organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-[4-(5,7-Di­methyl-1,8-naphthyridin-2-yl­­oxy)phen­­oxy]-2,4-di­methyl-1,8-naphthyridine methanol disolvate

aFaculty of Science, ZheJiang Forestry University, Lin'An 311300, People's Republic of China, and bDepartment of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
*Correspondence e-mail: jinsw@zjfc.edu.cn

(Received 15 October 2007; accepted 4 December 2007; online 12 December 2007)

The title compound, C26H22N4O2·2CH3OH, was synthesized and characterized by 1H NMR spectroscopy and X-ray structure analysis. There is one half-mol­ecule in the asymmetric unit with a centre of symmetry located at the centre of the benzene ring. The two bridged naphthyridine ring systems are in an anti­parallel orientation. In the crystal structure, O—H⋯N, C—H⋯O and C—H⋯N inter­actions define the packing.

Related literature

For related literature, see: Ferrarini et al. (2004[Ferrarini, P. L., Betti, L., Cavallini, T., Giannaccini, G., Lucacchini, A., Manera, C., Martinelli, A., Ortore, G., Saccomanni, G. & Tuccinardi, T. (2004). J. Med. Chem. 47, 3019-3031.]); Goswami & Mukherjee (1997[Goswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619-1622.]); Hoock et al. (1999[Hoock, C., Reichert, J. & Schmidtke, M. (1999). Molecules, 4, 264-271.]); Jin, Liu & Chen (2007[Jin, S. W., Liu, B. & Chen, W. Z. (2007). Chin. J. Struct. Chem. 3, 287-290.]); Jin, Chen & Wang (2007[Jin, S. W., Chen, W. Z. & Wang, D. Q. (2007). Chin. J. Inorg. Chem. 2, 270-274.]); Nabanita et al. (2006[Nabanita, S., Sanjib, K. P., Kasinath, S. & Jitendra, K. B. (2006). Organometallics, 25, 2914-2916.]); Nakatani et al. (2000[Nakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc. 122, 2172-2177.]); Nakataniz et al. (2001[Nakataniz, K., Sando, S., Kumasawa, H., Kikuchi, J. & Saito, I. (2001). J. Am. Chem. Soc. 123, 12650-12657.]); Newkome et al. (1981[Newkome, G. R., Garbis, S. J., Majestic, V. K., Fronczek, F. R. & Chiaril, G. (1981). J. Org. Chem. 46, 833-839.]); Stuk et al. (2003[Stuk, T. L., Assink. B. K., Jr. B. R. C., Erdman, D. T., Fedij, V., Jennings, S. M., Lassig. J. A., Smith. R. J. & Smith T. L. (2003). Org. Proc. Res. Dev. 7, 851-855.]); Gavrilova & Bosnich (2004[Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-384.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22N4O2·2CH4O

  • Mr = 486.56

  • Triclinic, [P \overline 1]

  • a = 7.009 (3) Å

  • b = 9.244 (3) Å

  • c = 10.239 (4) Å

  • α = 78.679 (6)°

  • β = 79.653 (6)°

  • γ = 82.689 (6)°

  • V = 637.0 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.27 × 0.24 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD Diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.984

  • 3379 measured reflections

  • 2216 independent reflections

  • 1236 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.163

  • S = 1.03

  • 2216 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 2.06 2.882 (3) 178
C6—H6⋯O2i 0.93 2.53 3.414 (4) 159
C10—H10A⋯O2i 0.96 2.54 3.436 (4) 156
C13—H13⋯N2ii 0.93 2.61 3.450 (4) 151
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 andSHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 andSHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1,8-naphthyridine have been investigated over half a century because of their interesting complexation properties and medical uses. They can act as antimycobacterial and antimicrobial agents (Goswami et al., 1997; Nakatani et al., 2000; Ferrarini et al., 2004; Stuk et al., 2003) and as mono-nucleating and dinucleating ligands in coordination chemistry (Gavrilova & Bosnich, 2004). The deriatives of 1,8-naphthyridine have been widely utilized as molecular recognition receptors for urea, carboxylic acids and guanine (Goswami et al., 1997; Nakatani et al., 2000). Recently 1,8-naphthyridine derivatives have been reported to be excellent fluorescent markers of nucleic acids (Hoock et al., 1999) and probe molecules (Nakataniz et al., 2001). Many novel inorganic complexes have been synthesized using this kind of compounds as mono or bidentate ligands (Nabanita et al., 2006; Jin, Liu & Chen, 2007; Jin, Chen & Wang, 2007). However, only a few mono and disubstituted 2,7-naphthyridine derivatives have been prepared. The potential multinucleating abilities of 1,8-naphthyridine derivatives as ligands in preparations of functional metalloorganic compounds stimulated us to explore bridged 1,8-naphthyridine compounds. In this paper, we report the synthesis and structure characterization of 7-(4-(5,7-dimethyl-1,8-naphthyridin-2-yloxy)phenoxy)- 2,4-dimethyl-1,8-naphthyridine dimethanol solvate (I) (Fig. 1). The crystals of (I) were formed by slow evaporation of 7-(4-(5,7-dimethyl-1,8- naphthyridin-2-yloxy)phenoxy)-2,4-dimethyl-1,8-naphthyridine from methanol solution. An X-ray diffraction analysis of (I) is in agreement with the HNMR results. Bond lengths and angles are in the usual range. The bond lengths N(1)—C(8) and N(2)—C(2) are 1.303 (3) and 1.322 (3) Å, respectively, and display double-bond character. The bond lengths N(1)—C(1) and N(2)—C(1), both are 1.361 (3) Å and reveal a single-bond character. The conformations of the two naphthyridine rings towards the benzene ring is described by the torsion angle C(13)—C(12)—O(1)—C(8) (126.06 (2) °); they adopt (+)-anticlinal and (-)-anticlinal conformations. The torsion angle C(7), C(8), O(1), C(12) of 175.56 (2) ° defines the anti-parallel orientation of the two naphthyridine rings being in accord with Ci molecular symmetry. The closest contact between two adjacent naphthyridine carbons (C2···C4i, symmetry code: i) 1 - x, -y, 2 - z.) is 3.512 Å, which is in the range of π···π stacking interaction. The O—H..N, C—H···O and C—H···N interactions define the pcrystal packing (Table 1, Fig.2).

Related literature top

For related literature, see: Ferrarini et al. (2004); Goswami & Mukherjee (1997); Hoock et al. (1999); Jin, Liu & Chen (2007); Jin, Chen & Wang (2007); Nabanita et al. (2006); Nakatani et al. (2000); Nakataniz et al. (2001); Newkome et al. (1981); Stuk et al. (2003); Gavrilova & Bosnich (2004).

Experimental top

Chemicals were obtained from commercial suppliers and used without further purification. 5,7-Dimethyl-2-chloro-1,8-naphthyridine was prepared according to (Newkome et al., 1981). Reactions and product mixtures were routinely monitored by TLC on silica gel (precoated F254 Merck plates) with spot detection under UV light. NMR spectra were recorded on Bruker Avance-400 (400 MHz) spectrometer in deuterated chloroform. Chemical shifts (delta) are expressed in p.p.m. downfield to TMS at delta = 0 p.p.m. and coupling constants (J) are expressed in Hz.

A Schlenck tube was charged with 15 ml DMF and 5,7-dimethyl-2-chloro-1,8-naphthyridine, 0.77 g (4 mmol), sodium carbonate 0.33 g (2.4 mmol), p-hydroquinone 0.22 g (2 mmol). were added. The Schlenck tube was capped, evacuated, and back-filled with Ar three times. While still under Ar, it was immersed into a 413 K– hetaed oil bath. After stirring for 48 h, the mixture was cooled, filtered over celite, and evaporated in vacuo. The residue was washed with sodium hydroxide, then washed with water till the washing is neutral, filtered, dried in vacuum. The product 7-(4-(5,7-dimethyl-1,8- naphthyridin-2-yloxy)phenoxy)-2,4-dimethyl-1,8-naphthyridine precipitated was recrystallized from methanol. Yield: 0.42 g, 49.8%. Anal. Calcd. for (C26H22N4O2): C, 73.92%, H, 5.25%, N, 13.26%. Found: C, 73.78%, H, 5.25%, N, 13.45%. 1H NMR (400 MHz, CDCl3): delta = 2.65(s, 6H), 2.67(s, 6H), 7.09(s, 2H), 7.20(d, 2H, J = 9 Hz), 7.32(s, 4H), 8.30(d, 2H, J = 9 Hz).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H)) = 1.2Ueq(C). Hydrogen atoms bound to methanol molecules were located in the Fourier difference map, and their distances were fixed and subject to an O—H = 0.85 Å with deviation of positive and negative 0.01 Å restraint.

Structure description top

Derivatives of 1,8-naphthyridine have been investigated over half a century because of their interesting complexation properties and medical uses. They can act as antimycobacterial and antimicrobial agents (Goswami et al., 1997; Nakatani et al., 2000; Ferrarini et al., 2004; Stuk et al., 2003) and as mono-nucleating and dinucleating ligands in coordination chemistry (Gavrilova & Bosnich, 2004). The deriatives of 1,8-naphthyridine have been widely utilized as molecular recognition receptors for urea, carboxylic acids and guanine (Goswami et al., 1997; Nakatani et al., 2000). Recently 1,8-naphthyridine derivatives have been reported to be excellent fluorescent markers of nucleic acids (Hoock et al., 1999) and probe molecules (Nakataniz et al., 2001). Many novel inorganic complexes have been synthesized using this kind of compounds as mono or bidentate ligands (Nabanita et al., 2006; Jin, Liu & Chen, 2007; Jin, Chen & Wang, 2007). However, only a few mono and disubstituted 2,7-naphthyridine derivatives have been prepared. The potential multinucleating abilities of 1,8-naphthyridine derivatives as ligands in preparations of functional metalloorganic compounds stimulated us to explore bridged 1,8-naphthyridine compounds. In this paper, we report the synthesis and structure characterization of 7-(4-(5,7-dimethyl-1,8-naphthyridin-2-yloxy)phenoxy)- 2,4-dimethyl-1,8-naphthyridine dimethanol solvate (I) (Fig. 1). The crystals of (I) were formed by slow evaporation of 7-(4-(5,7-dimethyl-1,8- naphthyridin-2-yloxy)phenoxy)-2,4-dimethyl-1,8-naphthyridine from methanol solution. An X-ray diffraction analysis of (I) is in agreement with the HNMR results. Bond lengths and angles are in the usual range. The bond lengths N(1)—C(8) and N(2)—C(2) are 1.303 (3) and 1.322 (3) Å, respectively, and display double-bond character. The bond lengths N(1)—C(1) and N(2)—C(1), both are 1.361 (3) Å and reveal a single-bond character. The conformations of the two naphthyridine rings towards the benzene ring is described by the torsion angle C(13)—C(12)—O(1)—C(8) (126.06 (2) °); they adopt (+)-anticlinal and (-)-anticlinal conformations. The torsion angle C(7), C(8), O(1), C(12) of 175.56 (2) ° defines the anti-parallel orientation of the two naphthyridine rings being in accord with Ci molecular symmetry. The closest contact between two adjacent naphthyridine carbons (C2···C4i, symmetry code: i) 1 - x, -y, 2 - z.) is 3.512 Å, which is in the range of π···π stacking interaction. The O—H..N, C—H···O and C—H···N interactions define the pcrystal packing (Table 1, Fig.2).

For related literature, see: Ferrarini et al. (2004); Goswami & Mukherjee (1997); Hoock et al. (1999); Jin, Liu & Chen (2007); Jin, Chen & Wang (2007); Nabanita et al. (2006); Nakatani et al. (2000); Nakataniz et al. (2001); Newkome et al. (1981); Stuk et al. (2003); Gavrilova & Bosnich (2004).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 199; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code to generate the molecule from an asymmetric unit (-x, 1 - y, 1 - z).
[Figure 2] Fig. 2. The crystal packing of (I).
7-[4-(5,7-Dimethyl-1,8-naphthyridin-2-yloxy)phenoxy]-2,4-dimethyl-\1,8-naphthyridine dimethanol solvate top
Crystal data top
C26H22N4O2·2CH4OZ = 1
Mr = 486.56F(000) = 258
Triclinic, P1Dx = 1.268 Mg m3
a = 7.009 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.244 (3) ÅCell parameters from 877 reflections
c = 10.239 (4) Åθ = 2.3–24.7°
α = 78.679 (6)°µ = 0.09 mm1
β = 79.653 (6)°T = 298 K
γ = 82.689 (6)°Block, colourless
V = 637.0 (4) Å30.27 × 0.24 × 0.19 mm
Data collection top
Bruker SMART APEX CCD Diffractometer2216 independent reflections
Radiation source: fine-focus sealed tube1236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 85
Tmin = 0.977, Tmax = 0.984k = 1010
3379 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.2468P]
where P = (Fo2 + 2Fc2)/3
2216 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C26H22N4O2·2CH4Oγ = 82.689 (6)°
Mr = 486.56V = 637.0 (4) Å3
Triclinic, P1Z = 1
a = 7.009 (3) ÅMo Kα radiation
b = 9.244 (3) ŵ = 0.09 mm1
c = 10.239 (4) ÅT = 298 K
α = 78.679 (6)°0.27 × 0.24 × 0.19 mm
β = 79.653 (6)°
Data collection top
Bruker SMART APEX CCD Diffractometer2216 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1236 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.019
3379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
2216 reflectionsΔρmin = 0.20 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3076 (3)0.1993 (2)0.6758 (2)0.0483 (6)
N20.5387 (3)0.2103 (2)0.8040 (2)0.0496 (6)
O10.0813 (3)0.19512 (19)0.5388 (2)0.0619 (6)
O20.3944 (3)0.5192 (2)0.7759 (3)0.0967 (10)
H20.43760.43170.78310.145*
C10.4486 (4)0.1239 (3)0.7453 (3)0.0430 (7)
C20.6819 (4)0.1463 (3)0.8699 (3)0.0529 (8)
C30.7375 (4)0.0058 (3)0.8838 (3)0.0570 (8)
H30.83710.04630.93280.068*
C40.6492 (4)0.0972 (3)0.8273 (3)0.0521 (8)
C50.4982 (4)0.0297 (3)0.7537 (3)0.0437 (7)
C60.3930 (4)0.1050 (3)0.6864 (3)0.0530 (8)
H60.41950.20680.69030.064*
C70.2544 (4)0.0296 (3)0.6165 (3)0.0557 (8)
H70.18440.07780.57190.067*
C80.2194 (4)0.1241 (3)0.6135 (3)0.0489 (7)
C90.7853 (5)0.2444 (4)0.9283 (4)0.0748 (10)
H9A0.72840.34480.90900.112*
H9B0.92060.23890.88920.112*
H9C0.77320.21231.02420.112*
C100.7114 (5)0.2600 (3)0.8422 (4)0.0768 (11)
H10A0.63350.30560.79650.115*
H10B0.69440.30370.93620.115*
H10C0.84610.27510.80350.115*
C110.1900 (4)0.4419 (3)0.4653 (3)0.0532 (8)
H110.31770.40260.44180.064*
C120.0463 (4)0.3504 (3)0.5222 (3)0.0470 (7)
C130.1421 (4)0.4064 (3)0.5566 (3)0.0498 (7)
H130.23790.34280.59470.060*
C140.1928 (5)0.5291 (4)0.8034 (4)0.0744 (10)
H14A0.15190.49050.89700.112*
H14B0.14520.47270.74880.112*
H14C0.14180.63100.78340.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0538 (15)0.0380 (13)0.0556 (16)0.0017 (11)0.0224 (12)0.0039 (11)
N20.0545 (15)0.0452 (13)0.0511 (15)0.0090 (11)0.0184 (12)0.0019 (11)
O10.0721 (14)0.0400 (11)0.0834 (16)0.0003 (10)0.0463 (12)0.0069 (10)
O20.0614 (16)0.0542 (14)0.176 (3)0.0057 (11)0.0178 (16)0.0239 (16)
C10.0442 (16)0.0406 (15)0.0437 (17)0.0039 (12)0.0123 (13)0.0015 (12)
C20.0496 (18)0.0580 (19)0.0515 (19)0.0095 (15)0.0141 (15)0.0026 (14)
C30.0475 (18)0.065 (2)0.056 (2)0.0036 (15)0.0188 (15)0.0011 (15)
C40.0492 (18)0.0499 (17)0.0528 (19)0.0061 (14)0.0097 (15)0.0040 (14)
C50.0427 (16)0.0400 (15)0.0458 (17)0.0005 (12)0.0083 (13)0.0024 (12)
C60.0608 (19)0.0353 (15)0.063 (2)0.0006 (14)0.0152 (16)0.0075 (14)
C70.064 (2)0.0426 (16)0.067 (2)0.0048 (15)0.0239 (17)0.0114 (14)
C80.0507 (17)0.0432 (16)0.0535 (18)0.0017 (13)0.0204 (15)0.0014 (13)
C90.078 (2)0.078 (2)0.079 (3)0.0178 (19)0.038 (2)0.0080 (19)
C100.079 (2)0.058 (2)0.092 (3)0.0232 (18)0.035 (2)0.0121 (18)
C110.0488 (18)0.0544 (18)0.055 (2)0.0034 (14)0.0140 (15)0.0070 (14)
C120.0560 (19)0.0397 (15)0.0478 (18)0.0031 (14)0.0249 (15)0.0005 (13)
C130.0481 (18)0.0493 (17)0.0497 (19)0.0110 (14)0.0121 (14)0.0051 (13)
C140.070 (2)0.074 (2)0.084 (3)0.0051 (18)0.016 (2)0.0227 (19)
Geometric parameters (Å, º) top
N1—C81.303 (3)C7—C81.406 (4)
N1—C11.361 (3)C7—H70.9300
N2—C21.322 (3)C9—H9A0.9600
N2—C11.361 (3)C9—H9B0.9600
O1—C81.364 (3)C9—H9C0.9600
O1—C121.406 (3)C10—H10A0.9600
O2—C141.385 (4)C10—H10B0.9600
O2—H20.8200C10—H10C0.9600
C1—C51.407 (4)C11—C121.372 (4)
C2—C31.396 (4)C11—C13i1.383 (4)
C2—C91.498 (4)C11—H110.9300
C3—C41.373 (4)C12—C131.367 (4)
C3—H30.9300C13—C11i1.383 (4)
C4—C51.418 (4)C13—H130.9300
C4—C101.499 (4)C14—H14A0.9600
C5—C61.416 (4)C14—H14B0.9600
C6—C71.350 (4)C14—H14C0.9600
C6—H60.9300
C8—N1—C1117.3 (2)C2—C9—H9A109.5
C2—N2—C1117.9 (2)C2—C9—H9B109.5
C8—O1—C12119.3 (2)H9A—C9—H9B109.5
C14—O2—H2109.5C2—C9—H9C109.5
N2—C1—N1114.1 (2)H9A—C9—H9C109.5
N2—C1—C5123.2 (2)H9B—C9—H9C109.5
N1—C1—C5122.7 (2)C4—C10—H10A109.5
N2—C2—C3122.1 (3)C4—C10—H10B109.5
N2—C2—C9117.1 (3)H10A—C10—H10B109.5
C3—C2—C9120.8 (3)C4—C10—H10C109.5
C4—C3—C2121.9 (3)H10A—C10—H10C109.5
C4—C3—H3119.1H10B—C10—H10C109.5
C2—C3—H3119.1C12—C11—C13i119.0 (3)
C3—C4—C5116.8 (3)C12—C11—H11120.5
C3—C4—C10121.3 (3)C13i—C11—H11120.5
C5—C4—C10122.0 (3)C13—C12—C11121.2 (2)
C1—C5—C6116.9 (2)C13—C12—O1116.5 (2)
C1—C5—C4118.2 (3)C11—C12—O1122.1 (3)
C6—C5—C4124.9 (2)C12—C13—C11i119.8 (3)
C7—C6—C5120.2 (3)C12—C13—H13120.1
C7—C6—H6119.9C11i—C13—H13120.1
C5—C6—H6119.9O2—C14—H14A109.5
C6—C7—C8117.9 (3)O2—C14—H14B109.5
C6—C7—H7121.1H14A—C14—H14B109.5
C8—C7—H7121.1O2—C14—H14C109.5
N1—C8—O1119.7 (2)H14A—C14—H14C109.5
N1—C8—C7124.9 (2)H14B—C14—H14C109.5
O1—C8—C7115.3 (2)
C2—N2—C1—N1177.8 (2)C10—C4—C5—C60.8 (5)
C2—N2—C1—C51.3 (4)C1—C5—C6—C71.0 (4)
C8—N1—C1—N2178.0 (2)C4—C5—C6—C7178.5 (3)
C8—N1—C1—C51.1 (4)C5—C6—C7—C80.0 (5)
C1—N2—C2—C32.0 (4)C1—N1—C8—O1177.9 (2)
C1—N2—C2—C9177.3 (3)C1—N1—C8—C72.2 (4)
N2—C2—C3—C41.5 (5)C12—O1—C8—N14.6 (4)
C9—C2—C3—C4177.8 (3)C12—O1—C8—C7175.5 (3)
C2—C3—C4—C50.0 (4)C6—C7—C8—N11.7 (5)
C2—C3—C4—C10179.5 (3)C6—C7—C8—O1178.5 (3)
N2—C1—C5—C6179.4 (3)C13i—C11—C12—C130.3 (5)
N1—C1—C5—C60.4 (4)C13i—C11—C12—O1175.5 (2)
N2—C1—C5—C40.1 (4)C8—O1—C12—C13126.0 (3)
N1—C1—C5—C4179.1 (3)C8—O1—C12—C1158.6 (4)
C3—C4—C5—C10.7 (4)C11—C12—C13—C11i0.3 (5)
C10—C4—C5—C1179.7 (3)O1—C12—C13—C11i175.7 (2)
C3—C4—C5—C6178.8 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.822.062.882 (3)178
C6—H6···O2ii0.932.533.414 (4)159
C10—H10A···O2ii0.962.543.436 (4)156
C13—H13···N2iii0.932.613.450 (4)151
Symmetry codes: (ii) x, y1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H22N4O2·2CH4O
Mr486.56
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.009 (3), 9.244 (3), 10.239 (4)
α, β, γ (°)78.679 (6), 79.653 (6), 82.689 (6)
V3)637.0 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.24 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD Diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3379, 2216, 1236
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.163, 1.03
No. of reflections2216
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 199, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.822.062.882 (3)178
C6—H6···O2i0.932.533.414 (4)159
C10—H10A···O2i0.962.543.436 (4)156
C13—H13···N2ii0.932.613.450 (4)151
Symmetry codes: (i) x, y1, z; (ii) x1, y, z.
 

Acknowledgements

The authors thank the Zhejiang Forestry University Science Foundation for financial support.

References

First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerrarini, P. L., Betti, L., Cavallini, T., Giannaccini, G., Lucacchini, A., Manera, C., Martinelli, A., Ortore, G., Saccomanni, G. & Tuccinardi, T. (2004). J. Med. Chem. 47, 3019–3031.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGoswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619–1622.  CrossRef CAS Web of Science Google Scholar
First citationHoock, C., Reichert, J. & Schmidtke, M. (1999). Molecules, 4, 264–271.  Web of Science CrossRef CAS Google Scholar
First citationJin, S. W., Chen, W. Z. & Wang, D. Q. (2007). Chin. J. Inorg. Chem. 2, 270–274.  Google Scholar
First citationJin, S. W., Liu, B. & Chen, W. Z. (2007). Chin. J. Struct. Chem. 3, 287–290.  Google Scholar
First citationNabanita, S., Sanjib, K. P., Kasinath, S. & Jitendra, K. B. (2006). Organometallics, 25, 2914–2916.  Google Scholar
First citationNakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc. 122, 2172–2177.  Web of Science CrossRef CAS Google Scholar
First citationNakataniz, K., Sando, S., Kumasawa, H., Kikuchi, J. & Saito, I. (2001). J. Am. Chem. Soc. 123, 12650–12657.  Web of Science PubMed Google Scholar
First citationNewkome, G. R., Garbis, S. J., Majestic, V. K., Fronczek, F. R. & Chiaril, G. (1981). J. Org. Chem. 46, 833–839.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 andSHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationStuk, T. L., Assink. B. K., Jr. B. R. C., Erdman, D. T., Fedij, V., Jennings, S. M., Lassig. J. A., Smith. R. J. & Smith T. L. (2003). Org. Proc. Res. Dev. 7, 851–855.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds