metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(E)-2-(3-hydr­­oxy-4-meth­oxy­phen­yl)ethen­yl]-1-methyl­quinolinium tetra­iodidozincate(II) methanol solvate1

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 27 November 2007; accepted 5 December 2007; online 6 December 2007)

In the title compound, (C19H18NO2)2[ZnI4]·CH3OH, each cation is nearly planar and exists in an E configuration, the dihedral angles between the quinolinium systems and the benzene rings being 1.78 (10) and 5.44 (10)° for the two cations. The [ZnI4]2− anion displays a very slightly distorted tetra­hedral geometry. There are intra­molecular O—H⋯O hydrogen bonds between the hydr­oxy and meth­oxy groups in each cation which generate S(5) ring motifs. In the crystal structure, cations are linked together by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, whereas the anions are linked to the cations through weak C—H⋯I inter­actions. The asymmetric unit also contains a methanol solvent mol­ecule which is linked to one of the cations by an O—H⋯O hydrogen bond and the anion through an O—H⋯I hydrogen bond. The crystal is further stabilized by C—H⋯π and ππ inter­actions [centroid–centroid distances 3.6054 (15) and 3.6057 (15) Å].

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Eng1. 34, 1555-1573.]). For related structures, see for example: Chantrapromma et al. (2006a[Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2006a). Acta Cryst. E62, o1802-o1804.],b[Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2006b). Acta Cryst. E62, o4004-o4006.]; 2007a[Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2007a). Acta Cryst. E63, o2020-o2022.],b[Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2007b). Anal. Sci. 23, x27-x28.],c[Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007c). Anal. Sci. 23, x81-x82.]); Fun et al. (2006[Fun, H.-K., Rodwatcharapiban, P., Jindawong, B. & Chantrapromma, S. (2006). Acta Cryst. E62, o2725-o2727.]); Glavcheva et al. (2004[Glavcheva, Z., Umezawa, H., Okada, S. & Nakanishi, H. (2004). Mat. Lett., 58, 2466-2471.]); Jindawong et al. (2005[Jindawong, B., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2005). Acta Cryst. E61, o3237-o3239.]). For background to non-linear optics, see for example: Oudar & Chemla (1977[Oudar, J.-L. & Chemla, D. S. (1977). J. Chem. Phys. 66, 2664-2668.]); Williams (1984[Williams, D. J. (1984). Ang. Chem. Int. Ed. Engl. 23, 690-703.]).

[Scheme 1]

Experimental

Crystal data
  • (C19H18NO2)2[ZnI4]·CH4O

  • Mr = 1189.72

  • Monoclinic, P 21 /c

  • a = 8.6449 (1) Å

  • b = 23.4312 (4) Å

  • c = 19.7763 (3) Å

  • β = 91.724 (1)°

  • V = 4004.08 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.74 mm−1

  • T = 100.0 (1) K

  • 0.43 × 0.28 × 0.13 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.295, Tmax = 0.646

  • 100181 measured reflections

  • 18959 independent reflections

  • 15305 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.10

  • 18959 reflections

  • 465 parameters

  • H-atom parameters constrained

  • Δρmax = 4.98 e Å−3

  • Δρmin = −1.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.82 2.15 2.611 (3) 116
O3—H1O3⋯O4 0.82 2.23 2.673 (3) 114
O3—H1O3⋯O5i 0.82 1.92 2.693 (3) 156
O5—H1O5⋯I1ii 0.82 2.82 3.6161 (17) 163
C2—H2A⋯O3iii 0.93 2.56 3.476 (3) 167
C18—H18B⋯O3iii 0.96 2.60 3.355 (3) 136
C27—H27A⋯I4iv 0.93 3.02 3.899 (3) 158
C19—H19BCg4 0.96 2.99 3.944 (3) 172
C38—H38BCg2 0.96 2.94 3.871 (3) 165
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z-1. Cg2 and Cg4 are the centroids of the C12–C17 and C31–C36 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 1998[Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

There is considerable interest in the synthesis of new materials with large second-order nonlinear properties because of their potential usage in a varity of applications such as in optical data storage, optical information processing and telecommunication. We have previously reported the structures of several quinolinium salts (Chantrapromma et al., 2006a,b, 2007a,b,c; Fun et al., 2006; Jindawong et al., 2005), which were synthesized to study their nonlinear optical (NLO) properties. At the molecular level, a generally popular approach towards NLO materials is to design and systhesize compounds with extended conjugated π systems with donor and acceptor groups because such compounds are likely to exhibit large values of molecular hyperpolarizability (β) and to possess polarizable electrons (as in a conjugated π system) spread over a large distance (Oudar & Chemla, 1977). Quinolinium derivatives are considered to be good conjugated π systems. Organic–inorganic hybrid complexes also present a promising new type of materials for various applications. Thus, we extended our synthesis to this class of materials. This single-crystal X-ray structural study of the title compound was carried out in order to obtain detailed information about its crystal structure. However, the title compound crystallized in the centrosymmetric monoclinic space group P21/c and therefore does not exhibit nonlinear optical properties (Williams, 1984).

The asymmetric unit of the title compound consists of two C19H18NO2+ cations, a ZnI42- anion and a methanol solvate molecule (Fig. 1). Each cation is nearly planar as indicated by the dihedral angle between the quinolinium planes and the benzene rings in each cation being 1.78 (10) and 5.44 (10)°, respectively. The H atoms attached to the alkene C atoms C10 and C11 and C29 and C30 are mutually trans; torsion angles C9—C10—C11—C12 = 179.1 (2)° and C28—C29—C30—C31 = -179.3 (2)°. Both the hydroxy and methoxy groups are reasonably coplanar with the benzene rings to which they are attached with torsion angles C19—O2—C15—C16 = -0.4 (4)° and C38—O4—C34—C35 = 1.2 (4)°. Both cations form intramolecular O—H···O hydrogen bonds between the hydroxy and methoxy groups which generate S(5) ring motifs (Bernstein et al., 1995). The two cations are approximately parallel to one another with dihedral angles 7.55 (7)° between the two quinolinium planes (C1–C9/N1 and C20–C28/N2) and 12.82 (12)° between the two benzene rings (C12–C17 and C31–C36). The ZnI42- anion shows only small distortions from a regular tetrahedron as was found previously (Glavcheva et al., 2004). Zn—I bond distances are in the range 2.6035 (3)–2.6409 (3) Å, and I—Zn—I bond angles lie in the range 106.583 (11)–114.187 (11)°. Bond distances and angles of the cations show normal values (Allen et al., 1987) and are comparable with closely related structures (Chantrapromma et al., 2006a,b, 2007a,b,c; Fun et al., 2006; Jindawong et al., 2005).

In the crystal packing, the cations are linked together through O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). The cations are also linked to the ZnI42- anions through weak C27—H27A···I4 interactions (symmetry code: -1 + x, y, -1 + z). The methanol molecule links with the cation by an O3—H1O3···O5 hydrogen bond (symmetry code: 1 - x, -1/2 + y, 1/2 - z) and with the ZnI42- anion by an O5—H1O5···I1 hydrogen bond (symmetry code: 1 - x, 1 - y, 1 - z). The cations are arranged in an antiparallel manner and stacked along the a axis in such a way that the centroid–centroid distance between the C1–C6 (Cg1) and C12–C17 (Cg2) rings is 3.6054 (15)Å (symmetry code: 1 - x, 1 - y, 1 - z) and that between the C20–C25 (Cg3) and C31–C36 (Cg4) rings is 3.6057 (15)Å (symmetry code: 1 - x, 1 - y, -z), indicating ππ interactions. The crystal is further stabilized by C—H···π interactions (Table 1); Cg2 and Cg4 are the centroids of the C12–C17 and C31–C36 benzene rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see for example: Chantrapromma et al. (2006a,b; 2007a,b,c); Fun et al. (2006); Glavcheva et al. (2004); Jindawong et al. (2005). For background to non-linear optics, see for example: Oudar & Chemla (1977); Williams (1984). Cg2 and Cg4 are

the centroids of the C12–C17 and C31–C36 benzene rings, respectively.

Experimental top

The title compound was synthesized by mixing a solution of 2-[(E)-2-(3-Hydroxy-4-methoxyphenyl)ethynyl]-1-methylquinolinium iodide (Chantrapromma et al., 2006a) (0.20 g, 0.48 mmol) in hot methanol (50 ml) and a solution of ZnI2 (0.19 g, 0.48 mmol) in hot methanol (30 ml). The mixture was stirred for half an hour and then left at room-temperature. The title compound formed as a red solid after 2 days. Red plates suitable for X-ray diffraction analysis were obtained by recrystallization from a methanol/ethanol (1:2 v/v) by slow evaporation of the solvents at ambient temperature after several days, M.p. 493–494 K.

Refinement top

All H atoms were placed in calculated positions with an O—H distance of 0.82 Å and C—H distances in the range 0.93–0.97 Å. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for hydroxyl and methyl H atoms, and 1.2Ueq(C) for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.76 Å from I4 and the deepest hole is located at 0.50 Å from I4.

Structure description top

There is considerable interest in the synthesis of new materials with large second-order nonlinear properties because of their potential usage in a varity of applications such as in optical data storage, optical information processing and telecommunication. We have previously reported the structures of several quinolinium salts (Chantrapromma et al., 2006a,b, 2007a,b,c; Fun et al., 2006; Jindawong et al., 2005), which were synthesized to study their nonlinear optical (NLO) properties. At the molecular level, a generally popular approach towards NLO materials is to design and systhesize compounds with extended conjugated π systems with donor and acceptor groups because such compounds are likely to exhibit large values of molecular hyperpolarizability (β) and to possess polarizable electrons (as in a conjugated π system) spread over a large distance (Oudar & Chemla, 1977). Quinolinium derivatives are considered to be good conjugated π systems. Organic–inorganic hybrid complexes also present a promising new type of materials for various applications. Thus, we extended our synthesis to this class of materials. This single-crystal X-ray structural study of the title compound was carried out in order to obtain detailed information about its crystal structure. However, the title compound crystallized in the centrosymmetric monoclinic space group P21/c and therefore does not exhibit nonlinear optical properties (Williams, 1984).

The asymmetric unit of the title compound consists of two C19H18NO2+ cations, a ZnI42- anion and a methanol solvate molecule (Fig. 1). Each cation is nearly planar as indicated by the dihedral angle between the quinolinium planes and the benzene rings in each cation being 1.78 (10) and 5.44 (10)°, respectively. The H atoms attached to the alkene C atoms C10 and C11 and C29 and C30 are mutually trans; torsion angles C9—C10—C11—C12 = 179.1 (2)° and C28—C29—C30—C31 = -179.3 (2)°. Both the hydroxy and methoxy groups are reasonably coplanar with the benzene rings to which they are attached with torsion angles C19—O2—C15—C16 = -0.4 (4)° and C38—O4—C34—C35 = 1.2 (4)°. Both cations form intramolecular O—H···O hydrogen bonds between the hydroxy and methoxy groups which generate S(5) ring motifs (Bernstein et al., 1995). The two cations are approximately parallel to one another with dihedral angles 7.55 (7)° between the two quinolinium planes (C1–C9/N1 and C20–C28/N2) and 12.82 (12)° between the two benzene rings (C12–C17 and C31–C36). The ZnI42- anion shows only small distortions from a regular tetrahedron as was found previously (Glavcheva et al., 2004). Zn—I bond distances are in the range 2.6035 (3)–2.6409 (3) Å, and I—Zn—I bond angles lie in the range 106.583 (11)–114.187 (11)°. Bond distances and angles of the cations show normal values (Allen et al., 1987) and are comparable with closely related structures (Chantrapromma et al., 2006a,b, 2007a,b,c; Fun et al., 2006; Jindawong et al., 2005).

In the crystal packing, the cations are linked together through O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). The cations are also linked to the ZnI42- anions through weak C27—H27A···I4 interactions (symmetry code: -1 + x, y, -1 + z). The methanol molecule links with the cation by an O3—H1O3···O5 hydrogen bond (symmetry code: 1 - x, -1/2 + y, 1/2 - z) and with the ZnI42- anion by an O5—H1O5···I1 hydrogen bond (symmetry code: 1 - x, 1 - y, 1 - z). The cations are arranged in an antiparallel manner and stacked along the a axis in such a way that the centroid–centroid distance between the C1–C6 (Cg1) and C12–C17 (Cg2) rings is 3.6054 (15)Å (symmetry code: 1 - x, 1 - y, 1 - z) and that between the C20–C25 (Cg3) and C31–C36 (Cg4) rings is 3.6057 (15)Å (symmetry code: 1 - x, 1 - y, -z), indicating ππ interactions. The crystal is further stabilized by C—H···π interactions (Table 1); Cg2 and Cg4 are the centroids of the C12–C17 and C31–C36 benzene rings, respectively.

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see for example: Chantrapromma et al. (2006a,b; 2007a,b,c); Fun et al. (2006); Glavcheva et al. (2004); Jindawong et al. (2005). For background to non-linear optics, see for example: Oudar & Chemla (1977); Williams (1984). Cg2 and Cg4 are

the centroids of the C12–C17 and C31–C36 benzene rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed lines indicate O—H···O hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines.
Bis[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) methanol solvate top
Crystal data top
(C19H18NO2)2[ZnI4]·CH4OF(000) = 2280
Mr = 1189.72Dx = 1.974 Mg m3
Monoclinic, P21/cMelting point = 493–494 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.6449 (1) ÅCell parameters from 18959 reflections
b = 23.4312 (4) Åθ = 1.4–36.0°
c = 19.7763 (3) ŵ = 3.74 mm1
β = 91.724 (1)°T = 100 K
V = 4004.08 (10) Å3Plate, orange
Z = 40.43 × 0.28 × 0.13 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
18959 independent reflections
Radiation source: fine-focus sealed tube15305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.33 pixels mm-1θmax = 36.0°, θmin = 1.4°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 3838
Tmin = 0.295, Tmax = 0.646l = 3232
100181 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0361P)2 + 5.8575P]
where P = (Fo2 + 2Fc2)/3
18959 reflections(Δ/σ)max = 0.003
465 parametersΔρmax = 4.98 e Å3
0 restraintsΔρmin = 1.46 e Å3
Crystal data top
(C19H18NO2)2[ZnI4]·CH4OV = 4004.08 (10) Å3
Mr = 1189.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6449 (1) ŵ = 3.74 mm1
b = 23.4312 (4) ÅT = 100 K
c = 19.7763 (3) Å0.43 × 0.28 × 0.13 mm
β = 91.724 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
18959 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
15305 reflections with I > 2σ(I)
Tmin = 0.295, Tmax = 0.646Rint = 0.033
100181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.10Δρmax = 4.98 e Å3
18959 reflectionsΔρmin = 1.46 e Å3
465 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00933 (3)0.428527 (12)0.759635 (14)0.01632 (5)
I10.961758 (19)0.360714 (7)0.654410 (8)0.01980 (4)
I20.763779 (18)0.492846 (7)0.768472 (8)0.02042 (4)
I31.242365 (18)0.496650 (7)0.741500 (8)0.01896 (3)
I41.06173 (2)0.361619 (7)0.865320 (8)0.02277 (4)
O10.4535 (3)0.23008 (8)0.41531 (10)0.0276 (4)
H1O10.38890.21410.39080.041*
O20.2948 (2)0.26419 (8)0.30840 (10)0.0228 (4)
N10.7449 (2)0.57253 (9)0.48296 (10)0.0157 (3)
C10.8311 (3)0.61157 (10)0.52232 (11)0.0157 (4)
C20.8240 (3)0.67052 (11)0.50971 (12)0.0195 (4)
H2A0.76000.68480.47510.023*
C30.9135 (3)0.70685 (12)0.54942 (13)0.0217 (5)
H3A0.90800.74590.54140.026*
C41.0122 (3)0.68662 (12)0.60141 (13)0.0226 (5)
H4A1.07360.71190.62660.027*
C51.0179 (3)0.62947 (12)0.61501 (13)0.0218 (5)
H5A1.08240.61600.64990.026*
C60.9259 (3)0.59056 (11)0.57618 (12)0.0179 (4)
C70.9253 (3)0.53154 (11)0.59081 (12)0.0202 (4)
H7A0.98540.51740.62680.024*
C80.8368 (3)0.49546 (11)0.55219 (13)0.0204 (4)
H8A0.83540.45680.56260.024*
C90.7464 (3)0.51611 (10)0.49612 (12)0.0166 (4)
C100.6567 (3)0.47728 (11)0.45303 (13)0.0209 (4)
H10A0.59750.49320.41780.025*
C110.6525 (3)0.42026 (11)0.46004 (12)0.0182 (4)
H11A0.71280.40420.49480.022*
C120.5606 (3)0.38162 (10)0.41721 (12)0.0166 (4)
C130.5545 (3)0.32353 (10)0.43517 (12)0.0184 (4)
H13A0.61170.31030.47250.022*
C140.4634 (3)0.28614 (10)0.39728 (12)0.0180 (4)
C150.3786 (3)0.30571 (10)0.34013 (11)0.0165 (4)
C160.3839 (3)0.36292 (10)0.32192 (12)0.0175 (4)
H16A0.32720.37600.28430.021*
C170.4750 (3)0.40049 (11)0.36050 (12)0.0186 (4)
H17A0.47890.43880.34830.022*
C180.6509 (3)0.59471 (11)0.42510 (13)0.0217 (5)
H18A0.66550.57100.38630.033*
H18B0.68250.63300.41520.033*
H18C0.54360.59460.43630.033*
C190.2009 (3)0.27958 (12)0.25072 (13)0.0235 (5)
H19A0.14870.24630.23320.035*
H19B0.26490.29540.21660.035*
H19C0.12580.30740.26360.035*
O30.4542 (2)0.23128 (8)0.09856 (10)0.0247 (4)
H1O30.50090.21210.12720.037*
O40.6512 (2)0.26270 (8)0.19848 (10)0.0218 (4)
N20.2764 (2)0.58183 (9)0.01849 (10)0.0164 (3)
C200.1990 (3)0.62274 (10)0.02175 (11)0.0162 (4)
C210.2255 (3)0.68161 (10)0.01304 (12)0.0183 (4)
H21A0.29840.69450.01890.022*
C220.1422 (3)0.71975 (11)0.05247 (13)0.0211 (4)
H22A0.16110.75860.04730.025*
C230.0292 (3)0.70159 (12)0.10046 (14)0.0228 (5)
H23A0.02930.72820.12510.027*
C240.0065 (3)0.64442 (11)0.11052 (13)0.0209 (4)
H24A0.06640.63220.14290.025*
C250.0921 (3)0.60365 (11)0.07241 (12)0.0175 (4)
C260.0762 (3)0.54494 (11)0.08489 (12)0.0201 (4)
H26A0.00720.53200.11850.024*
C270.1627 (3)0.50671 (11)0.04747 (13)0.0201 (4)
H27A0.15560.46800.05740.024*
C280.2627 (3)0.52520 (10)0.00606 (11)0.0159 (4)
C290.3499 (3)0.48449 (10)0.04726 (12)0.0180 (4)
H29A0.42360.49880.07800.022*
C300.3313 (3)0.42729 (10)0.04406 (12)0.0166 (4)
H30A0.25830.41300.01290.020*
C310.4171 (3)0.38655 (10)0.08570 (11)0.0158 (4)
C320.3966 (3)0.32777 (10)0.07350 (12)0.0165 (4)
H32A0.32850.31590.03900.020*
C330.4759 (3)0.28738 (10)0.11199 (12)0.0168 (4)
C340.5794 (3)0.30554 (10)0.16424 (11)0.0156 (4)
C350.5998 (3)0.36337 (10)0.17718 (12)0.0167 (4)
H35A0.66700.37520.21200.020*
C360.5195 (3)0.40361 (10)0.13794 (12)0.0172 (4)
H36A0.53420.44230.14660.021*
C370.3706 (3)0.60281 (11)0.07710 (12)0.0208 (4)
H37A0.36600.57580.11350.031*
H37B0.33080.63890.09160.031*
H37C0.47600.60740.06420.031*
C380.7552 (3)0.27751 (12)0.25358 (13)0.0231 (5)
H38A0.79610.24330.27410.035*
H38B0.70050.29900.28660.035*
H38C0.83850.30010.23700.035*
O50.4508 (2)0.64459 (8)0.32101 (11)0.0268 (4)
H1O50.35670.64040.31780.040*
C390.5133 (4)0.64612 (14)0.25496 (16)0.0316 (6)
H39A0.46090.67490.22830.047*
H39B0.49930.60960.23360.047*
H39C0.62170.65490.25850.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01907 (12)0.01326 (12)0.01669 (11)0.00056 (9)0.00160 (9)0.00004 (9)
I10.02518 (7)0.01483 (7)0.01937 (7)0.00102 (5)0.00049 (6)0.00314 (5)
I20.01964 (7)0.02145 (8)0.02027 (7)0.00436 (5)0.00210 (5)0.00072 (5)
I30.01906 (6)0.01890 (7)0.01889 (6)0.00450 (5)0.00014 (5)0.00183 (5)
I40.03423 (9)0.01546 (7)0.01869 (7)0.00205 (6)0.00207 (6)0.00244 (5)
O10.0404 (11)0.0138 (8)0.0280 (10)0.0005 (7)0.0109 (9)0.0017 (7)
O20.0283 (9)0.0184 (8)0.0214 (8)0.0023 (7)0.0062 (7)0.0020 (7)
N10.0155 (8)0.0180 (9)0.0135 (8)0.0002 (6)0.0010 (6)0.0006 (6)
C10.0145 (8)0.0188 (10)0.0139 (8)0.0014 (7)0.0013 (7)0.0015 (7)
C20.0218 (10)0.0202 (11)0.0167 (9)0.0032 (8)0.0000 (8)0.0009 (8)
C30.0237 (11)0.0216 (12)0.0199 (10)0.0044 (9)0.0016 (9)0.0011 (9)
C40.0203 (10)0.0275 (13)0.0200 (10)0.0048 (9)0.0009 (9)0.0049 (9)
C50.0196 (10)0.0271 (13)0.0185 (10)0.0020 (9)0.0020 (8)0.0044 (9)
C60.0155 (9)0.0232 (11)0.0150 (9)0.0008 (8)0.0000 (7)0.0003 (8)
C70.0200 (10)0.0236 (12)0.0168 (10)0.0017 (8)0.0017 (8)0.0001 (8)
C80.0233 (10)0.0197 (11)0.0179 (10)0.0000 (8)0.0020 (8)0.0028 (8)
C90.0171 (9)0.0171 (10)0.0157 (9)0.0008 (7)0.0000 (7)0.0002 (7)
C100.0267 (11)0.0168 (11)0.0188 (10)0.0022 (8)0.0056 (9)0.0016 (8)
C110.0174 (9)0.0193 (11)0.0179 (9)0.0008 (8)0.0017 (8)0.0005 (8)
C120.0165 (9)0.0172 (10)0.0160 (9)0.0003 (7)0.0000 (8)0.0002 (7)
C130.0203 (10)0.0180 (10)0.0168 (9)0.0011 (8)0.0023 (8)0.0018 (8)
C140.0224 (10)0.0135 (10)0.0179 (9)0.0017 (8)0.0018 (8)0.0011 (7)
C150.0183 (9)0.0167 (10)0.0145 (9)0.0004 (7)0.0002 (7)0.0000 (7)
C160.0185 (9)0.0176 (10)0.0163 (9)0.0004 (8)0.0016 (8)0.0028 (8)
C170.0192 (10)0.0165 (10)0.0200 (10)0.0015 (8)0.0004 (8)0.0020 (8)
C180.0248 (11)0.0194 (11)0.0204 (10)0.0004 (9)0.0067 (9)0.0002 (8)
C190.0261 (11)0.0274 (13)0.0168 (10)0.0027 (10)0.0036 (9)0.0019 (9)
O30.0359 (10)0.0135 (8)0.0237 (9)0.0023 (7)0.0147 (8)0.0008 (6)
O40.0239 (8)0.0195 (8)0.0214 (8)0.0006 (7)0.0082 (7)0.0012 (6)
N20.0189 (8)0.0157 (9)0.0145 (8)0.0002 (7)0.0006 (7)0.0003 (6)
C200.0172 (9)0.0179 (10)0.0134 (8)0.0002 (7)0.0020 (7)0.0016 (7)
C210.0207 (10)0.0152 (10)0.0191 (10)0.0002 (8)0.0029 (8)0.0010 (8)
C220.0254 (11)0.0169 (11)0.0210 (10)0.0035 (8)0.0033 (9)0.0020 (8)
C230.0219 (11)0.0233 (12)0.0232 (11)0.0041 (9)0.0004 (9)0.0047 (9)
C240.0199 (10)0.0239 (12)0.0188 (10)0.0014 (8)0.0002 (8)0.0026 (9)
C250.0171 (9)0.0200 (11)0.0155 (9)0.0012 (8)0.0011 (8)0.0018 (8)
C260.0209 (10)0.0219 (11)0.0172 (10)0.0009 (8)0.0027 (8)0.0005 (8)
C270.0237 (10)0.0174 (11)0.0189 (10)0.0015 (8)0.0021 (8)0.0017 (8)
C280.0190 (9)0.0142 (10)0.0147 (9)0.0015 (7)0.0012 (8)0.0009 (7)
C290.0205 (10)0.0172 (10)0.0163 (9)0.0003 (8)0.0016 (8)0.0004 (8)
C300.0181 (9)0.0149 (10)0.0167 (9)0.0010 (7)0.0005 (8)0.0004 (7)
C310.0163 (9)0.0160 (10)0.0151 (9)0.0004 (7)0.0015 (7)0.0013 (7)
C320.0161 (9)0.0170 (10)0.0162 (9)0.0011 (7)0.0030 (7)0.0005 (7)
C330.0196 (9)0.0143 (9)0.0163 (9)0.0015 (7)0.0031 (8)0.0010 (7)
C340.0167 (9)0.0151 (10)0.0150 (9)0.0004 (7)0.0016 (7)0.0003 (7)
C350.0165 (9)0.0185 (10)0.0151 (9)0.0014 (7)0.0019 (7)0.0023 (7)
C360.0185 (9)0.0146 (10)0.0185 (9)0.0003 (7)0.0001 (8)0.0024 (8)
C370.0279 (11)0.0175 (11)0.0168 (10)0.0024 (9)0.0049 (9)0.0008 (8)
C380.0210 (10)0.0282 (13)0.0196 (10)0.0005 (9)0.0058 (9)0.0009 (9)
O50.0260 (9)0.0240 (10)0.0300 (10)0.0015 (7)0.0094 (8)0.0014 (8)
C390.0382 (16)0.0235 (14)0.0330 (15)0.0020 (11)0.0005 (13)0.0007 (11)
Geometric parameters (Å, º) top
Zn1—I32.6035 (3)O3—H1O30.8200
Zn1—I22.6135 (3)O4—C341.351 (3)
Zn1—I12.6406 (3)O4—C381.434 (3)
Zn1—I42.6409 (3)N2—C281.354 (3)
O1—C141.364 (3)N2—C201.403 (3)
O1—H1O10.8200N2—C371.480 (3)
O2—C151.356 (3)C20—C211.408 (3)
O2—C191.426 (3)C20—C251.415 (3)
N1—C91.347 (3)C21—C221.375 (3)
N1—C11.401 (3)C21—H21A0.9300
N1—C181.478 (3)C22—C231.407 (4)
C1—C21.405 (3)C22—H22A0.9300
C1—C61.413 (3)C23—C241.368 (4)
C2—C31.380 (3)C23—H23A0.9300
C2—H2A0.9300C24—C251.412 (3)
C3—C41.399 (4)C24—H24A0.9300
C3—H3A0.9300C25—C261.404 (4)
C4—C51.366 (4)C26—C271.370 (3)
C4—H4A0.9300C26—H26A0.9300
C5—C61.420 (3)C27—C281.415 (3)
C5—H5A0.9300C27—H27A0.9300
C6—C71.413 (4)C28—C291.450 (3)
C7—C81.359 (4)C29—C301.351 (3)
C7—H7A0.9300C29—H29A0.9300
C8—C91.422 (3)C30—C311.450 (3)
C8—H8A0.9300C30—H30A0.9300
C9—C101.455 (3)C31—C361.398 (3)
C10—C111.344 (3)C31—C321.409 (3)
C10—H10A0.9300C32—C331.384 (3)
C11—C121.459 (3)C32—H32A0.9300
C11—H11A0.9300C33—C341.412 (3)
C12—C171.397 (3)C34—C351.389 (3)
C12—C131.408 (3)C35—C361.393 (3)
C13—C141.383 (3)C35—H35A0.9300
C13—H13A0.9300C36—H36A0.9300
C14—C151.405 (3)C37—H37A0.9600
C15—C161.389 (3)C37—H37B0.9600
C16—C171.393 (3)C37—H37C0.9600
C16—H16A0.9300C38—H38A0.9600
C17—H17A0.9300C38—H38B0.9600
C18—H18A0.9600C38—H38C0.9600
C18—H18B0.9600O5—C391.429 (4)
C18—H18C0.9600O5—H1O50.8200
C19—H19A0.9600C39—H39A0.9600
C19—H19B0.9600C39—H39B0.9600
C19—H19C0.9600C39—H39C0.9600
O3—C331.353 (3)
I3—Zn1—I2106.804 (12)C34—O4—C38118.0 (2)
I3—Zn1—I1111.295 (11)C28—N2—C20122.0 (2)
I2—Zn1—I1106.985 (11)C28—N2—C37120.7 (2)
I3—Zn1—I4110.977 (11)C20—N2—C37117.3 (2)
I2—Zn1—I4114.187 (11)N2—C20—C21121.8 (2)
I1—Zn1—I4106.583 (11)N2—C20—C25118.4 (2)
C14—O1—H1O1109.5C21—C20—C25119.8 (2)
C15—O2—C19118.2 (2)C22—C21—C20119.1 (2)
C9—N1—C1122.09 (19)C22—C21—H21A120.4
C9—N1—C18119.8 (2)C20—C21—H21A120.4
C1—N1—C18118.1 (2)C21—C22—C23121.8 (2)
N1—C1—C2121.6 (2)C21—C22—H22A119.1
N1—C1—C6118.6 (2)C23—C22—H22A119.1
C2—C1—C6119.8 (2)C24—C23—C22119.2 (2)
C3—C2—C1119.0 (2)C24—C23—H23A120.4
C3—C2—H2A120.5C22—C23—H23A120.4
C1—C2—H2A120.5C23—C24—C25120.9 (2)
C2—C3—C4121.9 (3)C23—C24—H24A119.5
C2—C3—H3A119.0C25—C24—H24A119.5
C4—C3—H3A119.0C26—C25—C24121.5 (2)
C5—C4—C3119.6 (2)C26—C25—C20119.5 (2)
C5—C4—H4A120.2C24—C25—C20119.0 (2)
C3—C4—H4A120.2C27—C26—C25119.8 (2)
C4—C5—C6120.4 (2)C27—C26—H26A120.1
C4—C5—H5A119.8C25—C26—H26A120.1
C6—C5—H5A119.8C26—C27—C28121.0 (2)
C1—C6—C7119.3 (2)C26—C27—H27A119.5
C1—C6—C5119.1 (2)C28—C27—H27A119.5
C7—C6—C5121.5 (2)N2—C28—C27118.9 (2)
C8—C7—C6119.9 (2)N2—C28—C29120.1 (2)
C8—C7—H7A120.0C27—C28—C29121.0 (2)
C6—C7—H7A120.0C30—C29—C28124.5 (2)
C7—C8—C9120.9 (2)C30—C29—H29A117.7
C7—C8—H8A119.6C28—C29—H29A117.7
C9—C8—H8A119.6C29—C30—C31124.6 (2)
N1—C9—C8119.1 (2)C29—C30—H30A117.7
N1—C9—C10119.9 (2)C31—C30—H30A117.7
C8—C9—C10121.0 (2)C36—C31—C32118.7 (2)
C11—C10—C9125.2 (2)C36—C31—C30122.2 (2)
C11—C10—H10A117.4C32—C31—C30119.1 (2)
C9—C10—H10A117.4C33—C32—C31121.1 (2)
C10—C11—C12125.0 (2)C33—C32—H32A119.4
C10—C11—H11A117.5C31—C32—H32A119.4
C12—C11—H11A117.5O3—C33—C32119.5 (2)
C17—C12—C13119.0 (2)O3—C33—C34121.2 (2)
C17—C12—C11122.4 (2)C32—C33—C34119.3 (2)
C13—C12—C11118.5 (2)O4—C34—C35125.3 (2)
C14—C13—C12120.0 (2)O4—C34—C33114.5 (2)
C14—C13—H13A120.0C35—C34—C33120.2 (2)
C12—C13—H13A120.0C34—C35—C36119.9 (2)
O1—C14—C13120.5 (2)C34—C35—H35A120.0
O1—C14—C15119.3 (2)C36—C35—H35A120.0
C13—C14—C15120.2 (2)C35—C36—C31120.8 (2)
O2—C15—C16126.4 (2)C35—C36—H36A119.6
O2—C15—C14113.4 (2)C31—C36—H36A119.6
C16—C15—C14120.2 (2)N2—C37—H37A109.5
C15—C16—C17119.4 (2)N2—C37—H37B109.5
C15—C16—H16A120.3H37A—C37—H37B109.5
C17—C16—H16A120.3N2—C37—H37C109.5
C16—C17—C12121.1 (2)H37A—C37—H37C109.5
C16—C17—H17A119.4H37B—C37—H37C109.5
C12—C17—H17A119.4O4—C38—H38A109.5
N1—C18—H18A109.5O4—C38—H38B109.5
N1—C18—H18B109.5H38A—C38—H38B109.5
H18A—C18—H18B109.5O4—C38—H38C109.5
N1—C18—H18C109.5H38A—C38—H38C109.5
H18A—C18—H18C109.5H38B—C38—H38C109.5
H18B—C18—H18C109.5C39—O5—H1O5109.5
O2—C19—H19A109.5O5—C39—H39A109.5
O2—C19—H19B109.5O5—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
O2—C19—H19C109.5O5—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
C33—O3—H1O3109.5
C9—N1—C1—C2177.6 (2)C28—N2—C20—C21173.4 (2)
C18—N1—C1—C22.9 (3)C37—N2—C20—C218.6 (3)
C9—N1—C1—C62.0 (3)C28—N2—C20—C256.4 (3)
C18—N1—C1—C6177.6 (2)C37—N2—C20—C25171.7 (2)
N1—C1—C2—C3178.9 (2)N2—C20—C21—C22177.8 (2)
C6—C1—C2—C31.6 (4)C25—C20—C21—C222.5 (4)
C1—C2—C3—C40.7 (4)C20—C21—C22—C231.1 (4)
C2—C3—C4—C51.9 (4)C21—C22—C23—C243.1 (4)
C3—C4—C5—C60.8 (4)C22—C23—C24—C251.5 (4)
N1—C1—C6—C73.1 (3)C23—C24—C25—C26176.3 (2)
C2—C1—C6—C7176.4 (2)C23—C24—C25—C202.1 (4)
N1—C1—C6—C5177.9 (2)N2—C20—C25—C265.4 (3)
C2—C1—C6—C52.6 (3)C21—C20—C25—C26174.4 (2)
C4—C5—C6—C11.4 (4)N2—C20—C25—C24176.2 (2)
C4—C5—C6—C7177.6 (2)C21—C20—C25—C244.0 (3)
C1—C6—C7—C81.5 (4)C24—C25—C26—C27179.1 (2)
C5—C6—C7—C8179.4 (2)C20—C25—C26—C270.8 (4)
C6—C7—C8—C91.2 (4)C25—C26—C27—C283.2 (4)
C1—N1—C9—C80.8 (3)C20—N2—C28—C272.5 (3)
C18—N1—C9—C8179.7 (2)C37—N2—C28—C27175.4 (2)
C1—N1—C9—C10179.0 (2)C20—N2—C28—C29177.5 (2)
C18—N1—C9—C100.5 (3)C37—N2—C28—C294.6 (3)
C7—C8—C9—N12.4 (4)C26—C27—C28—N22.4 (4)
C7—C8—C9—C10177.4 (2)C26—C27—C28—C29177.7 (2)
N1—C9—C10—C11178.1 (3)N2—C28—C29—C30172.1 (2)
C8—C9—C10—C111.7 (4)C27—C28—C29—C307.9 (4)
C9—C10—C11—C12179.1 (2)C28—C29—C30—C31179.3 (2)
C10—C11—C12—C174.9 (4)C29—C30—C31—C365.7 (4)
C10—C11—C12—C13173.1 (3)C29—C30—C31—C32174.6 (2)
C17—C12—C13—C140.7 (4)C36—C31—C32—C330.2 (4)
C11—C12—C13—C14177.4 (2)C30—C31—C32—C33180.0 (2)
C12—C13—C14—O1178.3 (2)C31—C32—C33—O3179.5 (2)
C12—C13—C14—C151.0 (4)C31—C32—C33—C340.2 (4)
C19—O2—C15—C160.4 (4)C38—O4—C34—C351.2 (4)
C19—O2—C15—C14178.4 (2)C38—O4—C34—C33178.3 (2)
O1—C14—C15—O20.5 (3)O3—C33—C34—O40.4 (3)
C13—C14—C15—O2179.8 (2)C32—C33—C34—O4179.7 (2)
O1—C14—C15—C16178.3 (2)O3—C33—C34—C35180.0 (2)
C13—C14—C15—C161.0 (4)C32—C33—C34—C350.7 (4)
O2—C15—C16—C17179.2 (2)O4—C34—C35—C36179.6 (2)
C14—C15—C16—C170.5 (4)C33—C34—C35—C360.9 (4)
C15—C16—C17—C120.2 (4)C34—C35—C36—C310.5 (4)
C13—C12—C17—C160.2 (4)C32—C31—C36—C350.0 (4)
C11—C12—C17—C16177.7 (2)C30—C31—C36—C35179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.822.152.611 (3)116
O3—H1O3···O40.822.232.673 (3)114
O3—H1O3···O5i0.821.922.693 (3)156
O5—H1O5···I1ii0.822.823.6161 (17)163
C2—H2A···O3iii0.932.563.476 (3)167
C18—H18B···O3iii0.962.603.355 (3)136
C27—H27A···I4iv0.933.023.899 (3)158
C19—H19B···Cg40.962.993.944 (3)172
C38—H38B···Cg20.962.943.871 (3)165
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z1.

Experimental details

Crystal data
Chemical formula(C19H18NO2)2[ZnI4]·CH4O
Mr1189.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.6449 (1), 23.4312 (4), 19.7763 (3)
β (°) 91.724 (1)
V3)4004.08 (10)
Z4
Radiation typeMo Kα
µ (mm1)3.74
Crystal size (mm)0.43 × 0.28 × 0.13
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.295, 0.646
No. of measured, independent and
observed [I > 2σ(I)] reflections
100181, 18959, 15305
Rint0.033
(sin θ/λ)max1)0.827
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.10
No. of reflections18959
No. of parameters465
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)4.98, 1.46

Computer programs: APEX2 (Bruker, 2005), APEX2, SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.822.14832.611 (3)116
O3—H1O3···O40.822.22952.673 (3)114
O3—H1O3···O5i0.821.92352.693 (3)156
O5—H1O5···I1ii0.822.82373.6161 (17)163
C2—H2A···O3iii0.932.56413.476 (3)167
C18—H18B···O3iii0.962.59893.355 (3)136
C27—H27A···I4iv0.933.02213.899 (3)158
C19—H19B···Cg40.962.99103.944 (3)172
C38—H38B···Cg20.962.93473.871 (3)165
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z1.
 

Footnotes

1This paper is dedicated to His Majesty, Thai King Bhumibol Adulyadej on the occasion of his 80th Birthday Anniversary which fell on December 5th, 2007.

Additional correspondence author, email: suchada.c@psu.ac.th

Acknowledgements

The authors thank Prince of Songkla University for a research grant. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118. KC thanks the Development and Promotion of Science and Technology Talents Project for a study grant. PR thanks the Graduate School, Prince of Songkla University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Eng1. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jindawong, B. & Fun, H.-K. (2006b). Acta Cryst. E62, o4004–o4006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B. & Fun, H.-K. (2007a). Acta Cryst. E63, o2020–o2022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007c). Anal. Sci. 23, x81–x82.  Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2006a). Acta Cryst. E62, o1802–o1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2007b). Anal. Sci. 23, x27–x28.  CAS Google Scholar
First citationFun, H.-K., Rodwatcharapiban, P., Jindawong, B. & Chantrapromma, S. (2006). Acta Cryst. E62, o2725–o2727.  CSD CrossRef IUCr Journals Google Scholar
First citationGlavcheva, Z., Umezawa, H., Okada, S. & Nakanishi, H. (2004). Mat. Lett., 58, 2466–2471.  Web of Science CSD CrossRef CAS Google Scholar
First citationJindawong, B., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2005). Acta Cryst. E61, o3237–o3239.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOudar, J.-L. & Chemla, D. S. (1977). J. Chem. Phys. 66, 2664–2668.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, D. J. (1984). Ang. Chem. Int. Ed. Engl. 23, 690–703.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds