metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­methyl­tin(IV)]-μ-quinaldato]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 13 November 2007; accepted 21 November 2007; online 6 December 2007)

The title compound, [Sn(CH3)3(C10H6NO2)]n, forms an extended one-dimensional chain structure. There are two independent SnIV ions, both of which are in slightly distorted trigonal-bipyramidal coordination environments with two symmetry-related O atoms in the axial sites. In each case, the SnIV ion and one of the three equatorial C atoms lie on a crystallographic twofold axis.

Related literature

A series of new triorganotin(IV) pyridine­dicarboxyl­ates has been synthesized by the reaction of trimethyl­tin(IV), triphenyl­tin(IV) or tribenzyl­tin(IV) chloride with 2,6(3,5 or 2,5)-H2pdc (pdc = pyridine­dicarboxyl­ate), see: Ma et al. (2006[Ma, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem. 691, 1713-1721.])

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)3(C10H6NO2)]

  • Mr = 335.95

  • Orthorhombic, C 2221

  • a = 7.0487 (14) Å

  • b = 25.011 (2) Å

  • c = 15.587 (2) Å

  • V = 2748.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 298 (2) K

  • 0.49 × 0.48 × 0.37 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.464, Tmax = 0.548 (expected range = 0.428–0.504)

  • 7068 measured reflections

  • 2439 independent reflections

  • 2251 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.055

  • S = 1.00

  • 2439 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1036 Friedel pairs

  • Flack parameter: −0.06 (3)

Table 1
Selected geometric parameters (Å, °)

Sn1—C12 2.113 (5)
Sn1—C11 2.118 (4)
Sn1—O1 2.267 (2)
Sn2—C14 2.100 (5)
Sn2—C13 2.134 (4)
Sn2—O2 2.281 (3)
C12—Sn1—C11 121.36 (18)
C11i—Sn1—C11 117.3 (4)
O1—Sn1—O1i 175.41 (15)
C14ii—Sn2—C14 131.0 (3)
C14—Sn2—C13 114.51 (14)
O2—Sn2—O2ii 170.34 (14)
Symmetry codes: (i) x, -y+1, -z+1; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organotin esters of carboxylic acids are widely used as biocides, fungicides and in industry as homogeneous catalysts. Studies on organotin complexes containing carboxylate ligands with an additional donor atom (e.g N, O or S) that is available for coordinating to an Sn atom have revealed that new structural types may lead to different activities. We have therefore synthesized the title compound, (I), and present its crystal structure here. The title compound, (Fig. 1), forms an extended one-dimensional chain structure arising from Sn—O bridges to ligands. The Sn—O distances in (I) (Table 1), are similar to those in related organotin carboxylates (Ma et al., 2006). The two independent SnIV atoms are in slightly distorted trigonal-bipyramidal coordination geometries, with the O atoms in axial positions and three C atoms of three methyl groups in equatorial positions.

Related literature top

A series of new triorganotin(IV) pyridinedicarboxylates has been synthesized by the reaction of trimethyltin(IV), triphenyltin(IV) or tribenzyltin(IV) chloride with 2,6(3,5 or 2,5)-H2pdc (pdc = pyridinedicarboxylate), see: Ma et al. (2006)

Experimental top

The reaction was carried out under N2 atmosphere. Quinaldic acid (1 mmol) and sodium ethoxide (1.2 mmol) were added to benzene(30 ml) in a Schlenk flask and stirred for 0.5 h. Trimethyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at 313 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/methanol (1:1).(yield 83%; m.p. 447 K). Analysis calculated (%) for C13H15NO2Sn (Mr = 335.95): C, 46.47; H, 4.50; N, 4.17. found: C, 46.39; H, 4.62; N, 4.21.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C) where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Structure description top

Organotin esters of carboxylic acids are widely used as biocides, fungicides and in industry as homogeneous catalysts. Studies on organotin complexes containing carboxylate ligands with an additional donor atom (e.g N, O or S) that is available for coordinating to an Sn atom have revealed that new structural types may lead to different activities. We have therefore synthesized the title compound, (I), and present its crystal structure here. The title compound, (Fig. 1), forms an extended one-dimensional chain structure arising from Sn—O bridges to ligands. The Sn—O distances in (I) (Table 1), are similar to those in related organotin carboxylates (Ma et al., 2006). The two independent SnIV atoms are in slightly distorted trigonal-bipyramidal coordination geometries, with the O atoms in axial positions and three C atoms of three methyl groups in equatorial positions.

A series of new triorganotin(IV) pyridinedicarboxylates has been synthesized by the reaction of trimethyltin(IV), triphenyltin(IV) or tribenzyltin(IV) chloride with 2,6(3,5 or 2,5)-H2pdc (pdc = pyridinedicarboxylate), see: Ma et al. (2006)

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity [symmetry code: (A) x, -y + 1, -z + 1; (B) -x + 1, y, -z + 1/2].
[Figure 2] Fig. 2. The extended chain structure of with H atoms omitted for clarity.
catena-Poly[[trimethyltin(IV)]-µ-quinaldato] top
Crystal data top
[Sn(CH3)3(C10H6NO2)]F(000) = 1328
Mr = 335.95Dx = 1.624 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 5374 reflections
a = 7.0487 (14) Åθ = 2.6–28.0°
b = 25.011 (2) ŵ = 1.85 mm1
c = 15.587 (2) ÅT = 298 K
V = 2748.0 (7) Å3Block, colourless
Z = 80.49 × 0.48 × 0.37 mm
Data collection top
Bruker SMART CCD
diffractometer
2439 independent reflections
Radiation source: fine-focus sealed tube2251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.464, Tmax = 0.548k = 2929
7068 measured reflectionsl = 918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0295P)2 + 1.3697P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2439 reflectionsΔρmax = 0.40 e Å3
156 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1036 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (3)
Crystal data top
[Sn(CH3)3(C10H6NO2)]V = 2748.0 (7) Å3
Mr = 335.95Z = 8
Orthorhombic, C2221Mo Kα radiation
a = 7.0487 (14) ŵ = 1.85 mm1
b = 25.011 (2) ÅT = 298 K
c = 15.587 (2) Å0.49 × 0.48 × 0.37 mm
Data collection top
Bruker SMART CCD
diffractometer
2439 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2251 reflections with I > 2σ(I)
Tmin = 0.464, Tmax = 0.548Rint = 0.035
7068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.055Δρmax = 0.40 e Å3
S = 1.00Δρmin = 0.24 e Å3
2439 reflectionsAbsolute structure: Flack (1983), 1036 Friedel pairs
156 parametersAbsolute structure parameter: 0.06 (3)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.85035 (5)0.50000.50000.04229 (10)
Sn20.50000.597822 (12)0.25000.04016 (10)
N10.7684 (4)0.69843 (12)0.3468 (2)0.0435 (7)
O10.8632 (4)0.58995 (10)0.48310 (17)0.0540 (7)
O20.7139 (4)0.59014 (11)0.35911 (18)0.0558 (7)
C10.7965 (6)0.61356 (14)0.4183 (2)0.0425 (9)
C20.8264 (5)0.67348 (14)0.4162 (2)0.0398 (8)
C30.9083 (5)0.69858 (14)0.4871 (3)0.0480 (9)
H30.94650.67860.53440.058*
C40.9317 (6)0.75282 (14)0.4862 (4)0.0557 (12)
H40.98580.77040.53270.067*
C50.8716 (6)0.78169 (15)0.4128 (3)0.0520 (10)
C60.7940 (6)0.75296 (15)0.3438 (3)0.0455 (9)
C70.7360 (7)0.78067 (17)0.2691 (3)0.0655 (13)
H70.68600.76200.22270.079*
C80.7539 (7)0.83512 (19)0.2655 (5)0.0775 (17)
H80.71580.85340.21650.093*
C90.8285 (9)0.86342 (19)0.3346 (4)0.0766 (16)
H90.83710.90050.33150.092*
C100.8888 (7)0.83802 (17)0.4062 (4)0.0686 (14)
H100.94160.85750.45100.082*
C111.0067 (9)0.48610 (17)0.3861 (3)0.0718 (13)
H11A1.14000.48760.39860.108*
H11B0.97560.51300.34450.108*
H11C0.97550.45140.36380.108*
C120.5506 (8)0.50000.50000.0627 (15)
H12A0.50520.49320.44300.094*0.50
H12B0.50520.53420.51910.094*0.50
H12C0.50520.47260.53800.094*0.50
C130.50000.51249 (17)0.25000.0531 (13)
H13A0.59430.49970.21060.080*0.50
H13B0.37740.49970.23280.080*0.50
H13C0.52830.49970.30660.080*0.50
C140.6981 (9)0.63265 (19)0.1663 (3)0.0655 (14)
H14A0.76750.60500.13720.098*
H14B0.78440.65450.19850.098*
H14C0.63280.65430.12490.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04158 (19)0.04241 (18)0.04287 (19)0.0000.0000.00532 (19)
Sn20.0528 (2)0.03181 (16)0.03584 (17)0.0000.00173 (17)0.000
N10.0400 (17)0.0416 (16)0.0489 (18)0.0011 (14)0.0024 (13)0.0032 (15)
O10.0703 (17)0.0394 (13)0.0524 (17)0.0040 (12)0.0230 (15)0.0057 (12)
O20.0699 (19)0.0420 (15)0.0554 (17)0.0057 (14)0.0224 (15)0.0013 (13)
C10.046 (2)0.0386 (18)0.043 (2)0.0006 (16)0.0050 (18)0.0004 (16)
C20.037 (2)0.0371 (17)0.045 (2)0.0010 (16)0.0021 (16)0.0000 (16)
C30.052 (2)0.0444 (19)0.048 (2)0.0020 (16)0.0093 (19)0.0040 (19)
C40.060 (3)0.0467 (19)0.061 (3)0.0059 (18)0.009 (2)0.008 (2)
C50.045 (2)0.041 (2)0.071 (3)0.0004 (18)0.011 (2)0.004 (2)
C60.037 (2)0.0382 (19)0.061 (3)0.0052 (16)0.0081 (19)0.0097 (18)
C70.060 (3)0.060 (2)0.076 (4)0.006 (2)0.003 (2)0.020 (2)
C80.063 (3)0.058 (3)0.111 (5)0.009 (2)0.002 (3)0.036 (3)
C90.064 (4)0.043 (2)0.122 (5)0.001 (2)0.013 (4)0.018 (3)
C100.068 (3)0.040 (2)0.097 (4)0.007 (2)0.015 (3)0.008 (2)
C110.077 (3)0.067 (3)0.072 (3)0.010 (3)0.034 (3)0.012 (2)
C120.044 (3)0.079 (4)0.065 (3)0.0000.0000.018 (4)
C130.070 (4)0.036 (3)0.054 (3)0.0000.009 (3)0.000
C140.078 (4)0.066 (3)0.052 (3)0.008 (3)0.017 (3)0.007 (2)
Geometric parameters (Å, º) top
Sn1—C122.113 (5)C5—C101.418 (6)
Sn1—C11i2.118 (4)C6—C71.415 (6)
Sn1—C112.118 (4)C7—C81.369 (6)
Sn1—O12.267 (2)C7—H70.9300
Sn1—O1i2.267 (2)C8—C91.392 (9)
Sn2—C14ii2.100 (5)C8—H80.9300
Sn2—C142.100 (5)C9—C101.352 (8)
Sn2—C132.134 (4)C9—H90.9300
Sn2—O22.281 (3)C10—H100.9300
Sn2—O2ii2.281 (3)C11—H11A0.9600
N1—C21.315 (5)C11—H11B0.9600
N1—C61.377 (5)C11—H11C0.9600
O1—C11.261 (4)C12—H12A0.9600
O2—C11.238 (5)C12—H12B0.9600
C1—C21.514 (5)C12—H12C0.9600
C2—C31.395 (5)C13—H13A0.9600
C3—C41.367 (5)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.418 (7)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—C61.404 (6)C14—H14C0.9600
C12—Sn1—C11i121.36 (18)N1—C6—C7118.4 (4)
C12—Sn1—C11121.36 (18)C5—C6—C7119.5 (4)
C11i—Sn1—C11117.3 (4)C8—C7—C6119.6 (5)
C12—Sn1—O192.29 (7)C8—C7—H7120.2
C11i—Sn1—O185.04 (13)C6—C7—H7120.2
C11—Sn1—O192.56 (14)C7—C8—C9120.6 (5)
C12—Sn1—O1i92.29 (7)C7—C8—H8119.7
C11i—Sn1—O1i92.56 (14)C9—C8—H8119.7
C11—Sn1—O1i85.04 (13)C10—C9—C8121.2 (4)
O1—Sn1—O1i175.41 (15)C10—C9—H9119.4
C14ii—Sn2—C14131.0 (3)C8—C9—H9119.4
C14ii—Sn2—C13114.51 (14)C9—C10—C5120.0 (5)
C14—Sn2—C13114.51 (14)C9—C10—H10120.0
C14ii—Sn2—O290.63 (17)C5—C10—H10120.0
C14—Sn2—O293.37 (18)Sn1—C11—H11A109.5
C13—Sn2—O285.17 (7)Sn1—C11—H11B109.5
C14ii—Sn2—O2ii93.37 (18)H11A—C11—H11B109.5
C14—Sn2—O2ii90.63 (17)Sn1—C11—H11C109.5
C13—Sn2—O2ii85.17 (7)H11A—C11—H11C109.5
O2—Sn2—O2ii170.34 (14)H11B—C11—H11C109.5
C2—N1—C6117.2 (3)Sn1—C12—H12A109.5
C1—O1—Sn1122.9 (2)Sn1—C12—H12B109.5
C1—O2—Sn2145.8 (3)H12A—C12—H12B109.5
O2—C1—O1123.4 (3)Sn1—C12—H12C109.5
O2—C1—C2121.2 (3)H12A—C12—H12C109.5
O1—C1—C2115.4 (3)H12B—C12—H12C109.5
N1—C2—C3124.5 (3)Sn2—C13—H13A109.5
N1—C2—C1116.4 (3)Sn2—C13—H13B109.5
C3—C2—C1119.1 (3)H13A—C13—H13B109.5
C4—C3—C2119.2 (4)Sn2—C13—H13C109.5
C4—C3—H3120.4H13A—C13—H13C109.5
C2—C3—H3120.4H13B—C13—H13C109.5
C3—C4—C5118.5 (4)Sn2—C14—H14A109.5
C3—C4—H4120.7Sn2—C14—H14B109.5
C5—C4—H4120.7H14A—C14—H14B109.5
C6—C5—C4118.3 (3)Sn2—C14—H14C109.5
C6—C5—C10119.1 (4)H14A—C14—H14C109.5
C4—C5—C10122.6 (4)H14B—C14—H14C109.5
N1—C6—C5122.1 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(CH3)3(C10H6NO2)]
Mr335.95
Crystal system, space groupOrthorhombic, C2221
Temperature (K)298
a, b, c (Å)7.0487 (14), 25.011 (2), 15.587 (2)
V3)2748.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.49 × 0.48 × 0.37
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.464, 0.548
No. of measured, independent and
observed [I > 2σ(I)] reflections
7068, 2439, 2251
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.00
No. of reflections2439
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.24
Absolute structureFlack (1983), 1036 Friedel pairs
Absolute structure parameter0.06 (3)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Sn1—C122.113 (5)Sn2—C142.100 (5)
Sn1—C112.118 (4)Sn2—C132.134 (4)
Sn1—O12.267 (2)Sn2—O22.281 (3)
C12—Sn1—C11121.36 (18)C14ii—Sn2—C14131.0 (3)
C11i—Sn1—C11117.3 (4)C14—Sn2—C13114.51 (14)
O1—Sn1—O1i175.41 (15)O2—Sn2—O2ii170.34 (14)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1/2.
 

Acknowledgements

We thank the National Natural Science Foundation of China (20771053) and the Natural Science Foundation of Shandong Province (2005ZX09) for financial support.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMa, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem. 691, 1713–1721.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds