metal-organic compounds
Aqua(4-hydroxypyridine-2,6-dicarboxylato)(1,10-phenanothroline)copper(II) 4.5-hydrate
aFaculty of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran, bFaculty of Science, Department of Chemistry, Ilam University, Ilam, Iran, and cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: haghabozorg@yahoo.com
The title compound, [Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2O or [Cu(hypydc)(phen)(H2O)]·4.5H2O (phen is 1,10-phenanthroline and hypydcH2 is 4-hydroxypyridine-2,6-dicarboxylic acid), was obtained by the reaction of copper(II) nitrate hexahydrate with the proton-transfer compound (phenH)2(hypydc) in aqueous solution. Both the cationic and the anionic fragments of the proton-transfer compound are involved in complexation. Each CuII atom has a distorted octahedral geometry. It is hexacoordinated by three O atoms and three N atoms, from one phen fragment (as bidentate ligand), one (hypydc)2− unit (as tridentate ligand) and a water molecule. In the O—H⋯O and C—H⋯O hydrogen bonds, and π–π stacking interactions [centroid-to-centroid distance 3.5642 (11) Å] between the phen ring systems, contribute to the formation of a three-dimensional supramolecular structure.
Related literature
For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007); Aghabozorg, Daneshvar et al. (2007).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807067207/su2032sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807067207/su2032Isup2.hkl
The proton transfer compound, (phenH)2(hypydc), was prepared by the reaction of 4-hydroxypyridine-2,6-dicarboxylic acid, hypydcH2, with 1,10-phenanthroline, (phen). Cu(NO3)2.6H2O (125 mg, 0.5 mmol) in water (20 ml) and the proton transfer compound, (phenH)2(hypydc) (500 mg, 1.0 mmol) in water (20 ml), in a 1:2 molar ratio, were mixed. Blue crystals of (I) were obtained by the slow evaporation at room temperature.
The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.85 Å and C—H = 0.93 - 0.95 Å with U ĩso~(H) = 1.2U~eq~ (parent O or C-atom).
Non-covalent interactions, including hydrogen bonds, are of great importance in stabilizing structures in the solid state. We have synthesized several proton transfer compounds, some with remaining sites as electron donors that can coordinate to metal ions (Aghabozorg, Attar Gharamaleki, Ghadermazi et al., 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah et al., 2007; Aghabozorg, Daneshvar et al., 2007 and references therein). A wide range of different hydrogen bonds were observed in these compounds and water molecules of crystallization were also involved in hydrogen bonding. Here, we report on the synthesis and
of the title compound, (I).The title complex crystallizes in the orthorhombic
Fdd2, with sixteen molecules in the The molecular structure is shown in Fig. 1. Both the cationic and anionic fragments of the starting proton transfer compound are involved in complexation. Each CuII atom has a distorted octahedral geometry. It is coordinated by one 1,10-phenanthroline ligand, (phen as bidentate ligand), one 4-hydroxypyridine-2,6-dicarboxylate group, [(hypydc)2- as a tridentate ligand] and one coordinated water molecule. The axial bond lengths, Cu1—O2 and Cu1—O3 [2.3679 (9) and 2.3205 (11) Å, respectively] are longer than the equitoral metal-ligand bond lengths [1.9996 (8) - 2.0370 (9) Å], probabaly due to the Jahn-Teller effect. The dihedral angle between the planes passing through the (hypydc)2– and (phen) fragments is 83.41 (4)°, indicating that these to units are almost perpendicular to one another.In the crystal weak π-π stacking interactions [3.5642 (11) Å [1/4 + x, 1/4 - y, 1/4 + z] between the aromatic rings of the coordinated (phen) fragments are present (Fig. 2). The water molecules of crystallization are involved in the formation of hydrogen bonds, forming chains (Fig. 3 and Table 1). O—H···O and C—H···O hydrogen bonds, ion pairing and π–π stacking interactions all contribute to the formation of a supramolecular structure (Fig. 4).
For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007); Aghabozorg, Daneshvar et al. (2007).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005).Fig. 1. The molecular structure of compound (I), showing the atom numbering scheme and displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. A view of the π-π stacking interactions between the aromatic rings of the 1,10-phenanthroline (phen) fragments with distances of 3.5639 (11) Å [1/4 + x, 1/4 - y, 1/4 + z]. | |
Fig. 3. A view of the chain of hydrogen bonded water mlecules in compound (I) with hydrogen bonds shown as dashed lines. | |
Fig. 4. The crystal packing of compound (I), with hydrogen bonds shown as dashed lines. |
[Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2O | F(000) = 4320 |
Mr = 523.94 | Dx = 1.630 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 30613 reflections |
a = 18.686 (4) Å | θ = 2.3–36.4° |
b = 44.033 (8) Å | µ = 1.09 mm−1 |
c = 10.3812 (18) Å | T = 296 K |
V = 8542 (3) Å3 | Block, pale-blue |
Z = 16 | 0.34 × 0.24 × 0.12 mm |
Bruker SMART 1000 diffractometer | 10800 independent reflections |
Radiation source: fine-focus sealed tube | 9609 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 100 pixels mm-1 | θmax = 38.6°, θmin = 1.9° |
ω scans | h = −30→31 |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | k = −72→69 |
Tmin = 0.709, Tmax = 0.881 | l = −17→17 |
59661 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0367P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.002 |
10800 reflections | Δρmax = 0.50 e Å−3 |
300 parameters | Δρmin = −0.33 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 4504 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.007 (4) |
[Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2O | V = 8542 (3) Å3 |
Mr = 523.94 | Z = 16 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 18.686 (4) Å | µ = 1.09 mm−1 |
b = 44.033 (8) Å | T = 296 K |
c = 10.3812 (18) Å | 0.34 × 0.24 × 0.12 mm |
Bruker SMART 1000 diffractometer | 10800 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 9609 reflections with I > 2σ(I) |
Tmin = 0.709, Tmax = 0.881 | Rint = 0.032 |
59661 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.066 | Δρmax = 0.50 e Å−3 |
S = 1.01 | Δρmin = −0.33 e Å−3 |
10800 reflections | Absolute structure: Flack (1983), 4504 Friedel pairs |
300 parameters | Absolute structure parameter: 0.007 (4) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.260204 (6) | 0.052661 (3) | 1.031738 (12) | 0.01475 (3) | |
N1 | 0.33349 (5) | 0.086905 (19) | 1.03093 (10) | 0.02096 (15) | |
N2 | 0.19432 (5) | 0.08711 (2) | 1.07530 (9) | 0.01972 (16) | |
N3 | 0.32981 (5) | 0.019941 (19) | 0.98387 (8) | 0.01433 (14) | |
O1 | 0.37788 (5) | −0.00342 (2) | 1.29870 (8) | 0.02511 (17) | |
O2 | 0.29904 (5) | 0.03122 (2) | 1.22904 (7) | 0.02473 (16) | |
O3 | 0.26351 (6) | 0.054290 (19) | 0.80826 (9) | 0.02719 (19) | |
O4 | 0.30653 (5) | 0.026752 (19) | 0.64661 (7) | 0.02505 (17) | |
O5 | 0.47567 (5) | −0.04570 (2) | 0.88292 (8) | 0.02523 (17) | |
H5A | 0.4872 | −0.0449 | 0.8038 | 0.030* | |
O6 | 0.17682 (4) | 0.024272 (16) | 1.02325 (8) | 0.01793 (12) | |
H6D | 0.1690 | 0.0174 | 0.9480 | 0.022* | |
H6C | 0.1854 | 0.0080 | 1.0643 | 0.022* | |
C1 | 0.40278 (7) | 0.08587 (3) | 1.00820 (13) | 0.0302 (3) | |
H1 | 0.4249 | 0.0670 | 1.0000 | 0.036* | |
C2 | 0.44453 (9) | 0.11231 (4) | 0.99596 (15) | 0.0413 (4) | |
H2 | 0.4934 | 0.1109 | 0.9799 | 0.050* | |
C3 | 0.41253 (9) | 0.14022 (3) | 1.00797 (14) | 0.0401 (4) | |
H3 | 0.4394 | 0.1579 | 0.9992 | 0.048* | |
C4 | 0.33932 (8) | 0.14188 (3) | 1.03349 (13) | 0.0307 (2) | |
C5 | 0.29961 (11) | 0.16990 (3) | 1.05229 (13) | 0.0414 (4) | |
H5 | 0.3235 | 0.1884 | 1.0460 | 0.050* | |
C6 | 0.22947 (10) | 0.16978 (3) | 1.07841 (15) | 0.0397 (4) | |
H6 | 0.2059 | 0.1882 | 1.0906 | 0.048* | |
C7 | 0.18977 (8) | 0.14200 (3) | 1.08811 (12) | 0.0312 (3) | |
C8 | 0.11568 (10) | 0.14002 (4) | 1.11384 (15) | 0.0404 (4) | |
H8 | 0.0889 | 0.1575 | 1.1272 | 0.048* | |
C9 | 0.08381 (8) | 0.11233 (4) | 1.11891 (14) | 0.0357 (3) | |
H9 | 0.0351 | 0.1108 | 1.1360 | 0.043* | |
C10 | 0.12452 (7) | 0.08614 (3) | 1.09834 (12) | 0.0265 (2) | |
H10 | 0.1019 | 0.0673 | 1.1009 | 0.032* | |
C11 | 0.22684 (7) | 0.11447 (2) | 1.07039 (11) | 0.0222 (2) | |
C12 | 0.30164 (6) | 0.11451 (2) | 1.04432 (10) | 0.02191 (19) | |
C13 | 0.34558 (6) | 0.01134 (3) | 1.21286 (9) | 0.01798 (18) | |
C14 | 0.36451 (5) | 0.00388 (2) | 1.07388 (9) | 0.01544 (16) | |
C15 | 0.41397 (5) | −0.01821 (2) | 1.04245 (10) | 0.01813 (17) | |
H15 | 0.4377 | −0.0290 | 1.1065 | 0.022* | |
C16 | 0.42769 (5) | −0.02401 (2) | 0.91269 (10) | 0.01755 (17) | |
C17 | 0.39083 (6) | −0.00763 (2) | 0.81932 (10) | 0.01653 (16) | |
H17 | 0.3987 | −0.0112 | 0.7322 | 0.020* | |
C18 | 0.34222 (6) | 0.01404 (2) | 0.85910 (9) | 0.01394 (16) | |
C19 | 0.30013 (6) | 0.03315 (2) | 0.76368 (9) | 0.01689 (17) | |
O1W | 0.5000 | 0.0000 | 0.45689 (13) | 0.0277 (2)* | |
H1C | 0.5384 | 0.0026 | 0.4143 | 0.033* | |
O2W | 0.13216 (6) | 0.15930 (2) | 0.41663 (14) | 0.0457 (3) | |
H2C | 0.0889 | 0.1635 | 0.4349 | 0.055* | |
H2D | 0.1336 | 0.1403 | 0.4299 | 0.055* | |
O3W | 0.24433 (5) | 0.05872 (2) | 0.44855 (9) | 0.02822 (19) | |
H3D | 0.2586 | 0.0500 | 0.3801 | 0.034* | |
H3C | 0.2628 | 0.0496 | 0.5126 | 0.034* | |
O4W | 0.13298 (7) | 0.09704 (2) | 0.43343 (14) | 0.0474 (3) | |
H4D | 0.1683 | 0.0853 | 0.4474 | 0.057* | |
H4C | 0.0974 | 0.0857 | 0.4167 | 0.057* | |
O5W | 0.51596 (5) | −0.04686 (2) | 0.64555 (9) | 0.03011 (19) | |
H5C | 0.5200 | −0.0331 | 0.5886 | 0.036* | |
H5D | 0.5500 | −0.0593 | 0.6321 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01572 (5) | 0.01249 (5) | 0.01605 (5) | 0.00093 (4) | 0.00172 (5) | −0.00189 (4) |
N1 | 0.0232 (4) | 0.0187 (4) | 0.0210 (4) | −0.0040 (3) | 0.0044 (4) | −0.0048 (3) |
N2 | 0.0230 (4) | 0.0173 (4) | 0.0189 (4) | 0.0048 (3) | 0.0015 (3) | −0.0016 (3) |
N3 | 0.0163 (4) | 0.0136 (3) | 0.0131 (3) | 0.0001 (3) | 0.0000 (3) | −0.0003 (3) |
O1 | 0.0224 (4) | 0.0370 (5) | 0.0159 (4) | 0.0013 (3) | −0.0015 (3) | 0.0065 (3) |
O2 | 0.0276 (4) | 0.0306 (4) | 0.0161 (3) | 0.0069 (3) | 0.0018 (3) | −0.0014 (3) |
O3 | 0.0394 (5) | 0.0240 (4) | 0.0181 (4) | 0.0176 (3) | −0.0018 (3) | −0.0007 (3) |
O4 | 0.0408 (5) | 0.0205 (4) | 0.0138 (3) | 0.0097 (3) | −0.0028 (3) | −0.0010 (3) |
O5 | 0.0265 (4) | 0.0256 (4) | 0.0236 (4) | 0.0144 (3) | 0.0046 (3) | 0.0027 (3) |
O6 | 0.0200 (3) | 0.0177 (3) | 0.0161 (3) | −0.0011 (2) | −0.0013 (3) | 0.0014 (3) |
C1 | 0.0249 (5) | 0.0303 (6) | 0.0355 (7) | −0.0083 (4) | 0.0074 (5) | −0.0087 (5) |
C2 | 0.0321 (7) | 0.0500 (9) | 0.0418 (8) | −0.0241 (6) | 0.0079 (6) | −0.0082 (6) |
C3 | 0.0560 (9) | 0.0340 (7) | 0.0305 (7) | −0.0281 (6) | 0.0005 (6) | −0.0032 (5) |
C4 | 0.0498 (7) | 0.0198 (5) | 0.0224 (5) | −0.0125 (4) | −0.0037 (5) | −0.0018 (4) |
C5 | 0.0805 (12) | 0.0144 (5) | 0.0292 (7) | −0.0099 (6) | −0.0146 (6) | 0.0009 (4) |
C6 | 0.0702 (11) | 0.0155 (5) | 0.0333 (6) | 0.0079 (6) | −0.0147 (7) | −0.0050 (4) |
C7 | 0.0498 (8) | 0.0179 (5) | 0.0258 (5) | 0.0117 (5) | −0.0070 (5) | −0.0043 (4) |
C8 | 0.0524 (9) | 0.0340 (7) | 0.0347 (7) | 0.0262 (7) | −0.0054 (6) | −0.0075 (5) |
C9 | 0.0300 (7) | 0.0421 (8) | 0.0352 (7) | 0.0180 (6) | 0.0017 (5) | −0.0053 (6) |
C10 | 0.0229 (5) | 0.0303 (6) | 0.0264 (5) | 0.0083 (4) | 0.0028 (4) | −0.0017 (4) |
C11 | 0.0333 (6) | 0.0153 (4) | 0.0181 (4) | 0.0040 (4) | −0.0016 (4) | −0.0024 (3) |
C12 | 0.0327 (5) | 0.0158 (4) | 0.0173 (4) | −0.0043 (4) | −0.0003 (4) | −0.0026 (3) |
C13 | 0.0176 (5) | 0.0235 (5) | 0.0129 (4) | −0.0025 (4) | 0.0001 (3) | 0.0006 (3) |
C14 | 0.0147 (4) | 0.0165 (4) | 0.0151 (4) | −0.0011 (3) | −0.0001 (3) | 0.0017 (3) |
C15 | 0.0165 (4) | 0.0202 (4) | 0.0178 (4) | 0.0027 (3) | −0.0002 (3) | 0.0043 (3) |
C16 | 0.0164 (4) | 0.0159 (4) | 0.0204 (4) | 0.0031 (3) | 0.0015 (3) | 0.0024 (3) |
C17 | 0.0174 (4) | 0.0158 (4) | 0.0163 (4) | 0.0019 (3) | 0.0010 (3) | −0.0001 (3) |
C18 | 0.0166 (4) | 0.0118 (4) | 0.0135 (4) | 0.0005 (3) | −0.0009 (3) | 0.0002 (3) |
C19 | 0.0220 (4) | 0.0132 (4) | 0.0155 (4) | 0.0028 (3) | −0.0021 (3) | 0.0006 (3) |
O2W | 0.0372 (6) | 0.0250 (5) | 0.0747 (8) | 0.0000 (4) | 0.0068 (6) | −0.0087 (5) |
O3W | 0.0340 (5) | 0.0279 (4) | 0.0227 (4) | 0.0101 (3) | 0.0024 (3) | 0.0032 (3) |
O4W | 0.0441 (7) | 0.0248 (5) | 0.0735 (9) | 0.0095 (4) | −0.0168 (6) | −0.0081 (5) |
O5W | 0.0278 (5) | 0.0364 (5) | 0.0262 (4) | 0.0049 (4) | 0.0036 (3) | −0.0030 (3) |
Cu1—O6 | 1.9996 (8) | C5—H5 | 0.9300 |
Cu1—N3 | 2.0036 (9) | C6—C7 | 1.434 (2) |
Cu1—N2 | 2.0052 (9) | C6—H6 | 0.9300 |
Cu1—N1 | 2.0370 (9) | C7—C11 | 1.4082 (16) |
Cu1—O3 | 2.3219 (10) | C7—C8 | 1.413 (2) |
Cu1—O2 | 2.3693 (9) | C8—C9 | 1.358 (3) |
N1—C1 | 1.3168 (16) | C8—H8 | 0.9300 |
N1—C12 | 1.3604 (14) | C9—C10 | 1.3979 (17) |
N2—C10 | 1.3267 (16) | C9—H9 | 0.9300 |
N2—C11 | 1.3505 (15) | C10—H10 | 0.9300 |
N3—C14 | 1.3392 (13) | C11—C12 | 1.4237 (17) |
N3—C18 | 1.3412 (12) | C13—C14 | 1.5213 (14) |
O1—C13 | 1.2572 (13) | C14—C15 | 1.3810 (14) |
O2—C13 | 1.2453 (14) | C15—C16 | 1.3948 (15) |
O3—C19 | 1.2445 (12) | C15—H15 | 0.9300 |
O4—C19 | 1.2533 (12) | C16—C17 | 1.3906 (14) |
O5—C16 | 1.3460 (13) | C17—C18 | 1.3806 (14) |
O5—H5A | 0.8500 | C17—H17 | 0.9300 |
O6—H6D | 0.8500 | C18—C19 | 1.5194 (14) |
O6—H6C | 0.8500 | O1W—H1C | 0.8500 |
C1—C2 | 1.4072 (18) | O2W—H2C | 0.8501 |
C1—H1 | 0.9300 | O2W—H2D | 0.8501 |
C2—C3 | 1.372 (3) | O3W—H3D | 0.8500 |
C2—H2 | 0.9300 | O3W—H3C | 0.8500 |
C3—C4 | 1.395 (2) | O4W—H4D | 0.8501 |
C3—H3 | 0.9300 | O4W—H4C | 0.8498 |
C4—C12 | 1.4005 (15) | O5W—H5C | 0.8501 |
C4—C5 | 1.453 (2) | O5W—H5D | 0.8499 |
C5—C6 | 1.338 (3) | ||
O6—Cu1—N3 | 92.60 (4) | C5—C6—H6 | 119.2 |
O6—Cu1—N2 | 90.26 (4) | C7—C6—H6 | 119.2 |
N3—Cu1—N2 | 176.79 (4) | C11—C7—C8 | 116.97 (13) |
O6—Cu1—N1 | 170.57 (3) | C11—C7—C6 | 118.07 (14) |
N3—Cu1—N1 | 95.44 (4) | C8—C7—C6 | 124.96 (13) |
N2—Cu1—N1 | 81.59 (4) | C9—C8—C7 | 119.51 (12) |
O6—Cu1—O3 | 89.77 (4) | C9—C8—H8 | 120.2 |
N3—Cu1—O3 | 75.95 (3) | C7—C8—H8 | 120.2 |
N2—Cu1—O3 | 102.61 (3) | C8—C9—C10 | 119.75 (14) |
N1—Cu1—O3 | 87.43 (4) | C8—C9—H9 | 120.1 |
O6—Cu1—O2 | 91.59 (3) | C10—C9—H9 | 120.1 |
N3—Cu1—O2 | 74.28 (3) | N2—C10—C9 | 122.41 (13) |
N2—Cu1—O2 | 107.13 (4) | N2—C10—H10 | 118.8 |
N1—Cu1—O2 | 95.31 (4) | C9—C10—H10 | 118.8 |
O3—Cu1—O2 | 150.22 (3) | N2—C11—C7 | 122.80 (12) |
C1—N1—C12 | 118.64 (10) | N2—C11—C12 | 116.73 (9) |
C1—N1—Cu1 | 129.51 (8) | C7—C11—C12 | 120.46 (11) |
C12—N1—Cu1 | 111.52 (7) | N1—C12—C4 | 122.74 (12) |
C10—N2—C11 | 118.55 (10) | N1—C12—C11 | 116.62 (9) |
C10—N2—Cu1 | 128.30 (9) | C4—C12—C11 | 120.64 (11) |
C11—N2—Cu1 | 112.97 (8) | O2—C13—O1 | 127.08 (10) |
C14—N3—C18 | 119.19 (9) | O2—C13—C14 | 116.23 (9) |
C14—N3—Cu1 | 121.39 (7) | O1—C13—C14 | 116.69 (10) |
C18—N3—Cu1 | 119.41 (7) | N3—C14—C15 | 122.08 (9) |
C13—O2—Cu1 | 112.17 (7) | N3—C14—C13 | 115.80 (9) |
C19—O3—Cu1 | 111.29 (7) | C15—C14—C13 | 122.12 (9) |
C16—O5—H5A | 111.1 | C14—C15—C16 | 118.69 (9) |
Cu1—O6—H6D | 113.4 | C14—C15—H15 | 120.7 |
Cu1—O6—H6C | 111.0 | C16—C15—H15 | 120.7 |
H6D—O6—H6C | 101.1 | O5—C16—C17 | 122.54 (10) |
N1—C1—C2 | 122.19 (13) | O5—C16—C15 | 118.30 (9) |
N1—C1—H1 | 118.9 | C17—C16—C15 | 119.16 (9) |
C2—C1—H1 | 118.9 | C18—C17—C16 | 118.41 (9) |
C3—C2—C1 | 119.41 (15) | C18—C17—H17 | 120.8 |
C3—C2—H2 | 120.3 | C16—C17—H17 | 120.8 |
C1—C2—H2 | 120.3 | N3—C18—C17 | 122.45 (9) |
C2—C3—C4 | 119.43 (12) | N3—C18—C19 | 115.64 (8) |
C2—C3—H3 | 120.3 | C17—C18—C19 | 121.90 (9) |
C4—C3—H3 | 120.3 | O3—C19—O4 | 125.54 (10) |
C3—C4—C12 | 117.59 (12) | O3—C19—C18 | 117.16 (9) |
C3—C4—C5 | 124.80 (12) | O4—C19—C18 | 117.27 (9) |
C12—C4—C5 | 117.60 (13) | H2C—O2W—H2D | 102.1 |
C6—C5—C4 | 121.61 (12) | H3D—O3W—H3C | 108.3 |
C6—C5—H5 | 119.2 | H4D—O4W—H4C | 106.6 |
C4—C5—H5 | 119.2 | H5C—O5W—H5D | 106.2 |
C5—C6—C7 | 121.61 (13) | ||
O6—Cu1—N1—C1 | −149.7 (2) | C7—C8—C9—C10 | −0.2 (2) |
N3—Cu1—N1—C1 | −1.22 (12) | C11—N2—C10—C9 | −0.67 (18) |
N2—Cu1—N1—C1 | −179.99 (13) | Cu1—N2—C10—C9 | −175.40 (10) |
O3—Cu1—N1—C1 | −76.84 (12) | C8—C9—C10—N2 | 0.9 (2) |
O2—Cu1—N1—C1 | 73.44 (12) | C10—N2—C11—C7 | −0.28 (16) |
O6—Cu1—N1—C12 | 23.5 (3) | Cu1—N2—C11—C7 | 175.23 (9) |
N3—Cu1—N1—C12 | 171.95 (8) | C10—N2—C11—C12 | −179.47 (11) |
N2—Cu1—N1—C12 | −6.81 (8) | Cu1—N2—C11—C12 | −3.95 (13) |
O3—Cu1—N1—C12 | 96.34 (8) | C8—C7—C11—N2 | 0.96 (17) |
O2—Cu1—N1—C12 | −113.39 (8) | C6—C7—C11—N2 | −178.83 (11) |
O6—Cu1—N2—C10 | 5.57 (10) | C8—C7—C11—C12 | −179.88 (12) |
N3—Cu1—N2—C10 | 158.3 (7) | C6—C7—C11—C12 | 0.32 (17) |
N1—Cu1—N2—C10 | −179.17 (11) | C1—N1—C12—C4 | 0.74 (18) |
O3—Cu1—N2—C10 | 95.39 (10) | Cu1—N1—C12—C4 | −173.26 (9) |
O2—Cu1—N2—C10 | −86.17 (10) | C1—N1—C12—C11 | −179.24 (11) |
O6—Cu1—N2—C11 | −169.41 (8) | Cu1—N1—C12—C11 | 6.76 (13) |
N3—Cu1—N2—C11 | −16.7 (7) | C3—C4—C12—N1 | −0.05 (19) |
N1—Cu1—N2—C11 | 5.85 (8) | C5—C4—C12—N1 | −178.80 (11) |
O3—Cu1—N2—C11 | −79.58 (8) | C3—C4—C12—C11 | 179.93 (12) |
O2—Cu1—N2—C11 | 98.86 (8) | C5—C4—C12—C11 | 1.18 (18) |
O6—Cu1—N3—C14 | −93.65 (8) | N2—C11—C12—N1 | −2.01 (16) |
N2—Cu1—N3—C14 | 113.7 (7) | C7—C11—C12—N1 | 178.79 (10) |
N1—Cu1—N3—C14 | 91.27 (8) | N2—C11—C12—C4 | 178.01 (10) |
O3—Cu1—N3—C14 | 177.24 (8) | C7—C11—C12—C4 | −1.19 (17) |
O2—Cu1—N3—C14 | −2.73 (7) | Cu1—O2—C13—O1 | 177.76 (10) |
O6—Cu1—N3—C18 | 86.62 (8) | Cu1—O2—C13—C14 | −3.11 (12) |
N2—Cu1—N3—C18 | −66.1 (7) | C18—N3—C14—C15 | 1.41 (15) |
N1—Cu1—N3—C18 | −88.46 (8) | Cu1—N3—C14—C15 | −178.33 (7) |
O3—Cu1—N3—C18 | −2.49 (8) | C18—N3—C14—C13 | −178.14 (9) |
O2—Cu1—N3—C18 | 177.53 (8) | Cu1—N3—C14—C13 | 2.13 (12) |
O6—Cu1—O2—C13 | 95.47 (8) | O2—C13—C14—N3 | 1.10 (14) |
N3—Cu1—O2—C13 | 3.22 (8) | O1—C13—C14—N3 | −179.67 (10) |
N2—Cu1—O2—C13 | −173.77 (8) | O2—C13—C14—C15 | −178.44 (10) |
N1—Cu1—O2—C13 | −90.96 (8) | O1—C13—C14—C15 | 0.78 (15) |
O3—Cu1—O2—C13 | 3.16 (12) | N3—C14—C15—C16 | −0.40 (15) |
O6—Cu1—O3—C19 | −86.68 (9) | C13—C14—C15—C16 | 179.12 (10) |
N3—Cu1—O3—C19 | 6.06 (8) | C14—C15—C16—O5 | −179.62 (10) |
N2—Cu1—O3—C19 | −176.89 (8) | C14—C15—C16—C17 | −0.57 (15) |
N1—Cu1—O3—C19 | 102.33 (9) | O5—C16—C17—C18 | 179.53 (10) |
O2—Cu1—O3—C19 | 6.11 (13) | C15—C16—C17—C18 | 0.52 (15) |
C12—N1—C1—C2 | −0.7 (2) | C14—N3—C18—C17 | −1.47 (15) |
Cu1—N1—C1—C2 | 172.03 (11) | Cu1—N3—C18—C17 | 178.27 (8) |
N1—C1—C2—C3 | 0.0 (2) | C14—N3—C18—C19 | 179.53 (9) |
C1—C2—C3—C4 | 0.7 (2) | Cu1—N3—C18—C19 | −0.73 (12) |
C2—C3—C4—C12 | −0.7 (2) | C16—C17—C18—N3 | 0.50 (15) |
C2—C3—C4—C5 | 178.00 (14) | C16—C17—C18—C19 | 179.45 (9) |
C3—C4—C5—C6 | −178.98 (15) | Cu1—O3—C19—O4 | 173.59 (10) |
C12—C4—C5—C6 | −0.3 (2) | Cu1—O3—C19—C18 | −8.18 (12) |
C4—C5—C6—C7 | −0.5 (2) | N3—C18—C19—O3 | 6.64 (14) |
C5—C6—C7—C11 | 0.5 (2) | C17—C18—C19—O3 | −172.37 (10) |
C5—C6—C7—C8 | −179.23 (14) | N3—C18—C19—O4 | −174.98 (10) |
C11—C7—C8—C9 | −0.7 (2) | C17—C18—C19—O4 | 6.01 (15) |
C6—C7—C8—C9 | 179.07 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O5W | 0.85 | 1.73 | 2.5771 (14) | 174 |
O6—H6D···O1i | 0.85 | 1.88 | 2.7059 (12) | 162 |
O6—H6C···O4ii | 0.85 | 1.76 | 2.6048 (11) | 174 |
O1W—H1C···O1iii | 0.85 | 1.97 | 2.8154 (12) | 171 |
O2W—H2C···O3iv | 0.85 | 2.37 | 3.1062 (16) | 145 |
O2W—H2D···O4W | 0.85 | 1.90 | 2.7470 (16) | 172 |
O3W—H3D···O2v | 0.85 | 1.93 | 2.7757 (13) | 175 |
O3W—H3C···O4 | 0.85 | 1.90 | 2.7496 (13) | 175 |
O4W—H4D···O3W | 0.85 | 1.84 | 2.6834 (15) | 171 |
O4W—H4C···O5i | 0.85 | 2.26 | 3.0835 (16) | 165 |
O5W—H5C···O1W | 0.85 | 2.03 | 2.8604 (15) | 164 |
O5W—H5D···O2Wvi | 0.85 | 1.91 | 2.7204 (15) | 159 |
C1—H1···O5vii | 0.93 | 2.41 | 3.1610 (18) | 137 |
C3—H3···O3viii | 0.93 | 2.25 | 3.130 (2) | 158 |
C8—H8···O3Wix | 0.93 | 2.42 | 3.315 (2) | 161 |
C10—H10···O6 | 0.93 | 2.50 | 2.9995 (17) | 114 |
C10—H10···O5Wii | 0.93 | 2.42 | 3.1809 (19) | 139 |
Symmetry codes: (i) −x+1/2, −y, z−1/2; (ii) −x+1/2, −y, z+1/2; (iii) −x+1, −y, z−1; (iv) x−1/4, −y+1/4, z−1/4; (v) x, y, z−1; (vi) −x+3/4, y−1/4, z+1/4; (vii) −x+1, −y, z; (viii) x+1/4, −y+1/4, z+1/4; (ix) x−1/4, −y+1/4, z+3/4. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2O |
Mr | 523.94 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 296 |
a, b, c (Å) | 18.686 (4), 44.033 (8), 10.3812 (18) |
V (Å3) | 8542 (3) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 1.09 |
Crystal size (mm) | 0.34 × 0.24 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART 1000 |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.709, 0.881 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 59661, 10800, 9609 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.878 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.066, 1.01 |
No. of reflections | 10800 |
No. of parameters | 300 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.33 |
Absolute structure | Flack (1983), 4504 Friedel pairs |
Absolute structure parameter | 0.007 (4) |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O5W | 0.85 | 1.73 | 2.5771 (14) | 174 |
O6—H6D···O1i | 0.85 | 1.88 | 2.7059 (12) | 162 |
O6—H6C···O4ii | 0.85 | 1.76 | 2.6048 (11) | 174 |
O1W—H1C···O1iii | 0.85 | 1.97 | 2.8154 (12) | 171 |
O2W—H2C···O3iv | 0.85 | 2.37 | 3.1062 (16) | 145 |
O2W—H2D···O4W | 0.85 | 1.90 | 2.7470 (16) | 172 |
O3W—H3D···O2v | 0.85 | 1.93 | 2.7757 (13) | 175 |
O3W—H3C···O4 | 0.85 | 1.90 | 2.7496 (13) | 175 |
O4W—H4D···O3W | 0.85 | 1.84 | 2.6834 (15) | 171 |
O4W—H4C···O5i | 0.85 | 2.26 | 3.0835 (16) | 165 |
O5W—H5C···O1W | 0.85 | 2.03 | 2.8604 (15) | 164. |
O5W—H5D···O2Wvi | 0.85 | 1.91 | 2.7204 (15) | 159 |
C1—H1···O5vii | 0.93 | 2.41 | 3.1610 (18) | 137 |
C3—H3···O3viii | 0.93 | 2.25 | 3.130 (2) | 158 |
C8—H8···O3Wix | 0.93 | 2.42 | 3.315 (2) | 161 |
C10—H10···O6 | 0.93 | 2.50 | 2.9995 (17) | 114 |
C10—H10···O5Wii | 0.93 | 2.42 | 3.1809 (19) | 139 |
Symmetry codes: (i) −x+1/2, −y, z−1/2; (ii) −x+1/2, −y, z+1/2; (iii) −x+1, −y, z−1; (iv) x−1/4, −y+1/4, z−1/4; (v) x, y, z−1; (vi) −x+3/4, y−1/4, z+1/4; (vii) −x+1, −y, z; (viii) x+1/4, −y+1/4, z+1/4; (ix) x−1/4, −y+1/4, z+3/4. |
Acknowledgements
Financial support from Ilam University and the Teacher Training University is gratefully acknowledged.
References
Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1998). SADABS (Version 2004/1), SAINT (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Non-covalent interactions, including hydrogen bonds, are of great importance in stabilizing structures in the solid state. We have synthesized several proton transfer compounds, some with remaining sites as electron donors that can coordinate to metal ions (Aghabozorg, Attar Gharamaleki, Ghadermazi et al., 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah et al., 2007; Aghabozorg, Daneshvar et al., 2007 and references therein). A wide range of different hydrogen bonds were observed in these compounds and water molecules of crystallization were also involved in hydrogen bonding. Here, we report on the synthesis and crystal structure of the title compound, (I).
The title complex crystallizes in the orthorhombic space group Fdd2, with sixteen molecules in the unit cell. The molecular structure is shown in Fig. 1. Both the cationic and anionic fragments of the starting proton transfer compound are involved in complexation. Each CuII atom has a distorted octahedral geometry. It is coordinated by one 1,10-phenanthroline ligand, (phen as bidentate ligand), one 4-hydroxypyridine-2,6-dicarboxylate group, [(hypydc)2- as a tridentate ligand] and one coordinated water molecule. The axial bond lengths, Cu1—O2 and Cu1—O3 [2.3679 (9) and 2.3205 (11) Å, respectively] are longer than the equitoral metal-ligand bond lengths [1.9996 (8) - 2.0370 (9) Å], probabaly due to the Jahn-Teller effect. The dihedral angle between the planes passing through the (hypydc)2– and (phen) fragments is 83.41 (4)°, indicating that these to units are almost perpendicular to one another.
In the crystal weak π-π stacking interactions [3.5642 (11) Å [1/4 + x, 1/4 - y, 1/4 + z] between the aromatic rings of the coordinated (phen) fragments are present (Fig. 2). The water molecules of crystallization are involved in the formation of hydrogen bonds, forming chains (Fig. 3 and Table 1). O—H···O and C—H···O hydrogen bonds, ion pairing and π–π stacking interactions all contribute to the formation of a supramolecular structure (Fig. 4).