organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Carb­oxy­quinolinium–2,4,6-tri­nitro­benzene­sulfonate–quinolinium-2-carboxyl­ate (1/1/1)

aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia, and cBIO-21 Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 20 November 2007; accepted 23 November 2007; online 6 December 2007)

The structure of the title adduct compound, C10H8NO2+·C6H2N3O9S·C10H7NO2, from the reaction of 2,4,6-trinitro­benzene­sulfonic acid (picrylsulfonic acid) with quinoline-2-carboxylic acid (quinaldic acid) in 2-propanol–water, has been determined at 130 (2) K. The cation and the adduct species form a twisted cyclic hydrogen-bonded R22(10) pseudo-dimer which is extended into a one-dimensional chain structure through short head-to-tail carboxylic acid O—H⋯Ocarbox­yl associations [O⋯O = 2.4711 (19) Å]. The picrylsulfonate anions are attached peripherally by single N—H⋯Osulfonate hydrogen bonds [N⋯O = 2.8643 (19) Å].

Related literature

For other related picrylsulfonate and quinaldic acid structures, see: Russell & Ward (1997[Russell, V. A. & Ward, M. D. (1997). J. Mater. Chem. 7, 1123-1133.]); Smith et al. (2004[Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575-o581.]); Smith, Wermuth & Healy (2006[Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o5510-o5512.]); Smith, Wermuth & White (2006[Smith, G., Wermuth, U. D. & White, J. M. (2006). Acta Cryst. C62, o694-o698.]); Smith, Wermuth, Healy & White (2007[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264-277.]); Smith, Wermuth & White (2007[Smith, G., Wermuth, U. D. & White, J. M. (2007). Unpublished data.]); Dobrzyńska & Jerzykiewicz (2004[Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51-55.]).

For graph-set nomenclature, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8NO2+·C6H2N3O9S·C10H7NO2

  • Mr = 639.51

  • Triclinic, [P \overline 1]

  • a = 7.8872 (6) Å

  • b = 12.4753 (10) Å

  • c = 14.6617 (12) Å

  • α = 66.227 (1)°

  • β = 74.997 (2)°

  • γ = 82.191 (2)°

  • V = 1274.42 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 130 (2) K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS (Version 2.03) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.93, Tmax = 0.98

  • 6761 measured reflections

  • 4446 independent reflections

  • 3779 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.00

  • 4446 reflections

  • 419 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O21A 0.87 (2) 2.31 (2) 2.690 (2) 106.3 (18)
N1A—H1A⋯O21B 0.87 (2) 1.94 (2) 2.761 (2) 155 (2)
N1B—H1B⋯O13 0.85 (2) 2.23 (2) 2.8643 (19) 132 (2)
N1B—H1B⋯O21A 0.85 (2) 2.14 (3) 2.746 (2) 128 (2)
N1B—H1B⋯O21B 0.85 (2) 2.30 (3) 2.683 (2) 108 (2)
O22A—H22A⋯O22Bi 0.97 (2) 1.50 (2) 2.4711 (19) 179 (3)
C4B—H4B⋯O41ii 0.95 2.37 3.240 (2) 152
C5B—H5B⋯O12iii 0.95 2.44 3.339 (2) 158
C8A—H8A⋯O21B 0.95 2.39 3.122 (2) 134
Symmetry codes: (i) x-1, y, z; (ii) x, y, z+1; (iii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Version 5.55. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SADABS (Version 2.03) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Picrylsulfonic acid (2,4,6-trinitrobenzenesulfonic acid) reacts with certain Lewis bases to form 1:1 proton-transfer salts and the structures of a small number of these are known: with guanidine (Russell & Ward, 1997) and quinoline (Smith, Wermuth & Healy, 2006). However, the 1:1 reaction with quinoline-2-carboxylic acid in 80% 2-propanol-water resulted in the adduct salt 2-carboxyquinolinium-2,4,6-trinitrobenzenesulfonate-quinolinium- 2-carboxylate (1/1/1) (I) and the structure is reported here. In (I), the asymmetric unit comprises a protonated quinaldic acid cation (A), a picrylsulfonate anion and a zwitterionic quinaldic acid adduct molecule (B) (Fig. 1). The cation and the adduct species form a pseudo-dimer through a twisted cyclic hydrogen-bonded duplex N–H···O association [graph set R22(10) (Etter et al., 1990]. This pseudo-dimer incorporates a cyclic R22(4) association and two intramolecular S(5) NH···Ocarboxyl associations and is similar to that found in the zwitterionic parent acid (Dobrzyńska & Jerzykiewicz, 2004), the 1:2 L-tartaric acid-quinaldic acid adduct (Smith, Wermuth & White, 2006) and in the analogous (1:1:1) protonated quinaldic acid-zwitterionic adduct compounds with 5-sulfosalicylic acid (Smith et al., 2004) and 4,5-dichlorophthalic acid (Smith, Wermuth & White, 2007). However, in the 1:1 compound with 3,5-dinitrosalicylic acid (Smith, Wermuth, Healy & White, 2007), this dimer is not found.

In (I), the pseudo-dimers are extended into one-dimensional chain structures through short head-to-tail carboxylic acid O–H··· Ocarboxyl associations [O···O, 2.4711 (19) Å] (Fig. 2). The picrylsulfonate anions are attached peripherally by single NH···Osulfonate hydrogen bonds (Table 1).

All nitro groups of the anion are rotated out of the plane of the benzene ring, particularly those which are ortho to the sulfonate group [torsion angle C1–C2–N2–O22, -139.19 (17) °; C5–C6–N6–O62, 115.70 (17) °], compared to the para- related group [torsion angle C3–C4–N4–O42, 165.79 (16) °].

Related literature top

For other related picrylsulfonate and quinaldic acid structures, see: Russell & Ward (1997); Smith et al. (2004); Smith, Wermuth & Healy (2006); Smith, Wermuth & White (2006); Smith, Wermuth, Healy & White (2007); Smith, Wermuth & White (2007); Dobrzyńska & Jerzykiewicz (2004).

For graph-set nomenclature, see: Etter et al. (1990).

Experimental top

The title compound was synthesized by heating under reflux 1 mmol quantities of 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) and quinoline-2-carboxylic acid (quinaldic acid) in 50 ml of 80% 2-propanol-water for 10 minutes. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave pale yellow flat prisms of (I) [m.pt. 495–496 K].

Refinement top

Interactive hydrogen atoms were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic ring H atoms were included in the refinement in calculated positions (C–H = 0.95 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Structure description top

Picrylsulfonic acid (2,4,6-trinitrobenzenesulfonic acid) reacts with certain Lewis bases to form 1:1 proton-transfer salts and the structures of a small number of these are known: with guanidine (Russell & Ward, 1997) and quinoline (Smith, Wermuth & Healy, 2006). However, the 1:1 reaction with quinoline-2-carboxylic acid in 80% 2-propanol-water resulted in the adduct salt 2-carboxyquinolinium-2,4,6-trinitrobenzenesulfonate-quinolinium- 2-carboxylate (1/1/1) (I) and the structure is reported here. In (I), the asymmetric unit comprises a protonated quinaldic acid cation (A), a picrylsulfonate anion and a zwitterionic quinaldic acid adduct molecule (B) (Fig. 1). The cation and the adduct species form a pseudo-dimer through a twisted cyclic hydrogen-bonded duplex N–H···O association [graph set R22(10) (Etter et al., 1990]. This pseudo-dimer incorporates a cyclic R22(4) association and two intramolecular S(5) NH···Ocarboxyl associations and is similar to that found in the zwitterionic parent acid (Dobrzyńska & Jerzykiewicz, 2004), the 1:2 L-tartaric acid-quinaldic acid adduct (Smith, Wermuth & White, 2006) and in the analogous (1:1:1) protonated quinaldic acid-zwitterionic adduct compounds with 5-sulfosalicylic acid (Smith et al., 2004) and 4,5-dichlorophthalic acid (Smith, Wermuth & White, 2007). However, in the 1:1 compound with 3,5-dinitrosalicylic acid (Smith, Wermuth, Healy & White, 2007), this dimer is not found.

In (I), the pseudo-dimers are extended into one-dimensional chain structures through short head-to-tail carboxylic acid O–H··· Ocarboxyl associations [O···O, 2.4711 (19) Å] (Fig. 2). The picrylsulfonate anions are attached peripherally by single NH···Osulfonate hydrogen bonds (Table 1).

All nitro groups of the anion are rotated out of the plane of the benzene ring, particularly those which are ortho to the sulfonate group [torsion angle C1–C2–N2–O22, -139.19 (17) °; C5–C6–N6–O62, 115.70 (17) °], compared to the para- related group [torsion angle C3–C4–N4–O42, 165.79 (16) °].

For other related picrylsulfonate and quinaldic acid structures, see: Russell & Ward (1997); Smith et al. (2004); Smith, Wermuth & Healy (2006); Smith, Wermuth & White (2006); Smith, Wermuth, Healy & White (2007); Smith, Wermuth & White (2007); Dobrzyńska & Jerzykiewicz (2004).

For graph-set nomenclature, see: Etter et al. (1990).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the cation, anion and the zwitterionic adduct species in (I). Inter-species hydrogen-bonding interactions are shown as dashed lines. Non-H atom displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A perspective view of the one-dimensional head-to-tail cation-adduct dimer extension and peripheral NH···Osulfonate associations in (I). Non-interactive H-atoms are omitted while hydrogen bonds are shown as dashed lines. Symmetry code (iv): x + 1, y, z. For other symmetry codes see Table 1.
2-Carboxyquinolinium–2,4,6-trinitrobenzenesulfonate– quinolinium-2-carboxylate (1/1/1) top
Crystal data top
C10H8NO2+·C6H2N3O9S·C10H7NO2Z = 2
Mr = 639.51F(000) = 656
Triclinic, P1Dx = 1.667 Mg m3
Hall symbol: -P 1Melting point = 495–496 K
a = 7.8872 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4753 (10) ÅCell parameters from 3558 reflections
c = 14.6617 (12) Åθ = 2.7–27.5°
α = 66.227 (1)°µ = 0.21 mm1
β = 74.997 (2)°T = 130 K
γ = 82.191 (2)°Plate, colourless
V = 1274.42 (18) Å30.40 × 0.30 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4446 independent reflections
Radiation source: sealed tube3779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 99
Tmin = 0.93, Tmax = 0.98k = 1414
6761 measured reflectionsl = 1017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0504P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4446 reflectionsΔρmax = 0.26 e Å3
419 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0035 (9)
Crystal data top
C10H8NO2+·C6H2N3O9S·C10H7NO2γ = 82.191 (2)°
Mr = 639.51V = 1274.42 (18) Å3
Triclinic, P1Z = 2
a = 7.8872 (6) ÅMo Kα radiation
b = 12.4753 (10) ŵ = 0.21 mm1
c = 14.6617 (12) ÅT = 130 K
α = 66.227 (1)°0.40 × 0.30 × 0.10 mm
β = 74.997 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4446 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3779 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.98Rint = 0.039
6761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.26 e Å3
4446 reflectionsΔρmin = 0.36 e Å3
419 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21A0.58977 (15)0.59940 (10)0.39221 (10)0.0254 (4)
O21B1.00107 (15)0.64175 (10)0.34714 (10)0.0241 (4)
O22A0.38775 (15)0.50663 (10)0.36987 (9)0.0228 (4)
O22B1.16069 (15)0.60475 (11)0.46423 (10)0.0259 (4)
N1A0.84672 (18)0.51549 (12)0.27485 (11)0.0189 (4)
N1B0.74154 (18)0.73921 (12)0.45119 (11)0.0185 (5)
C2A0.6823 (2)0.48449 (14)0.29343 (13)0.0195 (5)
C2B0.8899 (2)0.70550 (14)0.48319 (13)0.0180 (5)
C3A0.6451 (2)0.41203 (14)0.24976 (14)0.0223 (5)
C3B0.9103 (2)0.72614 (14)0.56645 (13)0.0213 (5)
C4A0.7771 (2)0.37568 (15)0.18609 (14)0.0236 (6)
C4B0.7771 (2)0.78111 (15)0.61378 (14)0.0232 (5)
C5A1.0908 (2)0.38090 (16)0.09579 (14)0.0274 (6)
C5B0.4742 (2)0.86973 (15)0.62801 (14)0.0246 (6)
C6A1.2556 (2)0.41723 (16)0.07874 (14)0.0284 (6)
C6B0.3237 (2)0.89788 (15)0.59302 (15)0.0267 (6)
C7A1.2868 (2)0.48655 (16)0.12761 (14)0.0265 (6)
C7B0.3095 (2)0.87352 (15)0.50922 (14)0.0248 (6)
C8A1.1553 (2)0.51932 (15)0.19338 (13)0.0224 (5)
C8B0.4452 (2)0.82010 (14)0.46165 (14)0.0217 (5)
C9A0.9842 (2)0.48298 (14)0.21127 (13)0.0200 (5)
C9B0.6008 (2)0.79115 (14)0.49680 (13)0.0176 (5)
C10A0.9496 (2)0.41196 (14)0.16341 (14)0.0217 (6)
C10B0.6178 (2)0.81513 (14)0.58089 (13)0.0202 (5)
C21A0.5445 (2)0.53589 (14)0.35874 (13)0.0198 (5)
C21B1.0288 (2)0.64568 (14)0.42510 (14)0.0206 (5)
S10.67941 (6)0.96877 (4)0.18966 (3)0.0221 (1)
O110.79371 (16)1.05360 (11)0.18376 (10)0.0275 (4)
O120.49579 (16)0.99398 (11)0.22231 (9)0.0270 (4)
O130.73845 (16)0.84886 (11)0.23828 (9)0.0288 (4)
O210.48489 (16)0.78413 (11)0.16864 (10)0.0287 (4)
O220.69059 (17)0.69083 (10)0.09636 (10)0.0296 (4)
O410.89200 (16)0.91344 (11)0.26263 (10)0.0280 (4)
O420.90947 (17)1.10219 (11)0.31897 (9)0.0328 (4)
O610.92941 (16)1.23709 (11)0.02903 (10)0.0295 (4)
O620.64569 (16)1.23611 (11)0.02533 (10)0.0295 (4)
N20.61840 (19)0.78074 (13)0.10551 (11)0.0222 (5)
N40.87752 (18)1.00599 (13)0.25023 (11)0.0224 (5)
N60.78729 (19)1.19400 (12)0.00650 (11)0.0219 (5)
C10.7125 (2)0.98489 (15)0.05707 (13)0.0182 (5)
C20.6957 (2)0.89262 (14)0.02920 (13)0.0183 (5)
C30.7470 (2)0.89921 (14)0.07008 (13)0.0189 (5)
C40.8198 (2)1.00040 (15)0.14463 (13)0.0187 (5)
C50.8392 (2)1.09627 (15)0.12484 (13)0.0194 (5)
C60.7815 (2)1.08587 (14)0.02403 (13)0.0189 (5)
H1A0.863 (3)0.5625 (18)0.3025 (16)0.036 (6)*
H1B0.737 (3)0.7269 (19)0.3989 (18)0.047 (7)*
H3A0.528500.388100.264200.0270*
H3B1.016000.702100.590000.0260*
H4A0.752100.325600.157000.0280*
H4B0.791700.796700.669500.0280*
H5A1.070800.334500.062000.0330*
H5B0.482400.886900.684200.0300*
H6A1.349900.395500.033500.0340*
H6B0.227300.934300.625300.0320*
H7A1.402500.511200.114500.0320*
H7B0.203700.894600.485500.0300*
H8A1.178600.565600.226400.0270*
H8B0.434000.803000.405900.0260*
H22A0.298 (3)0.5460 (19)0.4062 (18)0.057 (7)*
H30.732400.835200.086500.0230*
H50.889501.165900.177500.0230*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O21A0.0235 (7)0.0263 (7)0.0307 (8)0.0017 (5)0.0044 (6)0.0160 (6)
O21B0.0219 (7)0.0299 (7)0.0259 (7)0.0004 (5)0.0044 (6)0.0169 (6)
O22A0.0186 (7)0.0258 (7)0.0267 (7)0.0008 (5)0.0045 (6)0.0131 (6)
O22B0.0215 (7)0.0315 (7)0.0275 (7)0.0055 (5)0.0079 (6)0.0148 (6)
N1A0.0204 (8)0.0189 (7)0.0192 (8)0.0005 (6)0.0049 (6)0.0090 (7)
N1B0.0215 (8)0.0199 (8)0.0162 (8)0.0008 (6)0.0036 (6)0.0094 (7)
C2A0.0225 (9)0.0155 (8)0.0176 (9)0.0001 (7)0.0066 (8)0.0025 (7)
C2B0.0198 (9)0.0145 (8)0.0174 (9)0.0026 (7)0.0043 (7)0.0031 (7)
C3A0.0227 (9)0.0185 (9)0.0246 (10)0.0028 (7)0.0050 (8)0.0068 (8)
C3B0.0228 (9)0.0216 (9)0.0190 (9)0.0024 (7)0.0062 (8)0.0060 (8)
C4A0.0301 (10)0.0191 (9)0.0246 (10)0.0015 (8)0.0070 (8)0.0106 (8)
C4B0.0306 (10)0.0237 (9)0.0180 (9)0.0064 (8)0.0054 (8)0.0092 (8)
C5A0.0334 (11)0.0268 (10)0.0238 (10)0.0017 (8)0.0044 (9)0.0136 (9)
C5B0.0326 (11)0.0208 (9)0.0202 (10)0.0043 (8)0.0018 (8)0.0113 (8)
C6A0.0278 (10)0.0302 (10)0.0237 (10)0.0040 (8)0.0005 (8)0.0116 (9)
C6B0.0261 (10)0.0208 (9)0.0275 (11)0.0007 (8)0.0048 (8)0.0103 (8)
C7A0.0217 (10)0.0296 (10)0.0244 (10)0.0000 (8)0.0031 (8)0.0080 (9)
C7B0.0218 (10)0.0218 (9)0.0279 (11)0.0018 (7)0.0016 (8)0.0086 (8)
C8A0.0224 (9)0.0240 (9)0.0210 (10)0.0007 (8)0.0061 (8)0.0081 (8)
C8B0.0234 (9)0.0210 (9)0.0206 (10)0.0035 (7)0.0032 (8)0.0081 (8)
C9A0.0239 (9)0.0179 (9)0.0155 (9)0.0030 (7)0.0049 (7)0.0046 (7)
C9B0.0203 (9)0.0147 (8)0.0165 (9)0.0021 (7)0.0003 (7)0.0065 (7)
C10A0.0255 (10)0.0178 (9)0.0208 (10)0.0020 (7)0.0065 (8)0.0065 (8)
C10B0.0260 (10)0.0156 (8)0.0171 (9)0.0050 (7)0.0004 (8)0.0057 (7)
C21A0.0225 (9)0.0160 (8)0.0190 (9)0.0001 (7)0.0054 (8)0.0046 (8)
C21B0.0197 (9)0.0190 (9)0.0221 (10)0.0035 (7)0.0031 (8)0.0069 (8)
S10.0203 (2)0.0327 (3)0.0160 (2)0.0025 (2)0.0048 (2)0.0128 (2)
O110.0244 (7)0.0413 (8)0.0250 (7)0.0010 (6)0.0066 (6)0.0205 (6)
O120.0215 (7)0.0408 (8)0.0223 (7)0.0018 (6)0.0029 (5)0.0179 (6)
O130.0304 (7)0.0362 (8)0.0181 (7)0.0055 (6)0.0078 (6)0.0094 (6)
O210.0224 (7)0.0347 (7)0.0228 (7)0.0028 (6)0.0002 (6)0.0072 (6)
O220.0380 (8)0.0202 (7)0.0280 (7)0.0022 (6)0.0056 (6)0.0087 (6)
O410.0296 (7)0.0351 (8)0.0272 (7)0.0040 (6)0.0021 (6)0.0217 (6)
O420.0425 (8)0.0357 (8)0.0172 (7)0.0152 (6)0.0019 (6)0.0057 (6)
O610.0277 (7)0.0296 (7)0.0372 (8)0.0040 (6)0.0095 (6)0.0166 (6)
O620.0289 (7)0.0296 (7)0.0350 (8)0.0063 (6)0.0075 (6)0.0196 (6)
N20.0228 (8)0.0248 (8)0.0200 (8)0.0008 (6)0.0081 (7)0.0082 (7)
N40.0209 (8)0.0300 (9)0.0175 (8)0.0058 (7)0.0023 (6)0.0101 (7)
N60.0229 (9)0.0238 (8)0.0225 (8)0.0009 (7)0.0072 (7)0.0116 (7)
C10.0151 (8)0.0244 (9)0.0168 (9)0.0037 (7)0.0057 (7)0.0096 (8)
C20.0172 (9)0.0182 (8)0.0185 (9)0.0016 (7)0.0056 (7)0.0059 (7)
C30.0183 (9)0.0202 (9)0.0213 (9)0.0030 (7)0.0067 (7)0.0110 (8)
C40.0169 (9)0.0249 (9)0.0160 (9)0.0012 (7)0.0040 (7)0.0100 (8)
C50.0171 (9)0.0208 (9)0.0203 (10)0.0006 (7)0.0053 (7)0.0075 (8)
C60.0174 (9)0.0214 (9)0.0228 (10)0.0037 (7)0.0078 (8)0.0129 (8)
Geometric parameters (Å, º) top
S1—C11.8232 (18)C5A—C10A1.412 (3)
S1—O131.4442 (15)C5A—C6A1.363 (2)
S1—O111.4440 (15)C5B—C6B1.361 (2)
S1—O121.4367 (14)C5B—C10B1.410 (3)
O21A—C21A1.215 (2)C6A—C7A1.404 (3)
O21B—C21B1.239 (2)C6B—C7B1.413 (3)
O22A—C21A1.288 (2)C7A—C8A1.363 (3)
O22B—C21B1.265 (2)C7B—C8B1.368 (3)
O22A—H22A0.97 (2)C8A—C9A1.408 (2)
O21—N21.218 (2)C8B—C9B1.400 (2)
O22—N21.228 (2)C9A—C10A1.421 (3)
O41—N41.226 (2)C9B—C10B1.422 (2)
O42—N41.223 (2)C3A—H3A0.9500
O61—N61.218 (2)C3B—H3B0.9500
O62—N61.229 (2)C4A—H4A0.9500
N1A—C2A1.332 (2)C4B—H4B0.9500
N1A—C9A1.368 (2)C5A—H5A0.9500
N1B—C9B1.367 (2)C5B—H5B0.9500
N1B—C2B1.326 (2)C6A—H6A0.9500
N1A—H1A0.87 (2)C6B—H6B0.9500
N1B—H1B0.85 (2)C7A—H7A0.9500
N2—C21.480 (2)C7B—H7B0.9500
N4—C41.472 (2)C8A—H8A0.9500
N6—C61.480 (2)C8B—H8B0.9500
C2A—C3A1.396 (3)C1—C21.399 (3)
C2A—C21A1.509 (3)C1—C61.393 (3)
C2B—C21B1.513 (3)C2—C31.377 (2)
C2B—C3B1.396 (2)C3—C41.370 (3)
C3A—C4A1.368 (3)C4—C51.375 (3)
C3B—C4B1.366 (3)C5—C61.386 (2)
C4A—C10A1.407 (2)C3—H30.9500
C4B—C10B1.413 (2)C5—H50.9500
O12—S1—O13115.62 (8)C5B—C10B—C9B118.43 (15)
O12—S1—C1105.96 (8)C4B—C10B—C5B123.52 (16)
O13—S1—C1102.31 (8)O21A—C21A—C2A118.93 (15)
O11—S1—C1103.56 (8)O22A—C21A—C2A113.06 (15)
O11—S1—O12114.08 (9)O21A—C21A—O22A127.99 (17)
O11—S1—O13113.42 (8)O21B—C21B—C2B117.66 (15)
C21A—O22A—H22A113.0 (15)O22B—C21B—C2B114.26 (16)
C2A—N1A—C9A123.24 (16)O21B—C21B—O22B128.07 (17)
C2B—N1B—C9B124.03 (15)C2A—C3A—H3A120.00
C9A—N1A—H1A120.2 (16)C4A—C3A—H3A120.00
C2A—N1A—H1A116.5 (16)C2B—C3B—H3B120.00
C9B—N1B—H1B119.9 (17)C4B—C3B—H3B120.00
C2B—N1B—H1B116.0 (17)C10A—C4A—H4A120.00
O21—N2—C2118.58 (16)C3A—C4A—H4A120.00
O22—N2—C2116.42 (14)C10B—C4B—H4B120.00
O21—N2—O22124.89 (16)C3B—C4B—H4B120.00
O41—N4—C4117.43 (15)C6A—C5A—H5A120.00
O41—N4—O42124.80 (15)C10A—C5A—H5A120.00
O42—N4—C4117.77 (16)C6B—C5B—H5B120.00
O61—N6—C6118.03 (15)C10B—C5B—H5B120.00
O62—N6—C6116.65 (15)C5A—C6A—H6A120.00
O61—N6—O62125.23 (16)C7A—C6A—H6A120.00
C3A—C2A—C21A123.84 (15)C5B—C6B—H6B120.00
N1A—C2A—C21A116.27 (16)C7B—C6B—H6B120.00
N1A—C2A—C3A119.84 (16)C6A—C7A—H7A119.00
N1B—C2B—C3B119.65 (16)C8A—C7A—H7A119.00
C3B—C2B—C21B123.91 (15)C6B—C7B—H7B119.00
N1B—C2B—C21B116.44 (15)C8B—C7B—H7B119.00
C2A—C3A—C4A119.76 (16)C7A—C8A—H8A121.00
C2B—C3B—C4B119.51 (16)C9A—C8A—H8A121.00
C3A—C4A—C10A120.41 (17)C7B—C8B—H8B121.00
C3B—C4B—C10B120.86 (17)C9B—C8B—H8B121.00
C6A—C5A—C10A120.34 (18)S1—C1—C2123.06 (14)
C6B—C5B—C10B120.03 (17)S1—C1—C6121.54 (14)
C5A—C6A—C7A120.44 (17)C2—C1—C6114.77 (16)
C5B—C6B—C7B120.70 (17)N2—C2—C1121.68 (15)
C6A—C7A—C8A121.67 (16)N2—C2—C3115.28 (16)
C6B—C7B—C8B121.20 (16)C1—C2—C3123.04 (16)
C7A—C8A—C9A118.51 (17)C2—C3—C4118.32 (17)
C7B—C8B—C9B118.57 (17)N4—C4—C3118.03 (17)
C8A—C9A—C10A120.87 (16)N4—C4—C5119.17 (16)
N1A—C9A—C8A120.92 (16)C3—C4—C5122.80 (16)
N1A—C9A—C10A118.21 (15)C4—C5—C6116.46 (16)
N1B—C9B—C8B121.07 (16)N6—C6—C1120.05 (15)
N1B—C9B—C10B117.84 (15)N6—C6—C5115.32 (15)
C8B—C9B—C10B121.08 (16)C1—C6—C5124.54 (17)
C4A—C10A—C5A123.37 (17)C2—C3—H3121.00
C5A—C10A—C9A118.16 (16)C4—C3—H3121.00
C4A—C10A—C9A118.47 (16)C4—C5—H5122.00
C4B—C10B—C9B118.05 (16)C6—C5—H5122.00
O13—S1—C1—C6138.21 (15)C3A—C4A—C10A—C9A2.5 (3)
O12—S1—C1—C289.31 (16)C3B—C4B—C10B—C5B178.54 (18)
O11—S1—C1—C2150.32 (15)C3B—C4B—C10B—C9B0.4 (3)
O11—S1—C1—C620.10 (17)C6A—C5A—C10A—C4A178.72 (18)
O12—S1—C1—C6100.27 (15)C6A—C5A—C10A—C9A0.9 (3)
O13—S1—C1—C232.21 (16)C10A—C5A—C6A—C7A0.4 (3)
C9A—N1A—C2A—C21A175.27 (16)C6B—C5B—C10B—C9B0.2 (3)
C9A—N1A—C2A—C3A2.3 (3)C10B—C5B—C6B—C7B0.3 (3)
C2A—N1A—C9A—C10A0.5 (3)C6B—C5B—C10B—C4B178.74 (18)
C2A—N1A—C9A—C8A179.27 (17)C5A—C6A—C7A—C8A0.3 (3)
C9B—N1B—C2B—C3B2.1 (3)C5B—C6B—C7B—C8B0.7 (3)
C2B—N1B—C9B—C10B2.9 (3)C6A—C7A—C8A—C9A0.6 (3)
C9B—N1B—C2B—C21B177.93 (16)C6B—C7B—C8B—C9B0.9 (3)
C2B—N1B—C9B—C8B177.26 (17)C7A—C8A—C9A—C10A1.1 (3)
O21—N2—C2—C3134.74 (17)C7A—C8A—C9A—N1A178.59 (17)
O21—N2—C2—C144.5 (2)C7B—C8B—C9B—N1B179.04 (17)
O22—N2—C2—C1139.19 (17)C7B—C8B—C9B—C10B0.8 (3)
O22—N2—C2—C341.6 (2)N1A—C9A—C10A—C4A1.9 (3)
O41—N4—C4—C315.1 (2)C8A—C9A—C10A—C5A1.3 (3)
O42—N4—C4—C513.6 (2)N1A—C9A—C10A—C5A178.43 (16)
O41—N4—C4—C5165.55 (16)C8A—C9A—C10A—C4A178.37 (17)
O42—N4—C4—C3165.79 (16)N1B—C9B—C10B—C4B1.6 (3)
O61—N6—C6—C1122.44 (18)N1B—C9B—C10B—C5B179.39 (16)
O62—N6—C6—C161.0 (2)C8B—C9B—C10B—C4B178.57 (17)
O62—N6—C6—C5115.70 (17)C8B—C9B—C10B—C5B0.4 (3)
O61—N6—C6—C560.9 (2)S1—C1—C2—N211.3 (2)
N1A—C2A—C3A—C4A1.6 (3)S1—C1—C2—C3169.48 (14)
C21A—C2A—C3A—C4A175.71 (17)C6—C1—C2—N2177.64 (15)
C3A—C2A—C21A—O22A0.4 (2)C6—C1—C2—C31.5 (3)
N1A—C2A—C21A—O21A1.6 (2)S1—C1—C6—N615.7 (2)
N1A—C2A—C21A—O22A177.05 (15)S1—C1—C6—C5167.94 (14)
C3A—C2A—C21A—O21A178.99 (17)C2—C1—C6—N6173.10 (15)
N1B—C2B—C3B—C4B0.2 (3)C2—C1—C6—C53.2 (3)
C21B—C2B—C3B—C4B179.87 (17)N2—C2—C3—C4179.94 (15)
N1B—C2B—C21B—O21B6.2 (2)C1—C2—C3—C40.8 (3)
C3B—C2B—C21B—O22B6.6 (3)C2—C3—C4—N4178.82 (15)
C3B—C2B—C21B—O21B173.77 (17)C2—C3—C4—C51.8 (3)
N1B—C2B—C21B—O22B173.36 (16)N4—C4—C5—C6179.65 (15)
C2A—C3A—C4A—C10A0.8 (3)C3—C4—C5—C60.3 (3)
C2B—C3B—C4B—C10B1.3 (3)C4—C5—C6—N6174.09 (15)
C3A—C4A—C10A—C5A177.87 (18)C4—C5—C6—C12.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21A0.87 (2)2.31 (2)2.690 (2)106.3 (18)
N1A—H1A···O21B0.87 (2)1.94 (2)2.761 (2)155 (2)
N1B—H1B···O130.85 (2)2.23 (2)2.8643 (19)132 (2)
N1B—H1B···O21A0.85 (2)2.14 (3)2.746 (2)128 (2)
N1B—H1B···O21B0.85 (2)2.30 (3)2.683 (2)108 (2)
O22A—H22A···O22Bi0.97 (2)1.50 (2)2.4711 (19)179 (3)
C4B—H4B···O41ii0.952.373.240 (2)152
C5B—H5B···O12iii0.952.443.339 (2)158
C8A—H8A···O21B0.952.393.122 (2)134
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H8NO2+·C6H2N3O9S·C10H7NO2
Mr639.51
Crystal system, space groupTriclinic, P1
Temperature (K)130
a, b, c (Å)7.8872 (6), 12.4753 (10), 14.6617 (12)
α, β, γ (°)66.227 (1), 74.997 (2), 82.191 (2)
V3)1274.42 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.93, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
6761, 4446, 3779
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.00
No. of reflections4446
No. of parameters419
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.36

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21A0.87 (2)2.31 (2)2.690 (2)106.3 (18)
N1A—H1A···O21B0.87 (2)1.94 (2)2.761 (2)155 (2)
N1B—H1B···O130.85 (2)2.23 (2)2.8643 (19)132 (2)
N1B—H1B···O21A0.85 (2)2.14 (3)2.746 (2)128 (2)
N1B—H1B···O21B0.85 (2)2.30 (3)2.683 (2)108 (2)
O22A—H22A···O22Bi0.97 (2)1.50 (2)2.4711 (19)179 (3)
C4B—H4B···O41ii0.952.373.240 (2)152
C5B—H5B···O12iii0.952.443.339 (2)158
C8A—H8A···O21B0.952.393.122 (2)134
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

The authors acknowledge financial support from the School of Physical and Chemical Sciences, Queensland University of Technology, the School of Biomolecular and Physical Sciences, Griffith University, and the School of Chemistry, University of Melbourne.

References

First citationBruker (1999). SADABS (Version 2.03) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SMART. Version 5.55. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRussell, V. A. & Ward, M. D. (1997). J. Mater. Chem. 7, 1123–1133.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o5510–o5512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264–277.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2006). Acta Cryst. C62, o694–o698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2007). Unpublished data.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds