.43067 (8)0.0891 (5)
N110.5282 (5)0.5107 (4)0.27999 (16)0.0445 (8)
N120.4780 (6)0.3689 (4)0.22487 (17)0.0514 (9)
N130.4662 (6)0.4279 (4)0.15251 (17)0.0542 (9)
C140.5165 (7)0.7309 (6)0.1018 (2)0.0570 (11)
C150.5618 (8)0.9044 (6)0.1336 (3)0.0630 (16)
C160.5992 (7)0.9600 (5)0.2186 (3)0.0606 (13)
C170.5933 (6)0.8414 (5)0.2737 (2)0.0512 (10)
C180.5479 (5)0.6616 (4)0.24206 (18)0.0409 (9)
C190.5082 (6)0.6077 (5)0.1583 (2)0.0453 (10)
N210.9897 (6)0.4698 (4)0.59051 (19)0.0554 (10)
N221.0593 (6)0.6201 (4)0.6387 (2)0.0608 (11)
N231.0793 (5)0.5710 (4)0.71148 (18)0.0531 (9)
C241.0184 (7)0.2821 (6)0.7735 (2)0.0581 (11)
C250.9546 (7)0.1017 (6)0.7485 (3)0.0670 (16)
C260.8995 (7)0.0348 (6)0.6655 (3)0.0695 (16)
C270.9026 (7)0.1394 (5)0.6052 (3)0.0605 (14)
C280.9658 (6)0.3237 (5)0.6305 (2)0.0462 (10)
C291.0242 (5)0.3911 (5)0.7118 (2)0.0439 (10)
N310.0523 (6)0.8803 (5)0.0749 (2)0.0609 (13)
N320.0951 (7)1.0044 (5)0.1374 (2)0.0673 (14)
N330.0884 (6)0.9186 (5)0.2018 (2)0.0581 (11)
C340.0247 (7)0.5974 (7)0.2283 (3)0.0671 (16)
C350.0210 (9)0.4337 (7)0.1856 (4)0.0788 (19)
C360.0493 (8)0.4068 (6)0.1003 (4)0.0805 (18)
C370.0293 (8)0.5435 (6)0.0545 (3)0.0688 (14)
C380.0182 (7)0.7128 (5)0.0974 (2)0.0531 (11)
C390.0438 (6)0.7406 (5)0.1818 (2)0.0514 (11)
O10.1150 (10)0.0529 (7)0.3557 (2)0.127 (2)
O20.3201 (10)0.8988 (6)0.4999 (2)0.124 (2)
H30.361000.003300.608800.0580*
H40.458800.353300.573800.0710*
H50.566900.636000.644000.0810*
H60.625400.681900.784100.0810*
H70.579900.446900.860700.0670*
H130.435200.359200.107100.0650*
H140.492300.695600.046000.0680*
H150.568700.990500.098300.0760*
H160.628601.080800.237200.0730*
H170.618100.877900.329400.0620*
H210.961900.464100.538600.074 (15)*
H231.123000.645200.754900.0640*
H241.055200.328000.828000.0700*
H250.947900.022700.787100.0800*
H260.858800.087900.651500.0840*
H270.865500.092800.550800.0730*
H310.046300.901900.025200.0730*
H330.110100.970100.251100.10 (2)*
H340.042500.614400.284800.0810*
H350.034200.335200.213800.0940*
H360.082900.290800.074200.0970*
H370.046500.524800.002100.0820*
H1A0.238900.076000.362600.1910*
H1B0.048800.126700.360900.1910*
H2A0.307800.973300.469400.1850*
H2B0.271600.791400.488100.1850*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0523 (3)0.0539 (2)0.0332 (2)0.0160 (2)0.0026 (2)0.0071 (2)
Cl10.0959 (8)0.0581 (5)0.0467 (4)0.0033 (5)0.0175 (5)0.0019 (4)
Cl20.1015 (9)0.0690 (6)0.0423 (4)0.0284 (6)0.0096 (5)0.0074 (4)
Cl30.0682 (7)0.1819 (15)0.0594 (6)0.0585 (9)0.0058 (5)0.0423 (7)
N10.0503 (16)0.0458 (13)0.0372 (12)0.0171 (13)0.0039 (12)0.0076 (10)
N20.0596 (18)0.0496 (14)0.0389 (13)0.0173 (14)0.0029 (13)0.0050 (11)
N30.0563 (18)0.0541 (15)0.0365 (12)0.0166 (15)0.0054 (13)0.0034 (11)
C40.060 (2)0.072 (2)0.055 (2)0.026 (2)0.0196 (19)0.0287 (19)
C50.066 (3)0.061 (2)0.088 (3)0.024 (2)0.030 (2)0.038 (2)
C60.065 (3)0.0468 (19)0.093 (3)0.0146 (19)0.019 (2)0.0109 (19)
C70.057 (2)0.0533 (18)0.0544 (19)0.0098 (18)0.0087 (18)0.0001 (15)
C80.0424 (17)0.0504 (16)0.0423 (15)0.0161 (14)0.0055 (14)0.0084 (13)
C90.0431 (18)0.0526 (16)0.0426 (15)0.0169 (15)0.0089 (14)0.0118 (13)
Co20.0625 (3)0.0495 (2)0.0336 (2)0.0159 (2)0.0033 (2)0.0060 (2)
Cl40.1100 (10)0.0605 (5)0.0572 (5)0.0355 (6)0.0038 (6)0.0083 (4)
Cl50.1390 (14)0.0598 (6)0.0697 (7)0.0027 (8)0.0386 (8)0.0015 (5)
Cl60.0837 (9)0.1346 (11)0.0667 (6)0.0474 (9)0.0314 (6)0.0256 (7)
N110.0564 (17)0.0426 (13)0.0350 (11)0.0145 (13)0.0044 (12)0.0038 (10)
N120.069 (2)0.0467 (14)0.0382 (13)0.0191 (15)0.0004 (14)0.0000 (11)
N130.069 (2)0.0590 (16)0.0355 (12)0.0233 (16)0.0014 (14)0.0013 (11)
C140.061 (2)0.077 (2)0.0418 (17)0.027 (2)0.0099 (17)0.0230 (17)
C150.067 (3)0.073 (3)0.062 (2)0.029 (2)0.017 (2)0.035 (2)
C160.068 (3)0.0489 (18)0.069 (2)0.0182 (19)0.010 (2)0.0174 (17)
C170.061 (2)0.0456 (16)0.0485 (18)0.0161 (17)0.0085 (17)0.0057 (14)
C180.0440 (17)0.0461 (15)0.0353 (14)0.0155 (14)0.0053 (13)0.0083 (11)
C190.048 (2)0.0568 (18)0.0362 (14)0.0211 (16)0.0094 (14)0.0070 (13)
N210.065 (2)0.0601 (17)0.0392 (14)0.0147 (16)0.0007 (15)0.0087 (12)
N220.069 (2)0.0514 (16)0.0605 (19)0.0148 (16)0.0018 (18)0.0115 (14)
N230.0579 (19)0.0524 (15)0.0470 (15)0.0168 (15)0.0020 (14)0.0018 (12)
C240.058 (2)0.078 (2)0.0472 (18)0.028 (2)0.0105 (18)0.0202 (17)
C250.056 (2)0.073 (3)0.084 (3)0.024 (2)0.019 (2)0.040 (2)
C260.055 (2)0.0473 (19)0.105 (4)0.0122 (19)0.005 (2)0.011 (2)
C270.057 (2)0.0491 (19)0.071 (3)0.0143 (18)0.003 (2)0.0047 (17)
C280.0429 (18)0.0501 (17)0.0452 (16)0.0122 (15)0.0032 (14)0.0064 (13)
C290.0408 (18)0.0527 (17)0.0400 (15)0.0162 (15)0.0043 (14)0.0044 (13)
N310.072 (3)0.0657 (19)0.0476 (16)0.0224 (19)0.0014 (17)0.0150 (14)
N320.079 (3)0.063 (2)0.063 (2)0.0251 (19)0.0019 (19)0.0135 (16)
N330.060 (2)0.0635 (19)0.0504 (17)0.0182 (17)0.0014 (15)0.0054 (14)
C340.053 (2)0.088 (3)0.069 (3)0.023 (2)0.013 (2)0.034 (2)
C350.069 (3)0.066 (3)0.109 (4)0.019 (2)0.019 (3)0.036 (3)
C360.068 (3)0.056 (2)0.116 (4)0.013 (2)0.017 (3)0.005 (2)
C370.069 (3)0.070 (2)0.065 (2)0.016 (2)0.011 (2)0.0019 (19)
C380.052 (2)0.063 (2)0.0476 (17)0.0197 (18)0.0068 (16)0.0093 (15)
C390.045 (2)0.0578 (18)0.0526 (19)0.0151 (17)0.0035 (16)0.0111 (15)
O10.161 (5)0.126 (4)0.074 (2)0.015 (4)0.002 (3)0.019 (2)
O20.187 (6)0.111 (3)0.065 (2)0.033 (4)0.016 (3)0.014 (2)
Geometric parameters (Å, º) top
Co1—Cl12.2649 (13)C6—C71.371 (6)
Co1—Cl22.2616 (13)C7—C81.403 (5)
Co1—Cl32.2195 (16)C8—C91.392 (5)
Co1—N12.027 (3)C4—H40.93
Co2—Cl42.2441 (13)C5—H50.93
Co2—Cl52.2450 (15)C6—H60.93
Co2—Cl62.2584 (16)C7—H70.93
Co2—N112.022 (3)C14—C151.355 (6)
O1—H1B0.82C14—C191.404 (5)
O1—H1A0.82C15—C161.419 (7)
N1—C81.371 (4)C16—C171.361 (6)
N1—N21.320 (4)C17—C181.399 (5)
N2—N31.332 (4)C18—C191.397 (4)
N3—C91.360 (5)C14—H140.93
O2—H2B0.82C15—H150.93
O2—H2A0.82C16—H160.93
N3—H30.86C17—H170.93
N11—N121.320 (4)C24—C251.378 (6)
N11—C181.373 (4)C24—C291.393 (5)
N12—N131.332 (4)C25—C261.409 (7)
N13—C191.354 (5)C26—C271.352 (7)
N13—H130.86C27—C281.407 (5)
N21—C281.359 (5)C28—C291.386 (5)
N21—N221.311 (4)C24—H240.93
N22—N231.309 (4)C25—H250.93
N23—C291.363 (5)C26—H260.93
N21—H210.86C27—H270.93
N23—H230.86C34—C391.407 (6)
N31—C381.366 (5)C34—C351.350 (8)
N31—N321.310 (5)C35—C361.403 (9)
N32—N331.316 (5)C36—C371.358 (7)
N33—C391.349 (5)C37—C381.388 (6)
N31—H310.86C38—C391.388 (5)
N33—H330.86C34—H340.93
C4—C51.365 (7)C35—H350.93
C4—C91.398 (6)C36—H360.93
C5—C61.405 (7)C37—H370.93
Cl1—Co1—Cl2106.81 (5)C5—C6—H6119
Cl1—Co1—Cl3113.73 (7)C8—C7—H7122
Cl1—Co1—N1106.87 (10)C6—C7—H7122
Cl2—Co1—Cl3116.75 (6)C15—C14—C19115.9 (3)
Cl2—Co1—N1105.84 (10)C14—C15—C16122.6 (4)
Cl3—Co1—N1106.16 (11)C15—C16—C17121.8 (4)
Cl6—Co2—N11102.70 (11)C16—C17—C18116.4 (3)
Cl4—Co2—Cl6114.49 (6)C17—C18—C19121.4 (3)
Cl4—Co2—N11110.22 (10)N11—C18—C19107.4 (3)
Cl4—Co2—Cl5108.33 (6)N11—C18—C17131.2 (3)
Cl5—Co2—N11109.56 (10)N13—C19—C14134.5 (3)
Cl5—Co2—Cl6111.40 (7)C14—C19—C18121.8 (3)
H1A—O1—H1B125N13—C19—C18103.7 (3)
N2—N1—C8109.5 (3)C15—C14—H14122
Co1—N1—N2118.5 (2)C19—C14—H14122
Co1—N1—C8131.9 (2)C16—C15—H15119
N1—N2—N3107.4 (3)C14—C15—H15119
N2—N3—C9111.5 (3)C15—C16—H16119
H2A—O2—H2B124C17—C16—H16119
C9—N3—H3124C18—C17—H17122
N2—N3—H3124C16—C17—H17122
N12—N11—C18109.6 (3)C25—C24—C29115.7 (3)
Co2—N11—N12120.6 (2)C24—C25—C26121.3 (4)
Co2—N11—C18129.7 (2)C25—C26—C27123.6 (4)
N11—N12—N13106.7 (3)C26—C27—C28115.4 (4)
N12—N13—C19112.7 (3)N21—C28—C29104.7 (3)
N12—N13—H13124N21—C28—C27133.7 (3)
C19—N13—H13124C27—C28—C29121.6 (4)
N22—N21—C28113.5 (3)C24—C29—C28122.5 (4)
N21—N22—N23104.1 (3)N23—C29—C24133.3 (3)
N22—N23—C29113.6 (3)N23—C29—C28104.3 (3)
C28—N21—H21123C29—C24—H24122
N22—N21—H21123C25—C24—H24122
N22—N23—H23123C24—C25—H25119
C29—N23—H23123C26—C25—H25119
N32—N31—C38112.6 (3)C25—C26—H26118
N31—N32—N33105.2 (3)C27—C26—H26118
N32—N33—C39112.3 (3)C28—C27—H27122
C38—N31—H31124C26—C27—H27122
N32—N31—H31124C35—C34—C39115.8 (5)
C39—N33—H33124C34—C35—C36122.5 (5)
N32—N33—H33124C35—C36—C37122.5 (5)
C5—C4—C9116.0 (4)C36—C37—C38115.8 (5)
C4—C5—C6122.1 (4)N31—C38—C39104.2 (3)
C5—C6—C7122.2 (4)N31—C38—C37133.7 (4)
C6—C7—C8116.4 (3)C37—C38—C39122.1 (4)
N1—C8—C9107.2 (3)C34—C39—C38121.3 (4)
N1—C8—C7131.9 (3)N33—C39—C34133.0 (4)
C7—C8—C9120.9 (3)N33—C39—C38105.7 (3)
N3—C9—C8104.5 (3)C35—C34—H34122
N3—C9—C4133.1 (3)C39—C34—H34122
C4—C9—C8122.4 (4)C36—C35—H35119
C5—C4—H4122C34—C35—H35119
C9—C4—H4122C35—C36—H36119
C6—C5—H5119C37—C36—H36119
C4—C5—H5119C38—C37—H37122
C7—C6—H6119C36—C37—H37122
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl60.822.793.279 (5)120
O2—H2A···O1i0.822.413.142 (7)148
O2—H2B···Cl60.822.523.295 (5)159
N3—H3···O2ii0.861.872.721 (4)173
N13—H13···Cl2iii0.862.283.127 (3)169
N21—H21···Cl40.862.803.458 (4)134
N21—H21···Cl6iv0.862.753.316 (4)125
N23—H23···Cl1v0.862.303.123 (3)160
N31—H31···Cl3vi0.862.613.214 (4)128
N33—H33···O1i0.861.792.646 (5)170
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y, z1; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x1, y+1, z1.

Experimental details

Crystal data
Chemical formula(C6H6N3)[CoCl3(C6H5N3)]·H2O
Mr422.56
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.8760 (8), 7.8033 (12), 16.657 (3)
α, β, γ (°)95.450 (13), 95.962 (8), 103.989 (9)
V3)855.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker P4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.611, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
4906, 4846, 4526
Rint0.078
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.08
No. of reflections4846
No. of parameters417
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.26
Absolute structureFlack (1983), 920 Friedel pairs
Absolute structure parameter0.008 (13)

Computer programs: XSCANS (Bruker, 1997), SHELXTL (Bruker, 2003), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Co1—Cl12.2649 (13)Co2—Cl42.2441 (13)
Co1—Cl22.2616 (13)Co2—Cl52.2450 (15)
Co1—Cl32.2195 (16)Co2—Cl62.2584 (16)
Co1—N12.027 (3)Co2—N112.022 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl60.822.793.279 (5)120
O2—H2A···O1i0.822.413.142 (7)148
O2—H2B···Cl60.822.523.295 (5)159
N3—H3···O2ii0.861.872.721 (4)173
N13—H13···Cl2iii0.862.283.127 (3)169
N21—H21···Cl40.862.803.458 (4)134
N21—H21···Cl6iv0.862.753.316 (4)125
N23—H23···Cl1v0.862.303.123 (3)160
N31—H31···Cl3vi0.862.613.214 (4)128
N33—H33···O1i0.861.792.646 (5)170
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y, z1; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x1, y+1, z1.
 

References

First citationBruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHahn, F. E., Scharn, D. & Lugger, T. (1997). Z. Kristallogr. New Cryst. Struct. 212, 472.  Google Scholar
First citationKrawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o2967–o2969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-F., Li, L.-X., Wang, X.-Q., Xie, C.-Z., Wang, R.-J. & Shen, G.-Q. (2004). Acta Cryst. E60, m498–m500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, G., Yang, G., Wu, N. & Ma, J. S. (2006). Cryst. Growth Des. 6, 229–234.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds