metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(pyrimidine-2-carboxylic acid-κ2N,O)cobalt(II) dichloride

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: niejj@zju.edu.cn

(Received 24 November 2007; accepted 26 November 2007; online 6 December 2007)

In the title salt, [Co(C5H4N2O2)2(H2O)2]Cl2, the CoII ion is located on an inversion center. It is chelated by two neutral pyrimidine-2-carboxylic acid molecules and is coordinated by two water mol­ecules in an octa­hedral coordination geometry. The cations and anions are linked via O—H⋯Cl hydrogen bonds into a layer structure; an intra­molecular O—H⋯N hydrogen bond connects the carboxylic acid group to the pyrimidine N atom.

Related literature

For general background, see: Cheng et al. (2000[Cheng, D.-P., Zheng, Y., Lin, J., Xu, D. & Xu, Y. (2000). Acta Cryst. C56, 523-524.]); Wu et al. (2003[Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809-m811.]). For related structures, see: Rodriquez-Dieguez et al. (2007[Rodriquez-Dieguez, A., Cano, J., Kivekas, R., Debdoudi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503-2510.]); Zhang et al. (2008[Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5H4N2O2)2(H2O)2]Cl2

  • Mr = 414.07

  • Monoclinic, P 21 /n

  • a = 6.2803 (8) Å

  • b = 10.361 (2) Å

  • c = 11.906 (2) Å

  • β = 95.254 (15)°

  • V = 771.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 293 (2) K

  • 0.25 × 0.12 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.726, Tmax = 0.862

  • 7413 measured reflections

  • 1763 independent reflections

  • 1178 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.12

  • 1763 reflections

  • 107 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co—O1 2.077 (3)
Co—O3 2.123 (3)
Co—N1 2.085 (3)
O1—Co—N1 78.92 (11)
O1—Co—O3 91.01 (12)
N1—Co—O3 87.84 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 2.32 2.784 (5) 116
O3—H3A⋯Cl1i 0.95 2.20 3.140 (4) 168
O3—H3B⋯Cl1 0.97 2.34 3.273 (3) 161
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on the nature of aromatic stacking (Cheng et al., 2000; Wu et al., 2003), the title CoII compound has recently been prepared and its crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The crystal of the title compound consists of complex cations and Cl- anions. The CoII located on an inversion center is coordinated by two neutral pyrimidine-2-carboxylic acid and two water molecules with an octahedral geometry (Table 1). The Cl- anions link with the complex cations via O—H···Cl hydrogen bonding (Table 2 and Fig. 1). The charge balance indicates that the pyrimidine-2-carboxylic acid is a neutral ligand but not an anion; and the significant difference in C—O bond distances (Table 1) also suggests that the carboxyl group is not deprotonated. This is obviously owing to the acidified solution environment in the preparation of the compound (see _publ_section_exptl_prep). The intra-molecular O—H···N hydrogen bonding exsits between the carboxyl group and adjacent pyrimidine-N atom (Fig. 1). Thus the pyrimidine-2-carboxylic acid can not play a role of bridge ligand in this structure, contrast to that found in pyrimidine-2-carboxylate complex of Co(II) reported previously (Rodriquez-Dieguez et al., 2007).

π-π stacking is not observed in this crystal structure, which is different from the situation in a related CuII complex with pyrimidine-2-carboxylate (Zhang et al., 2008). It may be due to extensive hydrogen bonding network involving coordinated water molecules and counter Cl- anions.

Related literature top

For general background, see: Cheng et al. (2000); Wu et al. (2003). For related structures, see: Rodriquez-Dieguez et al. (2007); Zhang et al. (2008).

Experimental top

2-Cyanopyrimidine (0.19 g, 1.8 mmol), CoCl2.6(H2O) (0.24 g, 1 mmol) were dissolved in a mixture solution of water (15 ml) and ethanol (5 ml), then hydrochloric acid solution (3 ml, 37%) was added into the solution. The solution was refluxed for 5 h. Single crystals of the title compound were obtained after about one month.

Refinement top

Hydroxy and water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions, with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

As part of our ongoing investigation on the nature of aromatic stacking (Cheng et al., 2000; Wu et al., 2003), the title CoII compound has recently been prepared and its crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The crystal of the title compound consists of complex cations and Cl- anions. The CoII located on an inversion center is coordinated by two neutral pyrimidine-2-carboxylic acid and two water molecules with an octahedral geometry (Table 1). The Cl- anions link with the complex cations via O—H···Cl hydrogen bonding (Table 2 and Fig. 1). The charge balance indicates that the pyrimidine-2-carboxylic acid is a neutral ligand but not an anion; and the significant difference in C—O bond distances (Table 1) also suggests that the carboxyl group is not deprotonated. This is obviously owing to the acidified solution environment in the preparation of the compound (see _publ_section_exptl_prep). The intra-molecular O—H···N hydrogen bonding exsits between the carboxyl group and adjacent pyrimidine-N atom (Fig. 1). Thus the pyrimidine-2-carboxylic acid can not play a role of bridge ligand in this structure, contrast to that found in pyrimidine-2-carboxylate complex of Co(II) reported previously (Rodriquez-Dieguez et al., 2007).

π-π stacking is not observed in this crystal structure, which is different from the situation in a related CuII complex with pyrimidine-2-carboxylate (Zhang et al., 2008). It may be due to extensive hydrogen bonding network involving coordinated water molecules and counter Cl- anions.

For general background, see: Cheng et al. (2000); Wu et al. (2003). For related structures, see: Rodriquez-Dieguez et al. (2007); Zhang et al. (2008).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms), dashed lines indicate hydrogen bonding [symmetry codes: (i) 1 - x,1 - y,1 - z].
Diaquabis(pyrimidine-2-carboxylic acid-κ2N,O)cobalt(II) dichloride top
Crystal data top
[Co(C5H4N2O2)2(H2O)2]Cl2F(000) = 418
Mr = 414.07Dx = 1.782 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2668 reflections
a = 6.2803 (8) Åθ = 3.5–24.5°
b = 10.361 (2) ŵ = 1.49 mm1
c = 11.906 (2) ÅT = 293 K
β = 95.254 (15)°Prism, pink
V = 771.5 (2) Å30.25 × 0.12 × 0.10 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1763 independent reflections
Radiation source: fine-focus sealed tube1178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10.0 pixels mm-1θmax = 27.4°, θmin = 3.4°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1213
Tmin = 0.726, Tmax = 0.862l = 1515
7413 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0359P)2 + 1.9784P]
where P = (Fo2 + 2Fc2)/3
1763 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Co(C5H4N2O2)2(H2O)2]Cl2V = 771.5 (2) Å3
Mr = 414.07Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.2803 (8) ŵ = 1.49 mm1
b = 10.361 (2) ÅT = 293 K
c = 11.906 (2) Å0.25 × 0.12 × 0.10 mm
β = 95.254 (15)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1763 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1178 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.862Rint = 0.052
7413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.12Δρmax = 0.70 e Å3
1763 reflectionsΔρmin = 0.72 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.50000.50000.50000.0257 (2)
Cl10.83609 (17)0.85016 (10)0.65401 (9)0.0367 (3)
N10.6455 (5)0.6498 (3)0.4186 (3)0.0250 (7)
N20.5891 (6)0.8696 (3)0.3695 (3)0.0340 (8)
O10.3012 (4)0.6537 (3)0.5310 (2)0.0329 (7)
O20.2425 (6)0.8657 (3)0.4995 (3)0.0541 (9)
H20.29930.92470.46740.081*
O30.7051 (5)0.5443 (3)0.6466 (3)0.0397 (7)
H3A0.70180.49510.71420.060*
H3B0.76420.62880.66490.060*
C10.3501 (6)0.7589 (3)0.4885 (3)0.0268 (8)
C20.5395 (6)0.7618 (4)0.4203 (3)0.0258 (8)
C30.7628 (8)0.8641 (5)0.3124 (4)0.0415 (11)
H30.80270.93740.27460.050*
C40.8852 (7)0.7540 (4)0.3075 (4)0.0381 (10)
H41.00580.75240.26770.046*
C50.8217 (6)0.6467 (4)0.3637 (3)0.0323 (9)
H50.90210.57130.36350.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0300 (4)0.0184 (4)0.0294 (4)0.0009 (3)0.0068 (3)0.0022 (3)
Cl10.0399 (6)0.0365 (6)0.0339 (6)0.0014 (5)0.0045 (4)0.0036 (4)
N10.0274 (16)0.0192 (15)0.0289 (17)0.0015 (14)0.0056 (13)0.0003 (13)
N20.0376 (19)0.0261 (18)0.039 (2)0.0039 (16)0.0045 (16)0.0076 (15)
O10.0352 (15)0.0248 (14)0.0410 (17)0.0033 (13)0.0157 (13)0.0007 (13)
O20.058 (2)0.0387 (19)0.067 (3)0.0051 (18)0.0102 (19)0.0011 (18)
O30.0529 (19)0.0332 (16)0.0317 (16)0.0045 (15)0.0028 (14)0.0010 (13)
C10.030 (2)0.0167 (17)0.034 (2)0.0004 (16)0.0038 (17)0.0033 (16)
C20.031 (2)0.0210 (18)0.025 (2)0.0024 (17)0.0017 (16)0.0000 (15)
C30.047 (3)0.037 (2)0.041 (3)0.010 (2)0.007 (2)0.014 (2)
C40.037 (2)0.042 (3)0.037 (2)0.007 (2)0.0124 (19)0.005 (2)
C50.028 (2)0.036 (2)0.033 (2)0.0004 (19)0.0047 (17)0.0040 (18)
Geometric parameters (Å, º) top
Co—O12.077 (3)O2—C11.309 (5)
Co—O1i2.077 (3)O2—H20.8200
Co—O3i2.123 (3)O3—H3A0.9545
Co—O32.123 (3)O3—H3B0.9674
Co—N1i2.085 (3)C1—C21.501 (5)
Co—N12.085 (3)C3—C41.379 (7)
N1—C51.337 (5)C3—H30.9300
N1—C21.338 (5)C4—C51.375 (6)
N2—C21.321 (5)C4—H40.9300
N2—C31.338 (6)C5—H50.9300
O1—C11.252 (5)
O1—Co—O1i180.00 (16)C1—O2—H2109.5
O1—Co—N1i101.08 (11)Co—O3—H3A121.3
O1i—Co—N1i78.92 (11)Co—O3—H3B124.9
O1—Co—N178.92 (11)H3A—O3—H3B109.3
O1i—Co—N1101.08 (11)O1—C1—O2123.2 (4)
N1i—Co—N1180.00 (11)O1—C1—C2118.2 (3)
O1—Co—O3i88.99 (12)O2—C1—C2118.6 (3)
O1i—Co—O3i91.01 (12)N2—C2—N1126.0 (4)
N1i—Co—O3i87.84 (12)N2—C2—C1119.7 (3)
N1—Co—O3i92.16 (12)N1—C2—C1114.3 (3)
O1—Co—O391.01 (12)N2—C3—C4122.7 (4)
O1i—Co—O388.99 (12)N2—C3—H3118.6
N1i—Co—O392.16 (12)C4—C3—H3118.6
N1—Co—O387.84 (12)C5—C4—C3117.4 (4)
O3i—Co—O3180.000 (1)C5—C4—H4121.3
C5—N1—C2117.6 (3)C3—C4—H4121.3
C5—N1—Co128.8 (3)N1—C5—C4120.5 (4)
C2—N1—Co113.5 (2)N1—C5—H5119.7
C2—N2—C3115.7 (4)C4—C5—H5119.7
C1—O1—Co115.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.822.322.784 (5)116
O3—H3A···Cl1ii0.952.203.140 (4)168
O3—H3B···Cl10.972.343.273 (3)161
C4—H4···Cl1iii0.932.793.670 (5)159
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C5H4N2O2)2(H2O)2]Cl2
Mr414.07
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.2803 (8), 10.361 (2), 11.906 (2)
β (°) 95.254 (15)
V3)771.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.25 × 0.12 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.726, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
7413, 1763, 1178
Rint0.052
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.12
No. of reflections1763
No. of parameters107
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.72

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Co—O12.077 (3)O1—C11.252 (5)
Co—O32.123 (3)O2—C11.309 (5)
Co—N12.085 (3)
O1—Co—N178.92 (11)N1—Co—O387.84 (12)
O1—Co—O391.01 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.822.322.784 (5)116
O3—H3A···Cl1i0.952.203.140 (4)168
O3—H3B···Cl10.972.343.273 (3)161
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCheng, D.-P., Zheng, Y., Lin, J., Xu, D. & Xu, Y. (2000). Acta Cryst. C56, 523–524.  CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRodriquez-Dieguez, A., Cano, J., Kivekas, R., Debdoudi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503–2510.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B.-Y., Yang, Q. & Nie, J.-J. (2008). Acta Cryst. E64. In the press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds