organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-O-Benzhydryl-3,4-(S)-O-benzyl­­idene-D-lyxono-1,4-lactone

aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and cFaculty of Business and Science, University of Akureyri, IS-600 Akureyri, Iceland
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 8 November 2007; accepted 15 November 2007; online 6 December 2008)

X-ray crystallography unequivocally showed that protection of the free hydroxyl group of 3,5-O-benzyl­idene-D-lyxono-1,4-lactone with diphenyl­diazo­methane proceeded with retention of configuration to give the title compound, C25H22O5. The crystal structure consists of layers of inter­locked mol­ecules lying parallel to the a axis.

Related literature

For related literature see: Jackson et al. (1982[Jackson, G., Jones, H. F., Petursson, S. & Webber, J. M. (1982). Carbohydr. Res. 102, 147-157.]); Petursson & Webber (1982[Petursson, S. & Webber, J. M. (1982). Carbohydr. Res. 103, 41-52.]); Petursson et al. (2007[Petursson, S., Jenkinson, S. F., Booth, K. V., Weymouth-Wilson, A. C., Watkin, D. J., Fleet, G. W. J. & Best, D. (2007). Acta Cryst. E63, o4121.]); Petursson (2001[Petursson, S. (2001). Carbohydr. Res. 331, 239-245.], 2003[Petursson, S. (2003). Carbohydr. Res. 338, 963-968.]); Draths et al. (1992[Draths, K. M., Pompliano, D. L., Conley, D. L., Frost, J. W., Berry, A., Disbrow, G. L., Staversky, R. J. & Lievenset, J. C. (1992). J. Am. Chem. Soc. 114, 3956-3962.]); Collins & Ferrier (1995[Collins, P. M. & Ferrier, R. J. (1995). Monosaccharides: their Chemistry and their Roles in Natural Products. New York: John Wiley & Sons.]); Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]); Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22O5

  • Mr = 402.45

  • Orthorhombic, P 21 21 21

  • a = 9.2805 (2) Å

  • b = 11.3538 (2) Å

  • c = 19.2493 (4) Å

  • V = 2028.28 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.50 × 0.25 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.66, Tmax = 0.99

  • 17577 measured reflections

  • 2610 independent reflections

  • 2218 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 0.97

  • 2610 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H41⋯O21i 0.98 2.59 3.502 (2) 155
C24—H242⋯O7i 0.96 2.59 3.320 (2) 133
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Carbohydrates are relatively inexpensive and are useful starting materials for the synthesis of small chiral molecules (Collins & Ferrier, 1995) and chiral building blocks (Draths et al., 1992). Much of their synthetic utility is however dependent on developing successful protecting group strategies. Diazodiphenylmethane has been found to be a useful protecting group in the synthesis of methyl 2,3,6-tri-O-methyl-[α]-D-glucopyranoside and kojibiose octa-acetate (Jackson et al., 1982), and monoalkylations of vicinal diols have been achieved with this reagent and other diaryldiazoalkanes with high regioselectivities (Petursson & Webber, 1982; Petursson et al., 2007; Petursson, 2003; Petursson, 2001). This is of particular interest as the reaction is carried out under neutral conditions.

The utility of the benzhydryl group as a protecting group in carbohydrate chemistry has here been demonstrated with the reaction of 3,5-O-benzylidene-D-lyxono-1,4-lactone 1 with diphenyldiazomethane (Fig. 1). Such lactones are susceptible to epimerization at C-2; however x-ray crystallography unequivocally showed that this had not occurred and the protection had proceeded with retention of stereochemistry (Fig. 2). The crystal structure consists of layers of interlocked molecules (Fig. 3 and Fig. 4), lying parallel to the a-axis. There are no short range intermolecular interactions and no unusual bond lengths or angles. The absolute configuration was determined by the use of D-lyxonolactone as the starting material.

Related literature top

For related literature see: Jackson et al. (1982); Petursson & Webber (1982); Petursson et al. (2007); Petursson (2001, 2003); Draths et al. (1992); Collins & Ferrier (1995); Görbitz (1999); Larson (1970).

Experimental top

The title compound was recrystallized from a 1:1 mixture of ethyl acetate and cyclohexane: m.p.: 461–463 K; [α]D19 +75.6 (c, 0.87 in chloroform).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.5) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

Carbohydrates are relatively inexpensive and are useful starting materials for the synthesis of small chiral molecules (Collins & Ferrier, 1995) and chiral building blocks (Draths et al., 1992). Much of their synthetic utility is however dependent on developing successful protecting group strategies. Diazodiphenylmethane has been found to be a useful protecting group in the synthesis of methyl 2,3,6-tri-O-methyl-[α]-D-glucopyranoside and kojibiose octa-acetate (Jackson et al., 1982), and monoalkylations of vicinal diols have been achieved with this reagent and other diaryldiazoalkanes with high regioselectivities (Petursson & Webber, 1982; Petursson et al., 2007; Petursson, 2003; Petursson, 2001). This is of particular interest as the reaction is carried out under neutral conditions.

The utility of the benzhydryl group as a protecting group in carbohydrate chemistry has here been demonstrated with the reaction of 3,5-O-benzylidene-D-lyxono-1,4-lactone 1 with diphenyldiazomethane (Fig. 1). Such lactones are susceptible to epimerization at C-2; however x-ray crystallography unequivocally showed that this had not occurred and the protection had proceeded with retention of stereochemistry (Fig. 2). The crystal structure consists of layers of interlocked molecules (Fig. 3 and Fig. 4), lying parallel to the a-axis. There are no short range intermolecular interactions and no unusual bond lengths or angles. The absolute configuration was determined by the use of D-lyxonolactone as the starting material.

For related literature see: Jackson et al. (1982); Petursson & Webber (1982); Petursson et al. (2007); Petursson (2001, 2003); Draths et al. (1992); Collins & Ferrier (1995); Görbitz (1999); Larson (1970).

Computing details top

Data collection: COLLECT (Nonius, 1997).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound.
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3] Fig. 3. The packing of the title compound projected along the b-axis.
[Figure 4] Fig. 4. The crystal structure is comprised of layers of interlocked molecules lying parrallel to the a-axis.
2-O-Benzhydryl-3,4-(S)-O-benzylidene-d-lyxono-1,4-lactone top
Crystal data top
C25H22O5Dx = 1.318 Mg m3
Mr = 402.45Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2585 reflections
a = 9.2805 (2) Åθ = 5–27°
b = 11.3538 (2) ŵ = 0.09 mm1
c = 19.2493 (4) ÅT = 150 K
V = 2028.28 (7) Å3Plate, colourless
Z = 40.50 × 0.25 × 0.10 mm
F(000) = 848
Data collection top
Area
diffractometer
2218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.66, Tmax = 0.99k = 1414
17577 measured reflectionsl = 2424
2610 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.05P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.29 e Å3
2610 reflectionsΔρmin = 0.26 e Å3
272 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 450 (70)
Primary atom site location: structure-invariant direct methods
Crystal data top
C25H22O5V = 2028.28 (7) Å3
Mr = 402.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.2805 (2) ŵ = 0.09 mm1
b = 11.3538 (2) ÅT = 150 K
c = 19.2493 (4) Å0.50 × 0.25 × 0.10 mm
Data collection top
Area
diffractometer
2610 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2218 reflections with I > 2σ(I)
Tmin = 0.66, Tmax = 0.99Rint = 0.036
17577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 0.97Δρmax = 0.29 e Å3
2610 reflectionsΔρmin = 0.26 e Å3
272 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56592 (13)0.07905 (11)0.41774 (6)0.0309
C20.47068 (18)0.13932 (14)0.44062 (8)0.0235
O30.42559 (13)0.23855 (10)0.40913 (5)0.0269
C40.31374 (18)0.29565 (15)0.45100 (8)0.0256
C50.33742 (17)0.24620 (13)0.52366 (8)0.0217
C60.38488 (17)0.12108 (13)0.50693 (8)0.0217
O70.47250 (12)0.06450 (9)0.55632 (6)0.0225
C80.39489 (18)0.02870 (14)0.61807 (8)0.0231
C90.30274 (18)0.07850 (14)0.60446 (7)0.0226
C100.16512 (18)0.08515 (15)0.63305 (8)0.0268
C110.08162 (19)0.18516 (17)0.62452 (9)0.0330
C120.1333 (2)0.27901 (16)0.58623 (9)0.0343
C130.2677 (2)0.27227 (15)0.55607 (9)0.0317
C140.35179 (19)0.17234 (14)0.56436 (8)0.0256
C150.50938 (17)0.01400 (14)0.67385 (8)0.0244
C160.5410 (2)0.11037 (15)0.71553 (8)0.0322
C170.6506 (2)0.10513 (18)0.76443 (9)0.0411
C180.7288 (2)0.00261 (19)0.77220 (9)0.0398
C190.6970 (2)0.09474 (18)0.73217 (9)0.0374
C200.58660 (19)0.08899 (16)0.68292 (8)0.0307
O210.45628 (12)0.30226 (9)0.55734 (5)0.0220
C220.44412 (18)0.42778 (13)0.55495 (8)0.0222
O230.45259 (12)0.46674 (9)0.48571 (5)0.0252
C240.33004 (18)0.42708 (14)0.44694 (9)0.0266
C250.56836 (17)0.47882 (14)0.59490 (7)0.0215
C260.62747 (18)0.41894 (15)0.65075 (8)0.0271
C270.7432 (2)0.46592 (16)0.68709 (9)0.0325
C280.7986 (2)0.57411 (16)0.66872 (8)0.0324
C290.73958 (18)0.63525 (15)0.61357 (9)0.0312
C300.62512 (17)0.58803 (14)0.57660 (9)0.0259
H410.22010.26950.43290.0329*
H510.24820.24460.55180.0264*
H610.29890.07240.49830.0229*
H810.32720.09310.63470.0229*
H1010.12910.01820.65910.0311*
H1110.01160.19210.64440.0416*
H1210.07590.34580.58220.0375*
H1310.30370.33450.53040.0389*
H1410.44440.16930.54360.0295*
H1610.48950.18150.71100.0385*
H1710.67010.17220.79280.0503*
H1810.80270.00070.80510.0490*
H1910.74790.16680.73680.0442*
H2010.56500.15760.65650.0324*
H2210.34860.44850.57660.0278*
H2410.34310.45110.39950.0304*
H2420.24540.46440.46570.0301*
H2610.59000.34340.66510.0326*
H2710.78100.41880.72460.0403*
H2810.87570.60490.69150.0371*
H2910.78030.70780.60240.0400*
H3010.58850.63170.53790.0304*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0281 (6)0.0319 (6)0.0328 (6)0.0032 (6)0.0004 (6)0.0061 (6)
C20.0221 (8)0.0219 (8)0.0267 (8)0.0032 (8)0.0045 (7)0.0031 (7)
O30.0295 (6)0.0255 (6)0.0259 (5)0.0002 (5)0.0004 (5)0.0013 (5)
C40.0196 (8)0.0247 (8)0.0324 (8)0.0007 (7)0.0037 (7)0.0007 (7)
C50.0149 (7)0.0200 (8)0.0303 (8)0.0027 (7)0.0003 (7)0.0007 (7)
C60.0189 (8)0.0172 (7)0.0290 (8)0.0031 (7)0.0036 (7)0.0015 (7)
O70.0193 (6)0.0208 (5)0.0274 (5)0.0006 (5)0.0007 (5)0.0031 (5)
C80.0225 (8)0.0198 (7)0.0272 (7)0.0021 (7)0.0016 (7)0.0001 (7)
C90.0230 (8)0.0214 (8)0.0234 (7)0.0016 (7)0.0039 (7)0.0035 (7)
C100.0242 (9)0.0301 (9)0.0262 (8)0.0011 (8)0.0030 (7)0.0021 (7)
C110.0234 (9)0.0414 (11)0.0343 (8)0.0109 (9)0.0040 (8)0.0100 (8)
C120.0366 (11)0.0280 (9)0.0383 (9)0.0130 (8)0.0142 (9)0.0106 (8)
C130.0401 (10)0.0211 (8)0.0340 (8)0.0005 (8)0.0103 (9)0.0004 (8)
C140.0247 (9)0.0234 (8)0.0287 (8)0.0005 (7)0.0020 (7)0.0018 (7)
C150.0226 (8)0.0274 (8)0.0233 (7)0.0059 (7)0.0007 (7)0.0016 (7)
C160.0424 (11)0.0264 (9)0.0280 (8)0.0085 (9)0.0015 (9)0.0021 (7)
C170.0514 (12)0.0423 (11)0.0297 (8)0.0159 (11)0.0102 (9)0.0005 (8)
C180.0333 (10)0.0584 (13)0.0278 (8)0.0122 (10)0.0072 (8)0.0076 (9)
C190.0290 (9)0.0475 (12)0.0358 (9)0.0027 (10)0.0026 (8)0.0066 (9)
C200.0288 (9)0.0321 (9)0.0313 (8)0.0019 (8)0.0037 (8)0.0036 (8)
O210.0221 (6)0.0156 (5)0.0283 (5)0.0016 (5)0.0024 (5)0.0003 (5)
C220.0226 (8)0.0158 (7)0.0283 (8)0.0007 (7)0.0033 (7)0.0007 (7)
O230.0260 (6)0.0223 (5)0.0272 (5)0.0045 (5)0.0028 (5)0.0044 (5)
C240.0230 (8)0.0244 (8)0.0325 (8)0.0016 (8)0.0054 (8)0.0038 (8)
C250.0188 (8)0.0198 (7)0.0261 (7)0.0004 (7)0.0056 (7)0.0043 (7)
C260.0316 (9)0.0252 (8)0.0246 (7)0.0035 (8)0.0042 (8)0.0012 (7)
C270.0351 (10)0.0353 (10)0.0271 (8)0.0007 (9)0.0012 (8)0.0033 (8)
C280.0261 (9)0.0366 (10)0.0345 (9)0.0067 (8)0.0009 (8)0.0098 (8)
C290.0266 (9)0.0240 (9)0.0428 (9)0.0057 (8)0.0038 (9)0.0029 (8)
C300.0219 (8)0.0214 (8)0.0344 (8)0.0001 (7)0.0038 (7)0.0007 (7)
Geometric parameters (Å, º) top
O1—C21.2015 (19)C15—C201.382 (2)
C2—O31.3461 (19)C16—C171.387 (3)
C2—C61.519 (2)C16—H1610.942
O3—C41.465 (2)C17—C181.380 (3)
C4—C51.523 (2)C17—H1710.955
C4—C241.502 (2)C18—C191.379 (3)
C4—H410.982C18—H1810.934
C5—C61.522 (2)C19—C201.397 (2)
C5—O211.4291 (18)C19—H1910.948
C5—H510.990C20—H2010.952
C6—O71.4063 (18)O21—C221.4303 (18)
C6—H610.984C22—O231.4065 (18)
O7—C81.4482 (19)C22—C251.502 (2)
C8—C91.510 (2)C22—H2211.008
C8—C151.520 (2)O23—C241.4329 (19)
C8—H811.016C24—H2410.961
C9—C101.393 (2)C24—H2420.962
C9—C141.392 (2)C25—C261.385 (2)
C10—C111.385 (2)C25—C301.393 (2)
C10—H1010.970C26—C271.388 (2)
C11—C121.382 (3)C26—H2610.966
C11—H1110.949C27—C281.378 (2)
C12—C131.377 (3)C27—H2710.965
C12—H1210.930C28—C291.382 (2)
C13—C141.386 (2)C28—H2810.909
C13—H1310.925C29—C301.386 (2)
C14—H1410.949C29—H2910.931
C15—C161.388 (2)C30—H3010.958
O1—C2—O3122.70 (15)C16—C15—C20118.96 (15)
O1—C2—C6128.04 (15)C15—C16—C17120.88 (17)
O3—C2—C6109.25 (13)C15—C16—H161121.0
C2—O3—C4110.05 (12)C17—C16—H161118.1
O3—C4—C5103.88 (12)C16—C17—C18119.71 (17)
O3—C4—C24109.85 (14)C16—C17—H171119.6
C5—C4—C24113.54 (14)C18—C17—H171120.7
O3—C4—H41107.3C17—C18—C19120.16 (17)
C5—C4—H41110.0C17—C18—H181119.6
C24—C4—H41111.8C19—C18—H181120.3
C4—C5—C6101.04 (12)C18—C19—C20119.92 (18)
C4—C5—O21111.33 (13)C18—C19—H191122.1
C6—C5—O21106.76 (12)C20—C19—H191118.0
C4—C5—H51112.9C19—C20—C15120.35 (17)
C6—C5—H51109.9C19—C20—H201118.6
O21—C5—H51114.0C15—C20—H201121.1
C5—C6—C2101.68 (12)C5—O21—C22111.61 (12)
C5—C6—O7116.79 (13)O21—C22—O23109.84 (12)
C2—C6—O7109.11 (12)O21—C22—C25107.90 (13)
C5—C6—H61109.0O23—C22—C25108.72 (13)
C2—C6—H61111.1O21—C22—H221106.8
O7—C6—H61109.0O23—C22—H221111.6
C6—O7—C8113.30 (11)C25—C22—H221111.9
O7—C8—C9111.43 (12)C22—O23—C24110.51 (12)
O7—C8—C15105.25 (12)C4—C24—O23111.41 (13)
C9—C8—C15115.46 (13)C4—C24—H241110.2
O7—C8—H81111.4O23—C24—H241107.8
C9—C8—H81106.5C4—C24—H242109.6
C15—C8—H81106.8O23—C24—H242108.3
C8—C9—C10119.62 (14)H241—C24—H242109.5
C8—C9—C14121.86 (14)C22—C25—C26120.79 (14)
C10—C9—C14118.52 (15)C22—C25—C30120.28 (14)
C9—C10—C11120.72 (16)C26—C25—C30118.92 (15)
C9—C10—H101118.6C25—C26—C27120.58 (16)
C11—C10—H101120.7C25—C26—H261121.1
C10—C11—C12120.09 (17)C27—C26—H261118.4
C10—C11—H111122.1C26—C27—C28120.13 (17)
C12—C11—H111117.8C26—C27—H271116.4
C11—C12—C13119.76 (17)C28—C27—H271123.4
C11—C12—H121118.3C27—C28—C29119.82 (17)
C13—C12—H121121.9C27—C28—H281120.9
C12—C13—C14120.44 (16)C29—C28—H281119.3
C12—C13—H131120.7C28—C29—C30120.25 (16)
C14—C13—H131118.9C28—C29—H291117.4
C9—C14—C13120.39 (15)C30—C29—H291122.3
C9—C14—H141120.1C25—C30—C29120.29 (16)
C13—C14—H141119.5C25—C30—H301121.6
C8—C15—C16117.99 (15)C29—C30—H301118.1
C8—C15—C20123.00 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H41···O21i0.982.593.502 (2)155
C24—H242···O7i0.962.593.320 (2)133
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC25H22O5
Mr402.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)9.2805 (2), 11.3538 (2), 19.2493 (4)
V3)2028.28 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.25 × 0.10
Data collection
DiffractometerArea
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.66, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
17577, 2610, 2218
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 0.97
No. of reflections2610
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: COLLECT (Nonius, 1997)., DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H41···O21i0.982.593.502 (2)155
C24—H242···O7i0.962.593.320 (2)133
Symmetry code: (i) x1/2, y+1/2, z+1.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCollins, P. M. & Ferrier, R. J. (1995). Monosaccharides: their Chemistry and their Roles in Natural Products. New York: John Wiley & Sons.  Google Scholar
First citationDraths, K. M., Pompliano, D. L., Conley, D. L., Frost, J. W., Berry, A., Disbrow, G. L., Staversky, R. J. & Lievenset, J. C. (1992). J. Am. Chem. Soc. 114, 3956–3962.  CrossRef CAS Web of Science Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJackson, G., Jones, H. F., Petursson, S. & Webber, J. M. (1982). Carbohydr. Res. 102, 147–157.  CrossRef CAS Web of Science Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPetursson, S. (2001). Carbohydr. Res. 331, 239–245.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPetursson, S. (2003). Carbohydr. Res. 338, 963–968.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPetursson, S., Jenkinson, S. F., Booth, K. V., Weymouth-Wilson, A. C., Watkin, D. J., Fleet, G. W. J. & Best, D. (2007). Acta Cryst. E63, o4121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPetursson, S. & Webber, J. M. (1982). Carbohydr. Res. 103, 41–52.  CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds