organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyrimidine-2-carboxamide

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: niejj@zju.edu.cn

(Received 23 November 2007; accepted 23 November 2007; online 6 December 2007)

In the crystal strucuture of the title compound, C5H5N3O, which was obtained upon recrystallization of 2-cyano­pyrimidine from aqueous sodium hydroxide, the amide group is twisted with respect to the aromatic ring by 24.9 (1)°. ππ stacking is observed between partially overlapped rings at a face-to-face separation of 3.439 (6) Å. The structure features a centrosymmetric pair of inter­molecular N—H⋯O hydrogen bonds. Another N—H⋯O hydrogen bond between adjacent mol­ecules links them into a helical chain motif.

Related literature

For general background, see: Cheng et al. (2000[Cheng, D.-P., Zheng, Y., Lin, J., Xu, D. & Xu, Y. (2000). Acta Cryst. C56, 523-524.]); Xu & Xu (2004[Xu, T.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m1131-m1133.]); Zhang et al. (2008[Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64, m7.]). For a similar structure, see: Zhang et al. (2007[Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64, m7.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5N3O

  • Mr = 123.12

  • Monoclinic, P 21 /c

  • a = 7.9241 (7) Å

  • b = 7.3059 (7) Å

  • c = 9.8223 (9) Å

  • β = 103.512 (6)°

  • V = 552.90 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 291 (2) K

  • 0.34 × 0.26 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 7501 measured reflections

  • 1365 independent reflections

  • 1202 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.01

  • 1365 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1A⋯O1i 0.94 2.06 2.994 (1) 172
N3—H1B⋯O1ii 0.96 2.04 2.986 (2) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In order to study the nature of ππ stacking, a series of metal complexes incorporating substituted benzoate ligand have been prepared in our laboratory (Cheng et al., 2000; Xu & Xu, 2004). As a continuing work, metal complexes with pyrimidine-2-carboxylate ligand have recently been prepared (Zhang et al., 2007). In the process of preparing pyrimidine-2-carboxylic acid from cyanopyrimidine, the title compound has been obtained.

The molecular structure of the title complex is shown in Fig. 1. The bond distances and angles are normal. The amide group is twisted with respect to the benzene ring by a dihedral angel of 24.92 (12)°. The amino group links with carbonyl groups of adjacent molecules via O—H···O hydrogen bonding (Table 1). ππ stacking is observed between parallel, partially overlapped N1-pyrimidine and Ni-pyrimidine rings (Fig. 1) [symmetry code: (i) 1 - x, 1 - y, 1 - z], face-to-face separation being 3.439 (6) Å; similar to the situation found in the pyrimidine-2-carboxylate complex of copper(II) (Zhang et al., 2007).

Related literature top

For general background, see: Cheng et al. (2000); Xu & Xu (2004); Zhang et al. (2007). For a similar structure, see: Zhang et al. (2007).

Experimental top

2-Cyanopyrimidine (1.0 g, 9.5 mmol) was dissolved in 10 ml water, then a NaOH solution (0.1 M) was dropped to the solution until to pH = 12. Single crystals of the title compound were obtained from the solution after one week.

Refinement top

Amino H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(N). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

In order to study the nature of ππ stacking, a series of metal complexes incorporating substituted benzoate ligand have been prepared in our laboratory (Cheng et al., 2000; Xu & Xu, 2004). As a continuing work, metal complexes with pyrimidine-2-carboxylate ligand have recently been prepared (Zhang et al., 2007). In the process of preparing pyrimidine-2-carboxylic acid from cyanopyrimidine, the title compound has been obtained.

The molecular structure of the title complex is shown in Fig. 1. The bond distances and angles are normal. The amide group is twisted with respect to the benzene ring by a dihedral angel of 24.92 (12)°. The amino group links with carbonyl groups of adjacent molecules via O—H···O hydrogen bonding (Table 1). ππ stacking is observed between parallel, partially overlapped N1-pyrimidine and Ni-pyrimidine rings (Fig. 1) [symmetry code: (i) 1 - x, 1 - y, 1 - z], face-to-face separation being 3.439 (6) Å; similar to the situation found in the pyrimidine-2-carboxylate complex of copper(II) (Zhang et al., 2007).

For general background, see: Cheng et al. (2000); Xu & Xu (2004); Zhang et al. (2007). For a similar structure, see: Zhang et al. (2007).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms) [symmetry codes: (i) 1 - x, 1 - y, 1 - z].
pyrimidine-2-carboxamide top
Crystal data top
C5H5N3OF(000) = 256
Mr = 123.12Dx = 1.479 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2086 reflections
a = 7.9241 (7) Åθ = 3.0–25.5°
b = 7.3059 (7) ŵ = 0.11 mm1
c = 9.8223 (9) ÅT = 291 K
β = 103.512 (6)°Prism, yellow
V = 552.90 (9) Å30.34 × 0.26 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1202 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.3°, θmin = 2.6°
ω scansh = 1010
7501 measured reflectionsk = 99
1365 independent reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.1258P]
where P = (Fo2 + 2Fc2)/3
1365 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C5H5N3OV = 552.90 (9) Å3
Mr = 123.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9241 (7) ŵ = 0.11 mm1
b = 7.3059 (7) ÅT = 291 K
c = 9.8223 (9) Å0.34 × 0.26 × 0.20 mm
β = 103.512 (6)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1202 reflections with I > 2σ(I)
7501 measured reflectionsRint = 0.020
1365 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
1365 reflectionsΔρmin = 0.19 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35320 (14)0.45375 (15)0.64547 (11)0.0431 (3)
N20.18202 (13)0.54314 (14)0.42171 (10)0.0383 (3)
O10.13605 (12)0.15236 (12)0.61860 (8)0.0431 (3)
N30.07527 (15)0.18634 (15)0.38330 (10)0.0435 (3)
H1A0.09490.24770.30430.065*
H1B0.00390.07830.36750.065*
C10.23238 (14)0.42647 (15)0.52761 (11)0.0315 (2)
C20.43153 (18)0.6167 (2)0.65658 (14)0.0495 (3)
H20.51930.64120.73550.059*
C30.38709 (19)0.74967 (19)0.55555 (15)0.0502 (3)
H30.44050.86380.56590.060*
C40.26039 (18)0.70681 (18)0.43855 (14)0.0462 (3)
H40.22790.79440.36860.055*
C50.14304 (14)0.24129 (15)0.51331 (11)0.0325 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0446 (6)0.0418 (6)0.0383 (5)0.0037 (4)0.0002 (4)0.0014 (4)
N20.0417 (5)0.0350 (5)0.0375 (5)0.0003 (4)0.0080 (4)0.0046 (4)
O10.0602 (6)0.0366 (5)0.0316 (4)0.0065 (4)0.0087 (4)0.0025 (3)
N30.0593 (7)0.0389 (6)0.0304 (5)0.0120 (5)0.0065 (4)0.0018 (4)
C10.0325 (5)0.0315 (5)0.0311 (5)0.0019 (4)0.0085 (4)0.0016 (4)
C20.0478 (7)0.0501 (8)0.0473 (7)0.0108 (6)0.0046 (5)0.0103 (6)
C30.0530 (8)0.0377 (7)0.0628 (9)0.0123 (5)0.0194 (6)0.0072 (6)
C40.0506 (7)0.0367 (6)0.0538 (7)0.0001 (5)0.0175 (6)0.0084 (5)
C50.0362 (5)0.0304 (5)0.0302 (5)0.0018 (4)0.0067 (4)0.0001 (4)
Geometric parameters (Å, º) top
N1—C11.3336 (14)N3—H1B0.9622
N1—C21.3355 (18)C1—C51.5182 (15)
N2—C11.3319 (14)C2—C31.374 (2)
N2—C41.3397 (17)C2—H20.9300
O1—C51.2335 (13)C3—C41.374 (2)
N3—C51.3265 (14)C3—H30.9300
N3—H1A0.9406C4—H40.9300
C1—N1—C2115.46 (11)C3—C2—H2118.8
C1—N2—C4115.41 (10)C2—C3—C4117.18 (12)
C5—N3—H1A122.9C2—C3—H3121.4
C5—N3—H1B119.6C4—C3—H3121.4
H1A—N3—H1B117.5N2—C4—C3122.26 (12)
N2—C1—N1127.28 (11)N2—C4—H4118.9
N2—C1—C5116.74 (9)C3—C4—H4118.9
N1—C1—C5115.99 (10)O1—C5—N3124.08 (11)
N1—C2—C3122.37 (12)O1—C5—C1120.20 (9)
N1—C2—H2118.8N3—C5—C1115.72 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1A···O1i0.942.062.994 (1)172
N3—H1B···O1ii0.962.042.986 (2)167
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H5N3O
Mr123.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)7.9241 (7), 7.3059 (7), 9.8223 (9)
β (°) 103.512 (6)
V3)552.90 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.34 × 0.26 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7501, 1365, 1202
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.02
No. of reflections1365
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1A···O1i0.942.062.994 (1)172
N3—H1B···O1ii0.962.042.986 (2)167
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1.
 

Acknowledgements

This work was supported by the ZIJIN Project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCheng, D.-P., Zheng, Y., Lin, J., Xu, D. & Xu, Y. (2000). Acta Cryst. C56, 523–524.  CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationXu, T.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m1131–m1133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64, m7.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds