metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(guanidinium) bis­­(4-hy­droxy­pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)nickel­ate(II) dihydrate

aFaculty of Chemistry, Teacher Training University, Tehran, Iran, bFaculty of Science, Department of Chemistry, Ilam University, Iran, cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, and dDepartment of Chemistry, Sheffield University, Sheffield S3 7HF, England
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 5 November 2007; accepted 2 December 2007; online 12 December 2007)

The reaction of nickel(II) nitrate hexa­hydrate, guanidine (G) and 4-hydroxy­pyridine-2,6-dicarboxylic acid (hypydcH2) in a 1:2:2 molar ratio in aqueous solution resulted in the formation of the title compound, (CH6N3)2[Ni(C7H3NO5)2]·2H2O or (GH)2[Ni(hypydc)2]·2H2O. The six donor atoms of the two 4-hydroxy­pyridine-2,6-dicarboxyl­ate or (hypydc)2− ligands form a distorted octa­hedral arrangement around the NiII centre. Considerable C—O⋯π stacking inter­actions between the CO groups of carboxyl­ate fragments and the pyridine rings of (hypydc)2− with a distance of 3.3212 (8) Å are observed. In the crystal structure, a wide range of noncovalent inter­actions consisting of hydrogen bonding (of the types O—H⋯O and N—H⋯O), ion pairing, and ππ [centroid–centroid distance 3.8037 (5) Å], N—H⋯π and C—O⋯π stacking inter­actions connect the various components into a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg, Attar Gharamaleki et al. (2007a[Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007a). Acta Cryst. E63, m1803-m1804.], 2007b[Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007b). Acta Cryst. E63, m1710-m1711.]); Aghabozorg, Daneshvar et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]).

[Scheme 1]

Experimental

Crystal data
  • (CH6N3)2[Ni(C7H3NO5)2]·2H2O

  • Mr = 577.13

  • Triclinic, [P \overline 1]

  • a = 8.9253 (6) Å

  • b = 9.9060 (6) Å

  • c = 13.2186 (9) Å

  • α = 101.415 (3)°

  • β = 103.099 (3)°

  • γ = 91.938 (3)°

  • V = 1111.99 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 150 (2) K

  • 0.50 × 0.32 × 0.15 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS (Version 2004/1), SAINT (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin.]) Tmin = 0.647, Tmax = 0.870

  • 46516 measured reflections

  • 10497 independent reflections

  • 9650 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.076

  • S = 1.06

  • 10497 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N2 1.9665 (6)
Ni1—N1 1.9700 (6)
Ni1—O1 2.1088 (6)
Ni1—O10 2.1387 (6)
Ni1—O6 2.1477 (6)
Ni1—O5 2.2149 (6)
N2—Ni1—N1 171.30 (3)
O1—Ni1—O5 154.97 (2)
O10—Ni1—O6 154.87 (2)
O1—Ni1—O10 93.41 (3)
O6—Ni1—O5 91.30 (2)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C2–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3C⋯O6i 0.90 1.71 2.5901 (8) 166
O8—H8⋯O5ii 0.90 1.84 2.7057 (9) 160
O11—H11A⋯O9iii 0.90 1.86 2.7106 (9) 156
O11—H11B⋯O2iv 0.90 1.88 2.7464 (9) 161
O12—H12B⋯O11ii 0.90 2.15 3.0425 (12) 172
O12—H12A⋯O5 0.90 2.15 3.0244 (13) 164
O12—H12A⋯O4 0.90 2.64 3.3823 (12) 141
N3—H3A⋯O4v 0.90 2.15 2.9307 (10) 144
N3—H3B⋯O10 0.90 2.07 2.8817 (10) 149
N4—H4A⋯O4v 0.90 1.97 2.8072 (11) 154
N4—H4B⋯O11vi 0.90 2.06 2.9161 (10) 159
N5—H5A⋯O10 0.90 2.19 2.9887 (10) 148
N5—H5B⋯O2vii 0.90 1.98 2.8656 (10) 169
N6—H6A⋯O7viii 0.90 2.28 3.0178 (11) 139
N6—H6A⋯O1 0.90 2.49 3.0038 (9) 117
N6—H6B⋯O3vii 0.90 2.55 3.2320 (11) 133
N7—H7A⋯O9iii 0.90 2.01 2.8999 (10) 172
N7—H7B⋯O12ix 0.90 1.93 2.8282 (13) 176
N8—H8A⋯O7viii 0.90 1.94 2.7993 (10) 158
N8—H8B⋯O11 0.90 1.99 2.8847 (10) 174
N5—H5ACg1 0.90 3.47 3.362 (7) 75
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1; (v) -x+1, -y+1, -z; (vi) x, y, z-1; (vii) -x, -y, -z; (viii) -x, -y+1, -z+1; (ix) x, y-1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SADABS (Version 2004/1), SAINT (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SADABS (Version 2004/1), SAINT (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2005[Bruker (2005). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) and Mercury (Version 1.4.2; Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The non-covalent interactions such as ion pairing, hydrogen bonding and ππ stacking are observed in these ionic compounds. The importance of weak hydrogen bonds in the context of crystal engineering, molecular recognition and supramolecular chemistry has been well recognized in recent years. Recently, we have defined a plan to prepare water soluble proton transfer compounds as novel self assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfers from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylicacid, btcH4, to propane-1,3-diamine (pn) and 1,10-phenanthroline, (phen), resulted in the formation of novel self-assembled (pnH2)(pydc).(pydcH2).2.5H2O, (pnH2)2(btc).2H2O and (phenH)4(btcH3)2(btcH2) systems, respectively. The resulting compounds with some remaining sites as electron donors can coordinate to metallic ions (Aghabozorg, Attar Gharamaleki et al., 2007a,b; Aghabozorg, Daneshvar et al., 2007).

The molecular structure of the title compound is presented in Fig. 1. The NiII atom is six-coordinated by two 4-hydroxypyridine-2,6-dicarboxylate, or (hypydc)2-, groups, i.e. each (hypydc)2– is coordinated through one pyridine N atom and two carboxylate O atoms (Table 1). N1 and N2 atoms of the two (hypydc)2– fragments occupy the axial positions, while atoms O1, O5, O6 and O10 form the equatorial plane [with Ni—O distances ranging from 2.1088 (6) to 2.2150 (6) Å]. The N1—Ni1—N2 angle [171.30 (3)°] deviates from linearity. Therefore, the coordination around NiII is distorted octahedral. The O5—Ni1—O6 and O1—Ni1—O10 angles are equal to 91.30 (2) and 93.41 (3)°, respectively. On the other hand, O1—Ni1—O6—C8 and O10—Ni1—O5—C7 torsion angles are 93.20 (5) and 92.27 (5) Å, respectively indicating that two (hypydc)2- units are almost perpendicular to each other.

A noticeable feature of the title compound is the presence of N—H···π stacking interactions between N—H group of guanidinium ions with aromatic rings of (hypydc)2- units. The H···π distance (measured to the centre of phenyl ring) is 3.475Å for N5—H5A···Cg1 [Cg1 is the centroid of N1/C2—C6 ring]. There is also π···π stacking interaction betweentwo aromatic rings of (hypydc)2– units, with distance of 3.8037 (5) Å [-x, 1 - y, -z] (Fig. 2).

Also a considerable C—O···π stacking interactions between CO groups of carboxylate fragments with aromatic rings of 4-hydroxypyridine-2,6-dicarboxylate with distances of 3.321 (8) Å for C8—O7···Cg2 (-x, 1 - y, 1 - z) [Cg2 is the centroid for N2/C9—C13 ring] are observed in the prepared compound (Fig. 3). In the crystal structure, a wide range of non-covalent interactions consisting of hydrogen bonding (of the type of O—H···O and N—H···O with D···A ranging from 2.5901 (8) Å to 3.3823 (12) Å), ion pairing, π···π, N—H···π and C—O···π stacking connect the various components into a supramolecular structure (Table 2, Figs. 4 and 5).

Related literature top

For related literature, see: Aghabozorg, Attar Gharamaleki et al. (2007a, 2007b); Aghabozorg, Daneshvar et al. (2007).

Experimental top

An aqueous solution of sodium hydroxide (80 mg, 2 mmol) was added to guanidine hydrochloride (200 mg, 2 mmol) in a 1:1 molar ratio. The resulting suspension was stirred for 1 h and filtered. An aqueous solution of Ni(NO3)2.6H2O (290 mg, 1 mmol) and 4-hydroxypyridine-2,6-dicarboxylic (360 mg, 2 mmol) acid was added to the filtered solution in a 1:2 molar ratio, and the reaction mixture was heated to boiling point for 2 h. Green crystals were obtained from the solution after two days at room temperature.

Refinement top

Hydrogen atoms were positioned geometrically and refined with a riding model with O—H = 0.95 Å, and with U(H) constrained to be 1.2 times U~eq~ of the carrier atom.

Structure description top

The non-covalent interactions such as ion pairing, hydrogen bonding and ππ stacking are observed in these ionic compounds. The importance of weak hydrogen bonds in the context of crystal engineering, molecular recognition and supramolecular chemistry has been well recognized in recent years. Recently, we have defined a plan to prepare water soluble proton transfer compounds as novel self assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfers from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylicacid, btcH4, to propane-1,3-diamine (pn) and 1,10-phenanthroline, (phen), resulted in the formation of novel self-assembled (pnH2)(pydc).(pydcH2).2.5H2O, (pnH2)2(btc).2H2O and (phenH)4(btcH3)2(btcH2) systems, respectively. The resulting compounds with some remaining sites as electron donors can coordinate to metallic ions (Aghabozorg, Attar Gharamaleki et al., 2007a,b; Aghabozorg, Daneshvar et al., 2007).

The molecular structure of the title compound is presented in Fig. 1. The NiII atom is six-coordinated by two 4-hydroxypyridine-2,6-dicarboxylate, or (hypydc)2-, groups, i.e. each (hypydc)2– is coordinated through one pyridine N atom and two carboxylate O atoms (Table 1). N1 and N2 atoms of the two (hypydc)2– fragments occupy the axial positions, while atoms O1, O5, O6 and O10 form the equatorial plane [with Ni—O distances ranging from 2.1088 (6) to 2.2150 (6) Å]. The N1—Ni1—N2 angle [171.30 (3)°] deviates from linearity. Therefore, the coordination around NiII is distorted octahedral. The O5—Ni1—O6 and O1—Ni1—O10 angles are equal to 91.30 (2) and 93.41 (3)°, respectively. On the other hand, O1—Ni1—O6—C8 and O10—Ni1—O5—C7 torsion angles are 93.20 (5) and 92.27 (5) Å, respectively indicating that two (hypydc)2- units are almost perpendicular to each other.

A noticeable feature of the title compound is the presence of N—H···π stacking interactions between N—H group of guanidinium ions with aromatic rings of (hypydc)2- units. The H···π distance (measured to the centre of phenyl ring) is 3.475Å for N5—H5A···Cg1 [Cg1 is the centroid of N1/C2—C6 ring]. There is also π···π stacking interaction betweentwo aromatic rings of (hypydc)2– units, with distance of 3.8037 (5) Å [-x, 1 - y, -z] (Fig. 2).

Also a considerable C—O···π stacking interactions between CO groups of carboxylate fragments with aromatic rings of 4-hydroxypyridine-2,6-dicarboxylate with distances of 3.321 (8) Å for C8—O7···Cg2 (-x, 1 - y, 1 - z) [Cg2 is the centroid for N2/C9—C13 ring] are observed in the prepared compound (Fig. 3). In the crystal structure, a wide range of non-covalent interactions consisting of hydrogen bonding (of the type of O—H···O and N—H···O with D···A ranging from 2.5901 (8) Å to 3.3823 (12) Å), ion pairing, π···π, N—H···π and C—O···π stacking connect the various components into a supramolecular structure (Table 2, Figs. 4 and 5).

For related literature, see: Aghabozorg, Attar Gharamaleki et al. (2007a, 2007b); Aghabozorg, Daneshvar et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005) and Mercury (Version 1.4.2; Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. π···π Stacking interaction between two aromatic rings of (hypydc)2– units, with distance of 3.8037 (5) Å [-x, 1 - y, -z]; N—H···π stacking interaction between N—H groups of guanidinium ions with aromatic rings of (hypydc)2- units. The H···π distance (measured to the centre of phenyl ring) is 2.96 Å for N5—H5A···Cg1 [Cg1 is the centroid of N1/C2—C6 ring].
[Figure 3] Fig. 3. C—O···π stacking interactions between CO groups of carboxylate fragments with aromatic rings of 4-hydroxypyridine-2,6-dicarboxylate with distances of 3.321 (8) Å for C8—O7···Cg2 (-x, 1 - y, 1 - z) [Cg2 is the centroid for N2/C9—C13 ring].
[Figure 4] Fig. 4. A layered packing diagram. The space between the two layers of [Ni(hypydc)2]2- fragments is filled with a layer of (GH)+ cations and water molecules.
[Figure 5] Fig. 5. The crystal packing of the title compound view down the a axis; hydrogen bonds are shown as dashed lines.
Bis(guanidinium) bis(4-hydroxypyridine-2,6-dicarboxylato-κ3O2,N,O6)nickelate(II) dihydrate top
Crystal data top
(CH6N3)2[Ni(C7H3NO5)2]·2H2OZ = 2
Mr = 577.13F(000) = 596
Triclinic, P1Dx = 1.724 Mg m3
a = 8.9253 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9060 (6) ÅCell parameters from 9699 reflections
c = 13.2186 (9) Åθ = 2.4–36.3°
α = 101.415 (3)°µ = 0.96 mm1
β = 103.099 (3)°T = 150 K
γ = 91.938 (3)°Block, green
V = 1111.99 (13) Å30.50 × 0.32 × 0.15 mm
Data collection top
Bruker SMART 1000
diffractometer
10497 independent reflections
Radiation source: fine-focus sealed tube9650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.3 pixels mm-1θmax = 36.4°, θmin = 1.6°
ω scansh = 1411
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1616
Tmin = 0.647, Tmax = 0.870l = 2121
46516 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.043P)2 + 0.2702P]
where P = (Fo2 + 2Fc2)/3
10497 reflections(Δ/σ)max = 0.002
334 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
(CH6N3)2[Ni(C7H3NO5)2]·2H2Oγ = 91.938 (3)°
Mr = 577.13V = 1111.99 (13) Å3
Triclinic, P1Z = 2
a = 8.9253 (6) ÅMo Kα radiation
b = 9.9060 (6) ŵ = 0.96 mm1
c = 13.2186 (9) ÅT = 150 K
α = 101.415 (3)°0.50 × 0.32 × 0.15 mm
β = 103.099 (3)°
Data collection top
Bruker SMART 1000
diffractometer
10497 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
9650 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 0.870Rint = 0.019
46516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.06Δρmax = 0.56 e Å3
10497 reflectionsΔρmin = 0.61 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.173117 (11)0.423258 (10)0.259400 (7)0.01287 (3)
O10.00784 (7)0.27245 (6)0.24384 (5)0.01774 (10)
O20.16765 (9)0.11004 (7)0.12138 (5)0.02439 (13)
O30.02586 (9)0.20971 (7)0.21698 (5)0.02167 (12)
H3C0.02060.27450.25540.026*
O40.35691 (8)0.60277 (7)0.04763 (5)0.02381 (12)
O50.31707 (7)0.56247 (6)0.20082 (5)0.01687 (10)
O60.05225 (7)0.59263 (6)0.32052 (4)0.01635 (10)
O70.02582 (8)0.72029 (7)0.47531 (5)0.02065 (11)
O80.37838 (8)0.46857 (7)0.73456 (5)0.02054 (11)
H80.47190.43670.75250.025*
O90.51375 (8)0.19318 (7)0.39007 (5)0.02143 (11)
O100.34554 (7)0.27853 (6)0.26981 (5)0.01768 (10)
O110.32536 (8)0.04310 (7)0.73709 (5)0.02032 (11)
H11A0.38140.10760.70890.024*
H11B0.26530.08140.77190.024*
O120.37899 (13)0.87354 (12)0.25296 (8)0.0491 (3)
H12B0.47040.91570.25390.059*
H12A0.36640.78200.22570.059*
N10.09970 (7)0.36856 (6)0.10372 (5)0.01309 (10)
N20.25270 (7)0.44832 (6)0.41390 (5)0.01274 (10)
N30.50285 (9)0.28895 (8)0.10335 (6)0.02072 (13)
H3A0.56590.34750.08470.025*
H3B0.48600.30640.16910.025*
N40.43549 (11)0.16824 (9)0.06920 (7)0.02808 (17)
H4A0.50140.22880.08330.034*
H4B0.39070.09270.11820.034*
N50.32885 (10)0.09767 (8)0.05716 (6)0.02313 (14)
H5A0.32260.11890.12540.028*
H5B0.27190.02850.00710.028*
N60.12908 (10)0.08178 (8)0.38427 (6)0.02258 (13)
H6A0.06360.14810.39200.027*
H6B0.12740.03510.31820.027*
N70.29526 (10)0.06930 (9)0.45012 (7)0.02577 (15)
H7A0.34830.10440.50410.031*
H7B0.31740.08730.38590.031*
N80.18342 (10)0.08088 (8)0.56283 (6)0.02222 (13)
H8A0.11410.14420.56800.027*
H8B0.22140.03880.61660.027*
C10.06666 (9)0.20926 (8)0.14912 (6)0.01563 (12)
C20.00601 (8)0.26094 (7)0.06391 (6)0.01391 (11)
C30.04990 (9)0.20506 (8)0.04397 (6)0.01656 (12)
H30.12260.12950.07050.020*
C40.01756 (9)0.26469 (8)0.11267 (6)0.01546 (12)
C50.12882 (9)0.37751 (8)0.06979 (6)0.01465 (11)
H50.17540.41900.11340.018*
C60.16685 (8)0.42490 (7)0.03947 (5)0.01292 (11)
C70.28988 (9)0.53963 (8)0.09859 (6)0.01487 (11)
C80.08025 (9)0.62575 (7)0.42266 (6)0.01421 (11)
C90.19209 (8)0.53834 (7)0.47982 (5)0.01287 (11)
C100.23152 (9)0.54827 (8)0.58878 (6)0.01447 (11)
H100.18790.61080.63380.017*
C110.33960 (9)0.46069 (8)0.62872 (6)0.01443 (11)
C120.40380 (9)0.36772 (8)0.55896 (6)0.01472 (11)
H120.47670.31000.58430.018*
C130.35558 (8)0.36443 (7)0.45134 (6)0.01300 (11)
C140.41057 (9)0.26960 (7)0.36476 (6)0.01460 (11)
C150.42237 (9)0.18398 (8)0.03028 (6)0.01729 (12)
C160.20223 (9)0.02991 (8)0.46651 (7)0.01741 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01507 (5)0.01471 (4)0.00908 (4)0.00167 (3)0.00287 (3)0.00302 (3)
O10.0216 (3)0.0205 (2)0.0116 (2)0.0011 (2)0.00473 (19)0.00417 (18)
O20.0293 (3)0.0251 (3)0.0181 (3)0.0102 (2)0.0079 (2)0.0024 (2)
O30.0347 (3)0.0192 (2)0.0091 (2)0.0019 (2)0.0017 (2)0.00284 (18)
O40.0263 (3)0.0261 (3)0.0201 (3)0.0075 (2)0.0076 (2)0.0064 (2)
O50.0173 (2)0.0194 (2)0.0125 (2)0.00028 (18)0.00219 (18)0.00193 (18)
O60.0193 (2)0.0184 (2)0.0119 (2)0.00462 (19)0.00323 (18)0.00461 (18)
O70.0252 (3)0.0201 (3)0.0179 (2)0.0094 (2)0.0069 (2)0.0034 (2)
O80.0218 (3)0.0283 (3)0.0092 (2)0.0049 (2)0.00023 (19)0.0026 (2)
O90.0243 (3)0.0229 (3)0.0208 (3)0.0117 (2)0.0086 (2)0.0079 (2)
O100.0230 (3)0.0196 (2)0.0121 (2)0.0061 (2)0.00636 (19)0.00398 (18)
O110.0262 (3)0.0188 (2)0.0177 (2)0.0029 (2)0.0082 (2)0.0044 (2)
O120.0487 (5)0.0521 (6)0.0417 (5)0.0196 (5)0.0255 (4)0.0149 (4)
N10.0141 (2)0.0150 (2)0.0107 (2)0.00126 (19)0.00302 (18)0.00398 (18)
N20.0140 (2)0.0139 (2)0.0106 (2)0.00212 (18)0.00304 (18)0.00285 (18)
N30.0222 (3)0.0198 (3)0.0177 (3)0.0040 (2)0.0059 (2)0.0021 (2)
N40.0392 (4)0.0245 (3)0.0186 (3)0.0094 (3)0.0127 (3)0.0046 (3)
N50.0268 (3)0.0208 (3)0.0212 (3)0.0058 (3)0.0068 (3)0.0031 (2)
N60.0266 (3)0.0242 (3)0.0192 (3)0.0068 (3)0.0045 (3)0.0103 (3)
N70.0300 (4)0.0283 (4)0.0263 (4)0.0142 (3)0.0130 (3)0.0135 (3)
N80.0262 (3)0.0229 (3)0.0187 (3)0.0076 (3)0.0047 (3)0.0068 (2)
C10.0180 (3)0.0167 (3)0.0136 (3)0.0009 (2)0.0053 (2)0.0047 (2)
C20.0154 (3)0.0152 (3)0.0115 (3)0.0008 (2)0.0029 (2)0.0041 (2)
C30.0202 (3)0.0167 (3)0.0118 (3)0.0015 (2)0.0020 (2)0.0035 (2)
C40.0205 (3)0.0156 (3)0.0098 (2)0.0018 (2)0.0020 (2)0.0034 (2)
C50.0179 (3)0.0161 (3)0.0109 (2)0.0018 (2)0.0038 (2)0.0046 (2)
C60.0137 (3)0.0148 (3)0.0109 (2)0.0017 (2)0.0030 (2)0.0041 (2)
C70.0148 (3)0.0157 (3)0.0144 (3)0.0010 (2)0.0036 (2)0.0036 (2)
C80.0150 (3)0.0149 (3)0.0135 (3)0.0021 (2)0.0036 (2)0.0043 (2)
C90.0140 (3)0.0136 (2)0.0109 (2)0.0013 (2)0.0028 (2)0.0023 (2)
C100.0159 (3)0.0160 (3)0.0106 (2)0.0012 (2)0.0024 (2)0.0016 (2)
C110.0151 (3)0.0171 (3)0.0098 (2)0.0002 (2)0.0010 (2)0.0023 (2)
C120.0154 (3)0.0163 (3)0.0122 (3)0.0022 (2)0.0016 (2)0.0040 (2)
C130.0140 (3)0.0137 (3)0.0117 (2)0.0017 (2)0.0033 (2)0.0032 (2)
C140.0168 (3)0.0146 (3)0.0140 (3)0.0027 (2)0.0059 (2)0.0039 (2)
C150.0180 (3)0.0152 (3)0.0180 (3)0.0007 (2)0.0051 (2)0.0011 (2)
C160.0171 (3)0.0176 (3)0.0197 (3)0.0023 (2)0.0051 (2)0.0082 (2)
Geometric parameters (Å, º) top
Ni1—N21.9665 (6)N4—H4A0.9000
Ni1—N11.9700 (6)N4—H4B0.9000
Ni1—O12.1088 (6)N5—C151.3267 (11)
Ni1—O102.1387 (6)N5—H5A0.9002
Ni1—O62.1477 (6)N5—H5B0.9000
Ni1—O52.2149 (6)N6—C161.3394 (10)
O1—C11.2668 (9)N6—H6A0.9000
O2—C11.2492 (10)N6—H6B0.9001
O3—C41.3394 (9)N7—C161.3247 (11)
O3—H3C0.9000N7—H7A0.9000
O4—C71.2357 (9)N7—H7B0.8999
O5—C71.2895 (9)N8—C161.3238 (11)
O6—C81.2880 (9)N8—H8A0.9000
O7—C81.2343 (10)N8—H8B0.9002
O8—C111.3485 (9)C1—C21.5198 (10)
O8—H80.9000C2—C31.3832 (10)
O9—C141.2413 (9)C3—C41.4044 (11)
O10—C141.2796 (9)C3—H30.9300
O11—H11A0.9000C4—C51.4055 (11)
O11—H11B0.9001C5—C61.3857 (10)
O12—H12B0.9000C5—H50.9300
O12—H12A0.9000C6—C71.5111 (10)
N1—C61.3371 (9)C8—C91.5141 (10)
N1—C21.3374 (9)C9—C101.3856 (10)
N2—C91.3363 (9)C10—C111.4032 (11)
N2—C131.3368 (9)C10—H100.9300
N3—C151.3296 (10)C11—C121.4021 (11)
N3—H3A0.9001C12—C131.3833 (10)
N3—H3B0.9001C12—H120.9300
N4—C151.3256 (11)C13—C141.5143 (10)
N2—Ni1—N1171.30 (3)O2—C1—C2118.69 (7)
O1—Ni1—O5154.97 (2)O1—C1—C2115.64 (6)
O10—Ni1—O6154.87 (2)N1—C2—C3121.56 (7)
N2—Ni1—O196.84 (2)N1—C2—C1112.83 (6)
N1—Ni1—O178.70 (2)C3—C2—C1125.60 (7)
N2—Ni1—O1077.95 (2)C2—C3—C4118.69 (7)
N1—Ni1—O1094.76 (2)C2—C3—H3120.7
O1—Ni1—O1093.41 (3)C4—C3—H3120.7
N2—Ni1—O677.41 (2)O3—C4—C3118.15 (7)
N1—Ni1—O6110.20 (2)O3—C4—C5122.66 (7)
O1—Ni1—O694.31 (2)C3—C4—C5119.18 (7)
N2—Ni1—O5108.19 (2)C6—C5—C4117.89 (6)
N1—Ni1—O576.46 (2)C6—C5—H5121.1
O10—Ni1—O591.73 (2)C4—C5—H5121.1
O6—Ni1—O591.30 (2)N1—C6—C5122.25 (7)
C1—O1—Ni1114.35 (5)N1—C6—C7113.16 (6)
C4—O3—H3C111.0C5—C6—C7124.55 (6)
C7—O5—Ni1113.28 (5)O4—C7—O5125.12 (7)
C8—O6—Ni1114.63 (5)O4—C7—C6119.22 (7)
C11—O8—H8109.2O5—C7—C6115.66 (6)
C14—O10—Ni1114.35 (5)O7—C8—O6126.10 (7)
H11A—O11—H11B109.4O7—C8—C9119.17 (7)
H12B—O12—H12A115.5O6—C8—C9114.73 (6)
C6—N1—C2120.41 (6)N2—C9—C10121.93 (7)
C6—N1—Ni1121.23 (5)N2—C9—C8112.93 (6)
C2—N1—Ni1117.81 (5)C10—C9—C8125.14 (7)
C9—N2—C13120.78 (6)C9—C10—C11117.64 (7)
C9—N2—Ni1119.82 (5)C9—C10—H10121.2
C13—N2—Ni1119.03 (5)C11—C10—H10121.2
C15—N3—H3A119.6O8—C11—C12121.73 (7)
C15—N3—H3B119.6O8—C11—C10118.30 (7)
H3A—N3—H3B120.4C12—C11—C10119.96 (6)
C15—N4—H4A117.6C13—C12—C11118.05 (7)
C15—N4—H4B120.5C13—C12—H12121.0
H4A—N4—H4B121.3C11—C12—H12121.0
C15—N5—H5A115.0N2—C13—C12121.62 (7)
C15—N5—H5B119.8N2—C13—C14113.12 (6)
H5A—N5—H5B125.0C12—C13—C14125.25 (7)
C16—N6—H6A121.8O9—C14—O10125.71 (7)
C16—N6—H6B118.1O9—C14—C13119.11 (7)
H6A—N6—H6B118.4O10—C14—C13115.17 (6)
C16—N7—H7A121.3N4—C15—N5120.87 (8)
C16—N7—H7B116.5N4—C15—N3119.19 (8)
H7A—N7—H7B121.1N5—C15—N3119.93 (8)
C16—N8—H8A116.9N8—C16—N7121.25 (8)
C16—N8—H8B119.8N8—C16—N6119.57 (8)
H8A—N8—H8B121.8N7—C16—N6119.16 (8)
O2—C1—O1125.67 (7)
N2—Ni1—O1—C1165.80 (6)O2—C1—C2—C31.87 (12)
N1—Ni1—O1—C16.63 (6)O1—C1—C2—C3177.90 (8)
O10—Ni1—O1—C187.54 (6)N1—C2—C3—C40.79 (12)
O6—Ni1—O1—C1116.39 (6)C1—C2—C3—C4179.78 (7)
O5—Ni1—O1—C113.95 (10)C2—C3—C4—O3179.99 (7)
N2—Ni1—O5—C7170.16 (5)C2—C3—C4—C50.95 (12)
N1—Ni1—O5—C72.20 (5)O3—C4—C5—C6179.04 (7)
O1—Ni1—O5—C79.58 (9)C3—C4—C5—C60.02 (11)
O10—Ni1—O5—C792.27 (5)C2—N1—C6—C51.36 (11)
O6—Ni1—O5—C7112.67 (5)Ni1—N1—C6—C5172.68 (5)
N2—Ni1—O6—C82.86 (5)C2—N1—C6—C7176.55 (6)
N1—Ni1—O6—C8172.73 (5)Ni1—N1—C6—C75.23 (8)
O1—Ni1—O6—C893.20 (5)C4—C5—C6—N11.14 (11)
O10—Ni1—O6—C814.34 (9)C4—C5—C6—C7176.52 (7)
O5—Ni1—O6—C8111.22 (5)Ni1—O5—C7—O4179.06 (7)
N2—Ni1—O10—C143.50 (5)Ni1—O5—C7—C60.27 (8)
N1—Ni1—O10—C14171.70 (6)N1—C6—C7—O4177.72 (7)
O1—Ni1—O10—C1492.77 (6)C5—C6—C7—O44.43 (12)
O6—Ni1—O10—C1414.95 (9)N1—C6—C7—O52.91 (10)
O5—Ni1—O10—C14111.74 (6)C5—C6—C7—O5174.94 (7)
N2—Ni1—N1—C6119.19 (16)Ni1—O6—C8—O7179.06 (7)
O1—Ni1—N1—C6179.02 (6)Ni1—O6—C8—C90.37 (8)
O10—Ni1—N1—C686.48 (6)C13—N2—C9—C100.51 (11)
O6—Ni1—N1—C690.51 (6)Ni1—N2—C9—C10172.42 (5)
O5—Ni1—N1—C64.16 (6)C13—N2—C9—C8178.98 (6)
N2—Ni1—N1—C252.35 (19)Ni1—N2—C9—C88.09 (8)
O1—Ni1—N1—C27.48 (6)O7—C8—C9—N2174.29 (7)
O10—Ni1—N1—C285.06 (6)O6—C8—C9—N25.18 (9)
O6—Ni1—N1—C297.95 (6)O7—C8—C9—C105.17 (11)
O5—Ni1—N1—C2175.70 (6)O6—C8—C9—C10175.36 (7)
N1—Ni1—N2—C9145.37 (15)N2—C9—C10—C110.58 (11)
O1—Ni1—N2—C986.74 (6)C8—C9—C10—C11178.84 (7)
O10—Ni1—N2—C9178.78 (6)C9—C10—C11—O8179.59 (7)
O6—Ni1—N2—C96.18 (5)C9—C10—C11—C120.16 (11)
O5—Ni1—N2—C993.38 (6)O8—C11—C12—C13178.81 (7)
N1—Ni1—N2—C1327.7 (2)C10—C11—C12—C130.94 (11)
O1—Ni1—N2—C1386.32 (6)C9—N2—C13—C120.33 (11)
O10—Ni1—N2—C135.72 (5)Ni1—N2—C13—C12173.32 (5)
O6—Ni1—N2—C13179.23 (6)C9—N2—C13—C14179.79 (6)
O5—Ni1—N2—C1393.57 (6)Ni1—N2—C13—C146.80 (8)
Ni1—O1—C1—O2174.96 (7)C11—C12—C13—N21.04 (11)
Ni1—O1—C1—C24.79 (9)C11—C12—C13—C14179.09 (7)
C6—N1—C2—C30.36 (11)Ni1—O10—C14—O9179.76 (7)
Ni1—N1—C2—C3171.97 (6)Ni1—O10—C14—C131.05 (8)
C6—N1—C2—C1178.76 (6)N2—C13—C14—O9175.34 (7)
Ni1—N1—C2—C17.15 (8)C12—C13—C14—O94.54 (11)
O2—C1—C2—N1179.06 (7)N2—C13—C14—O103.46 (9)
O1—C1—C2—N11.17 (10)C12—C13—C14—O10176.66 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O6i0.901.712.5901 (8)166
O8—H8···O5ii0.901.842.7057 (9)160
O11—H11A···O9iii0.901.862.7106 (9)156
O11—H11B···O2iv0.901.882.7464 (9)161
O12—H12B···O11ii0.902.153.0425 (12)172
O12—H12A···O50.902.153.0244 (13)164
O12—H12A···O40.902.643.3823 (12)141
N3—H3A···O4v0.902.152.9307 (10)144
N3—H3B···O100.902.072.8817 (10)149
N4—H4A···O4v0.901.972.8072 (11)154
N4—H4B···O11vi0.902.062.9161 (10)159
N5—H5A···O100.902.192.9887 (10)148
N5—H5B···O2vii0.901.982.8656 (10)169
N6—H6A···O7viii0.902.283.0178 (11)139
N6—H6A···O10.902.493.0038 (9)117
N6—H6B···O3vii0.902.553.2320 (11)133
N7—H7A···O9iii0.902.012.8999 (10)172
N7—H7B···O12ix0.901.932.8282 (13)176
N8—H8A···O7viii0.901.942.7993 (10)158
N8—H8B···O110.901.992.8847 (10)174
N5—H5A···Cg1(N1/C2–C6)0.903.473.362 (7)75
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x+1, y+1, z; (vi) x, y, z1; (vii) x, y, z; (viii) x, y+1, z+1; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formula(CH6N3)2[Ni(C7H3NO5)2]·2H2O
Mr577.13
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.9253 (6), 9.9060 (6), 13.2186 (9)
α, β, γ (°)101.415 (3), 103.099 (3), 91.938 (3)
V3)1111.99 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.50 × 0.32 × 0.15
Data collection
DiffractometerBruker SMART 1000
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.647, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
46516, 10497, 9650
Rint0.019
(sin θ/λ)max1)0.834
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.076, 1.06
No. of reflections10497
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.61

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005) and Mercury (Version 1.4.2; Macrae et al., 2006).

Selected geometric parameters (Å, º) top
Ni1—N21.9665 (6)Ni1—O102.1387 (6)
Ni1—N11.9700 (6)Ni1—O62.1477 (6)
Ni1—O12.1088 (6)Ni1—O52.2149 (6)
N2—Ni1—N1171.30 (3)O1—Ni1—O1093.41 (3)
O1—Ni1—O5154.97 (2)O6—Ni1—O591.30 (2)
O10—Ni1—O6154.87 (2)
O10—Ni1—O5—C792.27 (5)O1—Ni1—O6—C893.20 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O6i0.901.712.5901 (8)165.9
O8—H8···O5ii0.901.842.7057 (9)159.7
O11—H11A···O9iii0.901.862.7106 (9)156.0
O11—H11B···O2iv0.901.882.7464 (9)161.3
O12—H12B···O11ii0.902.153.0425 (12)171.9
O12—H12A···O50.902.153.0244 (13)164.0
O12—H12A···O40.902.643.3823 (12)141.0
N3—H3A···O4v0.902.152.9307 (10)143.9
N3—H3B···O100.902.072.8817 (10)149.0
N4—H4A···O4v0.901.972.8072 (11)154.0
N4—H4B···O11vi0.902.062.9161 (10)159.3
N5—H5A···O100.902.192.9887 (10)147.7
N5—H5B···O2vii0.901.982.8656 (10)169.0
N6—H6A···O7viii0.902.283.0178 (11)138.6
N6—H6A···O10.902.493.0038 (9)116.7
N6—H6B···O3vii0.902.553.2320 (11)132.8
N7—H7A···O9iii0.902.012.8999 (10)171.6
N7—H7B···O12ix0.901.932.8282 (13)176.2
N8—H8A···O7viii0.901.942.7993 (10)157.9
N8—H8B···O110.901.992.8847 (10)174.2
N5—H5A···Cg1(N1/C2–C6)0.903.473.362 (7)75.3
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x+1, y+1, z; (vi) x, y, z1; (vii) x, y, z; (viii) x, y+1, z+1; (ix) x, y1, z.
 

Acknowledgements

Financial support from Ilam University and the Teacher Training University, Tehran, is gratefully acknowledged.

References

First citationAghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007a). Acta Cryst. E63, m1803–m1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007b). Acta Cryst. E63, m1710–m1711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SADABS (Version 2004/1), SAINT (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin.  Google Scholar
First citationBruker (2005). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds