metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)(1,10-phenanothroline)copper(II) 4.5-hydrate

aFaculty of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran, bFaculty of Science, Department of Chemistry, Ilam University, Ilam, Iran, and cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 22 November 2007; accepted 16 December 2007; online 21 December 2007)

The title compound, [Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2O or [Cu(hypydc)(phen)(H2O)]·4.5H2O (phen is 1,10-phenanthroline and hypydcH2 is 4-hydroxy­pyridine-2,6-dicarboxylic acid), was obtained by the reaction of copper(II) nitrate hexa­hydrate with the proton-transfer compound (phenH)2(hypydc) in aqueous solution. Both the cationic and the anionic fragments of the proton-transfer compound are involved in complexation. Each CuII atom has a distorted octa­hedral geometry. It is hexa­coordinated by three O atoms and three N atoms, from one phen fragment (as bidentate ligand), one (hypydc)2− unit (as tridentate ligand) and a water mol­ecule. In the crystal structure, O—H⋯O and C—H⋯O hydrogen bonds, and ππ stacking inter­actions [centroid-to-centroid distance 3.5642 (11) Å] between the phen ring systems, contribute to the formation of a three-dimensional supra­molecular structure.

Related literature

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007[Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803-m1804.]); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007[Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710-m1711.]); Aghabozorg, Daneshvar et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2O

  • Mr = 523.94

  • Orthorhombic, F d d 2

  • a = 18.686 (4) Å

  • b = 44.033 (8) Å

  • c = 10.3812 (18) Å

  • V = 8542 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 296 (2) K

  • 0.34 × 0.24 × 0.12 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS (Version 2004/1), SAINT (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.709, Tmax = 0.881

  • 59661 measured reflections

  • 10800 independent reflections

  • 9609 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 1.01

  • 10800 reflections

  • 300 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 4504 Friedel pairs

  • Flack parameter: 0.007 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O5W 0.85 1.73 2.5771 (14) 174
O6—H6D⋯O1i 0.85 1.88 2.7059 (12) 162
O6—H6C⋯O4ii 0.85 1.76 2.6048 (11) 174
O1W—H1C⋯O1iii 0.85 1.97 2.8154 (12) 171
O2W—H2C⋯O3iv 0.85 2.37 3.1062 (16) 145
O2W—H2D⋯O4W 0.85 1.90 2.7470 (16) 172
O3W—H3D⋯O2v 0.85 1.93 2.7757 (13) 175
O3W—H3C⋯O4 0.85 1.90 2.7496 (13) 175
O4W—H4D⋯O3W 0.85 1.84 2.6834 (15) 171
O4W—H4C⋯O5i 0.85 2.26 3.0835 (16) 165
O5W—H5C⋯O1W 0.85 2.03 2.8604 (15) 164
O5W—H5D⋯O2Wvi 0.85 1.91 2.7204 (15) 159
C1—H1⋯O5vii 0.93 2.41 3.1610 (18) 137
C3—H3⋯O3viii 0.93 2.25 3.130 (2) 158
C8—H8⋯O3Wix 0.93 2.42 3.315 (2) 161
C10—H10⋯O6 0.93 2.50 2.9995 (17) 114
C10—H10⋯O5Wx 0.93 2.42 3.1809 (19) 139
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) -x+1, -y, z-1; (iv) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (v) x, y, z-1; (vi) [-x+{\script{3\over 4}}, y-{\script{1\over 4}}, z+{\script{1\over 4}}]; (vii) -x+1, -y, z; (viii) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}]; (ix) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{3\over 4}}]; (x) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SADABS (Version 2004/1), SAINT (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SADABS (Version 2004/1), SAINT (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2005[Bruker (2005). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Non-covalent interactions, including hydrogen bonds, are of great importance in stabilizing structures in the solid state. We have synthesized several proton transfer compounds, some with remaining sites as electron donors that can coordinate to metal ions (Aghabozorg, Attar Gharamaleki, Ghadermazi et al., 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah et al., 2007; Aghabozorg, Daneshvar et al., 2007 and references therein). A wide range of different hydrogen bonds were observed in these compounds and water molecules of crystallization were also involved in hydrogen bonding. Here, we report on the synthesis and crystal structure of the title compound, (I).

The title complex crystallizes in the orthorhombic space group Fdd2, with sixteen molecules in the unit cell. The molecular structure is shown in Fig. 1. Both the cationic and anionic fragments of the starting proton transfer compound are involved in complexation. Each CuII atom has a distorted octahedral geometry. It is coordinated by one 1,10-phenanthroline ligand, (phen as bidentate ligand), one 4-hydroxypyridine-2,6-dicarboxylate group, [(hypydc)2- as a tridentate ligand] and one coordinated water molecule. The axial bond lengths, Cu1—O2 and Cu1—O3 [2.3679 (9) and 2.3205 (11) Å, respectively] are longer than the equitoral metal-ligand bond lengths [1.9996 (8) - 2.0370 (9) Å], probabaly due to the Jahn-Teller effect. The dihedral angle between the planes passing through the (hypydc)2– and (phen) fragments is 83.41 (4)°, indicating that these to units are almost perpendicular to one another.

In the crystal weak π-π stacking interactions [3.5642 (11) Å [1/4 + x, 1/4 - y, 1/4 + z] between the aromatic rings of the coordinated (phen) fragments are present (Fig. 2). The water molecules of crystallization are involved in the formation of hydrogen bonds, forming chains (Fig. 3 and Table 1). O—H···O and C—H···O hydrogen bonds, ion pairing and ππ stacking interactions all contribute to the formation of a supramolecular structure (Fig. 4).

Related literature top

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007); Aghabozorg, Daneshvar et al. (2007).

Experimental top

The proton transfer compound, (phenH)2(hypydc), was prepared by the reaction of 4-hydroxypyridine-2,6-dicarboxylic acid, hypydcH2, with 1,10-phenanthroline, (phen). Cu(NO3)2.6H2O (125 mg, 0.5 mmol) in water (20 ml) and the proton transfer compound, (phenH)2(hypydc) (500 mg, 1.0 mmol) in water (20 ml), in a 1:2 molar ratio, were mixed. Blue crystals of (I) were obtained by the slow evaporation at room temperature.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.85 Å and C—H = 0.93 - 0.95 Å with U ĩso~(H) = 1.2U~eq~ (parent O or C-atom).

Structure description top

Non-covalent interactions, including hydrogen bonds, are of great importance in stabilizing structures in the solid state. We have synthesized several proton transfer compounds, some with remaining sites as electron donors that can coordinate to metal ions (Aghabozorg, Attar Gharamaleki, Ghadermazi et al., 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah et al., 2007; Aghabozorg, Daneshvar et al., 2007 and references therein). A wide range of different hydrogen bonds were observed in these compounds and water molecules of crystallization were also involved in hydrogen bonding. Here, we report on the synthesis and crystal structure of the title compound, (I).

The title complex crystallizes in the orthorhombic space group Fdd2, with sixteen molecules in the unit cell. The molecular structure is shown in Fig. 1. Both the cationic and anionic fragments of the starting proton transfer compound are involved in complexation. Each CuII atom has a distorted octahedral geometry. It is coordinated by one 1,10-phenanthroline ligand, (phen as bidentate ligand), one 4-hydroxypyridine-2,6-dicarboxylate group, [(hypydc)2- as a tridentate ligand] and one coordinated water molecule. The axial bond lengths, Cu1—O2 and Cu1—O3 [2.3679 (9) and 2.3205 (11) Å, respectively] are longer than the equitoral metal-ligand bond lengths [1.9996 (8) - 2.0370 (9) Å], probabaly due to the Jahn-Teller effect. The dihedral angle between the planes passing through the (hypydc)2– and (phen) fragments is 83.41 (4)°, indicating that these to units are almost perpendicular to one another.

In the crystal weak π-π stacking interactions [3.5642 (11) Å [1/4 + x, 1/4 - y, 1/4 + z] between the aromatic rings of the coordinated (phen) fragments are present (Fig. 2). The water molecules of crystallization are involved in the formation of hydrogen bonds, forming chains (Fig. 3 and Table 1). O—H···O and C—H···O hydrogen bonds, ion pairing and ππ stacking interactions all contribute to the formation of a supramolecular structure (Fig. 4).

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007); Aghabozorg, Daneshvar et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the π-π stacking interactions between the aromatic rings of the 1,10-phenanthroline (phen) fragments with distances of 3.5639 (11) Å [1/4 + x, 1/4 - y, 1/4 + z].
[Figure 3] Fig. 3. A view of the chain of hydrogen bonded water mlecules in compound (I) with hydrogen bonds shown as dashed lines.
[Figure 4] Fig. 4. The crystal packing of compound (I), with hydrogen bonds shown as dashed lines.
Aqua(4-hydroxypyridine-2,6-dicarboxylato)(1,10-phenanothroline)copper(II) 4.5-hydrate top
Crystal data top
[Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2OF(000) = 4320
Mr = 523.94Dx = 1.630 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 30613 reflections
a = 18.686 (4) Åθ = 2.3–36.4°
b = 44.033 (8) ŵ = 1.09 mm1
c = 10.3812 (18) ÅT = 296 K
V = 8542 (3) Å3Block, pale-blue
Z = 160.34 × 0.24 × 0.12 mm
Data collection top
Bruker SMART 1000
diffractometer
10800 independent reflections
Radiation source: fine-focus sealed tube9609 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 100 pixels mm-1θmax = 38.6°, θmin = 1.9°
ω scansh = 3031
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 7269
Tmin = 0.709, Tmax = 0.881l = 1717
59661 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0367P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
10800 reflectionsΔρmax = 0.50 e Å3
300 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), 4504 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (4)
Crystal data top
[Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2OV = 8542 (3) Å3
Mr = 523.94Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 18.686 (4) ŵ = 1.09 mm1
b = 44.033 (8) ÅT = 296 K
c = 10.3812 (18) Å0.34 × 0.24 × 0.12 mm
Data collection top
Bruker SMART 1000
diffractometer
10800 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
9609 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.881Rint = 0.032
59661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.50 e Å3
S = 1.01Δρmin = 0.33 e Å3
10800 reflectionsAbsolute structure: Flack (1983), 4504 Friedel pairs
300 parametersAbsolute structure parameter: 0.007 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.260204 (6)0.052661 (3)1.031738 (12)0.01475 (3)
N10.33349 (5)0.086905 (19)1.03093 (10)0.02096 (15)
N20.19432 (5)0.08711 (2)1.07530 (9)0.01972 (16)
N30.32981 (5)0.019941 (19)0.98387 (8)0.01433 (14)
O10.37788 (5)0.00342 (2)1.29870 (8)0.02511 (17)
O20.29904 (5)0.03122 (2)1.22904 (7)0.02473 (16)
O30.26351 (6)0.054290 (19)0.80826 (9)0.02719 (19)
O40.30653 (5)0.026752 (19)0.64661 (7)0.02505 (17)
O50.47567 (5)0.04570 (2)0.88292 (8)0.02523 (17)
H5A0.48720.04490.80380.030*
O60.17682 (4)0.024272 (16)1.02325 (8)0.01793 (12)
H6D0.16900.01740.94800.022*
H6C0.18540.00801.06430.022*
C10.40278 (7)0.08587 (3)1.00820 (13)0.0302 (3)
H10.42490.06701.00000.036*
C20.44453 (9)0.11231 (4)0.99596 (15)0.0413 (4)
H20.49340.11090.97990.050*
C30.41253 (9)0.14022 (3)1.00797 (14)0.0401 (4)
H30.43940.15790.99920.048*
C40.33932 (8)0.14188 (3)1.03349 (13)0.0307 (2)
C50.29961 (11)0.16990 (3)1.05229 (13)0.0414 (4)
H50.32350.18841.04600.050*
C60.22947 (10)0.16978 (3)1.07841 (15)0.0397 (4)
H60.20590.18821.09060.048*
C70.18977 (8)0.14200 (3)1.08811 (12)0.0312 (3)
C80.11568 (10)0.14002 (4)1.11384 (15)0.0404 (4)
H80.08890.15751.12720.048*
C90.08381 (8)0.11233 (4)1.11891 (14)0.0357 (3)
H90.03510.11081.13600.043*
C100.12452 (7)0.08614 (3)1.09834 (12)0.0265 (2)
H100.10190.06731.10090.032*
C110.22684 (7)0.11447 (2)1.07039 (11)0.0222 (2)
C120.30164 (6)0.11451 (2)1.04432 (10)0.02191 (19)
C130.34558 (6)0.01134 (3)1.21286 (9)0.01798 (18)
C140.36451 (5)0.00388 (2)1.07388 (9)0.01544 (16)
C150.41397 (5)0.01821 (2)1.04245 (10)0.01813 (17)
H150.43770.02901.10650.022*
C160.42769 (5)0.02401 (2)0.91269 (10)0.01755 (17)
C170.39083 (6)0.00763 (2)0.81932 (10)0.01653 (16)
H170.39870.01120.73220.020*
C180.34222 (6)0.01404 (2)0.85910 (9)0.01394 (16)
C190.30013 (6)0.03315 (2)0.76368 (9)0.01689 (17)
O1W0.50000.00000.45689 (13)0.0277 (2)*
H1C0.53840.00260.41430.033*
O2W0.13216 (6)0.15930 (2)0.41663 (14)0.0457 (3)
H2C0.08890.16350.43490.055*
H2D0.13360.14030.42990.055*
O3W0.24433 (5)0.05872 (2)0.44855 (9)0.02822 (19)
H3D0.25860.05000.38010.034*
H3C0.26280.04960.51260.034*
O4W0.13298 (7)0.09704 (2)0.43343 (14)0.0474 (3)
H4D0.16830.08530.44740.057*
H4C0.09740.08570.41670.057*
O5W0.51596 (5)0.04686 (2)0.64555 (9)0.03011 (19)
H5C0.52000.03310.58860.036*
H5D0.55000.05930.63210.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01572 (5)0.01249 (5)0.01605 (5)0.00093 (4)0.00172 (5)0.00189 (4)
N10.0232 (4)0.0187 (4)0.0210 (4)0.0040 (3)0.0044 (4)0.0048 (3)
N20.0230 (4)0.0173 (4)0.0189 (4)0.0048 (3)0.0015 (3)0.0016 (3)
N30.0163 (4)0.0136 (3)0.0131 (3)0.0001 (3)0.0000 (3)0.0003 (3)
O10.0224 (4)0.0370 (5)0.0159 (4)0.0013 (3)0.0015 (3)0.0065 (3)
O20.0276 (4)0.0306 (4)0.0161 (3)0.0069 (3)0.0018 (3)0.0014 (3)
O30.0394 (5)0.0240 (4)0.0181 (4)0.0176 (3)0.0018 (3)0.0007 (3)
O40.0408 (5)0.0205 (4)0.0138 (3)0.0097 (3)0.0028 (3)0.0010 (3)
O50.0265 (4)0.0256 (4)0.0236 (4)0.0144 (3)0.0046 (3)0.0027 (3)
O60.0200 (3)0.0177 (3)0.0161 (3)0.0011 (2)0.0013 (3)0.0014 (3)
C10.0249 (5)0.0303 (6)0.0355 (7)0.0083 (4)0.0074 (5)0.0087 (5)
C20.0321 (7)0.0500 (9)0.0418 (8)0.0241 (6)0.0079 (6)0.0082 (6)
C30.0560 (9)0.0340 (7)0.0305 (7)0.0281 (6)0.0005 (6)0.0032 (5)
C40.0498 (7)0.0198 (5)0.0224 (5)0.0125 (4)0.0037 (5)0.0018 (4)
C50.0805 (12)0.0144 (5)0.0292 (7)0.0099 (6)0.0146 (6)0.0009 (4)
C60.0702 (11)0.0155 (5)0.0333 (6)0.0079 (6)0.0147 (7)0.0050 (4)
C70.0498 (8)0.0179 (5)0.0258 (5)0.0117 (5)0.0070 (5)0.0043 (4)
C80.0524 (9)0.0340 (7)0.0347 (7)0.0262 (7)0.0054 (6)0.0075 (5)
C90.0300 (7)0.0421 (8)0.0352 (7)0.0180 (6)0.0017 (5)0.0053 (6)
C100.0229 (5)0.0303 (6)0.0264 (5)0.0083 (4)0.0028 (4)0.0017 (4)
C110.0333 (6)0.0153 (4)0.0181 (4)0.0040 (4)0.0016 (4)0.0024 (3)
C120.0327 (5)0.0158 (4)0.0173 (4)0.0043 (4)0.0003 (4)0.0026 (3)
C130.0176 (5)0.0235 (5)0.0129 (4)0.0025 (4)0.0001 (3)0.0006 (3)
C140.0147 (4)0.0165 (4)0.0151 (4)0.0011 (3)0.0001 (3)0.0017 (3)
C150.0165 (4)0.0202 (4)0.0178 (4)0.0027 (3)0.0002 (3)0.0043 (3)
C160.0164 (4)0.0159 (4)0.0204 (4)0.0031 (3)0.0015 (3)0.0024 (3)
C170.0174 (4)0.0158 (4)0.0163 (4)0.0019 (3)0.0010 (3)0.0001 (3)
C180.0166 (4)0.0118 (4)0.0135 (4)0.0005 (3)0.0009 (3)0.0002 (3)
C190.0220 (4)0.0132 (4)0.0155 (4)0.0028 (3)0.0021 (3)0.0006 (3)
O2W0.0372 (6)0.0250 (5)0.0747 (8)0.0000 (4)0.0068 (6)0.0087 (5)
O3W0.0340 (5)0.0279 (4)0.0227 (4)0.0101 (3)0.0024 (3)0.0032 (3)
O4W0.0441 (7)0.0248 (5)0.0735 (9)0.0095 (4)0.0168 (6)0.0081 (5)
O5W0.0278 (5)0.0364 (5)0.0262 (4)0.0049 (4)0.0036 (3)0.0030 (3)
Geometric parameters (Å, º) top
Cu1—O61.9996 (8)C5—H50.9300
Cu1—N32.0036 (9)C6—C71.434 (2)
Cu1—N22.0052 (9)C6—H60.9300
Cu1—N12.0370 (9)C7—C111.4082 (16)
Cu1—O32.3219 (10)C7—C81.413 (2)
Cu1—O22.3693 (9)C8—C91.358 (3)
N1—C11.3168 (16)C8—H80.9300
N1—C121.3604 (14)C9—C101.3979 (17)
N2—C101.3267 (16)C9—H90.9300
N2—C111.3505 (15)C10—H100.9300
N3—C141.3392 (13)C11—C121.4237 (17)
N3—C181.3412 (12)C13—C141.5213 (14)
O1—C131.2572 (13)C14—C151.3810 (14)
O2—C131.2453 (14)C15—C161.3948 (15)
O3—C191.2445 (12)C15—H150.9300
O4—C191.2533 (12)C16—C171.3906 (14)
O5—C161.3460 (13)C17—C181.3806 (14)
O5—H5A0.8500C17—H170.9300
O6—H6D0.8500C18—C191.5194 (14)
O6—H6C0.8500O1W—H1C0.8500
C1—C21.4072 (18)O2W—H2C0.8501
C1—H10.9300O2W—H2D0.8501
C2—C31.372 (3)O3W—H3D0.8500
C2—H20.9300O3W—H3C0.8500
C3—C41.395 (2)O4W—H4D0.8501
C3—H30.9300O4W—H4C0.8498
C4—C121.4005 (15)O5W—H5C0.8501
C4—C51.453 (2)O5W—H5D0.8499
C5—C61.338 (3)
O6—Cu1—N392.60 (4)C5—C6—H6119.2
O6—Cu1—N290.26 (4)C7—C6—H6119.2
N3—Cu1—N2176.79 (4)C11—C7—C8116.97 (13)
O6—Cu1—N1170.57 (3)C11—C7—C6118.07 (14)
N3—Cu1—N195.44 (4)C8—C7—C6124.96 (13)
N2—Cu1—N181.59 (4)C9—C8—C7119.51 (12)
O6—Cu1—O389.77 (4)C9—C8—H8120.2
N3—Cu1—O375.95 (3)C7—C8—H8120.2
N2—Cu1—O3102.61 (3)C8—C9—C10119.75 (14)
N1—Cu1—O387.43 (4)C8—C9—H9120.1
O6—Cu1—O291.59 (3)C10—C9—H9120.1
N3—Cu1—O274.28 (3)N2—C10—C9122.41 (13)
N2—Cu1—O2107.13 (4)N2—C10—H10118.8
N1—Cu1—O295.31 (4)C9—C10—H10118.8
O3—Cu1—O2150.22 (3)N2—C11—C7122.80 (12)
C1—N1—C12118.64 (10)N2—C11—C12116.73 (9)
C1—N1—Cu1129.51 (8)C7—C11—C12120.46 (11)
C12—N1—Cu1111.52 (7)N1—C12—C4122.74 (12)
C10—N2—C11118.55 (10)N1—C12—C11116.62 (9)
C10—N2—Cu1128.30 (9)C4—C12—C11120.64 (11)
C11—N2—Cu1112.97 (8)O2—C13—O1127.08 (10)
C14—N3—C18119.19 (9)O2—C13—C14116.23 (9)
C14—N3—Cu1121.39 (7)O1—C13—C14116.69 (10)
C18—N3—Cu1119.41 (7)N3—C14—C15122.08 (9)
C13—O2—Cu1112.17 (7)N3—C14—C13115.80 (9)
C19—O3—Cu1111.29 (7)C15—C14—C13122.12 (9)
C16—O5—H5A111.1C14—C15—C16118.69 (9)
Cu1—O6—H6D113.4C14—C15—H15120.7
Cu1—O6—H6C111.0C16—C15—H15120.7
H6D—O6—H6C101.1O5—C16—C17122.54 (10)
N1—C1—C2122.19 (13)O5—C16—C15118.30 (9)
N1—C1—H1118.9C17—C16—C15119.16 (9)
C2—C1—H1118.9C18—C17—C16118.41 (9)
C3—C2—C1119.41 (15)C18—C17—H17120.8
C3—C2—H2120.3C16—C17—H17120.8
C1—C2—H2120.3N3—C18—C17122.45 (9)
C2—C3—C4119.43 (12)N3—C18—C19115.64 (8)
C2—C3—H3120.3C17—C18—C19121.90 (9)
C4—C3—H3120.3O3—C19—O4125.54 (10)
C3—C4—C12117.59 (12)O3—C19—C18117.16 (9)
C3—C4—C5124.80 (12)O4—C19—C18117.27 (9)
C12—C4—C5117.60 (13)H2C—O2W—H2D102.1
C6—C5—C4121.61 (12)H3D—O3W—H3C108.3
C6—C5—H5119.2H4D—O4W—H4C106.6
C4—C5—H5119.2H5C—O5W—H5D106.2
C5—C6—C7121.61 (13)
O6—Cu1—N1—C1149.7 (2)C7—C8—C9—C100.2 (2)
N3—Cu1—N1—C11.22 (12)C11—N2—C10—C90.67 (18)
N2—Cu1—N1—C1179.99 (13)Cu1—N2—C10—C9175.40 (10)
O3—Cu1—N1—C176.84 (12)C8—C9—C10—N20.9 (2)
O2—Cu1—N1—C173.44 (12)C10—N2—C11—C70.28 (16)
O6—Cu1—N1—C1223.5 (3)Cu1—N2—C11—C7175.23 (9)
N3—Cu1—N1—C12171.95 (8)C10—N2—C11—C12179.47 (11)
N2—Cu1—N1—C126.81 (8)Cu1—N2—C11—C123.95 (13)
O3—Cu1—N1—C1296.34 (8)C8—C7—C11—N20.96 (17)
O2—Cu1—N1—C12113.39 (8)C6—C7—C11—N2178.83 (11)
O6—Cu1—N2—C105.57 (10)C8—C7—C11—C12179.88 (12)
N3—Cu1—N2—C10158.3 (7)C6—C7—C11—C120.32 (17)
N1—Cu1—N2—C10179.17 (11)C1—N1—C12—C40.74 (18)
O3—Cu1—N2—C1095.39 (10)Cu1—N1—C12—C4173.26 (9)
O2—Cu1—N2—C1086.17 (10)C1—N1—C12—C11179.24 (11)
O6—Cu1—N2—C11169.41 (8)Cu1—N1—C12—C116.76 (13)
N3—Cu1—N2—C1116.7 (7)C3—C4—C12—N10.05 (19)
N1—Cu1—N2—C115.85 (8)C5—C4—C12—N1178.80 (11)
O3—Cu1—N2—C1179.58 (8)C3—C4—C12—C11179.93 (12)
O2—Cu1—N2—C1198.86 (8)C5—C4—C12—C111.18 (18)
O6—Cu1—N3—C1493.65 (8)N2—C11—C12—N12.01 (16)
N2—Cu1—N3—C14113.7 (7)C7—C11—C12—N1178.79 (10)
N1—Cu1—N3—C1491.27 (8)N2—C11—C12—C4178.01 (10)
O3—Cu1—N3—C14177.24 (8)C7—C11—C12—C41.19 (17)
O2—Cu1—N3—C142.73 (7)Cu1—O2—C13—O1177.76 (10)
O6—Cu1—N3—C1886.62 (8)Cu1—O2—C13—C143.11 (12)
N2—Cu1—N3—C1866.1 (7)C18—N3—C14—C151.41 (15)
N1—Cu1—N3—C1888.46 (8)Cu1—N3—C14—C15178.33 (7)
O3—Cu1—N3—C182.49 (8)C18—N3—C14—C13178.14 (9)
O2—Cu1—N3—C18177.53 (8)Cu1—N3—C14—C132.13 (12)
O6—Cu1—O2—C1395.47 (8)O2—C13—C14—N31.10 (14)
N3—Cu1—O2—C133.22 (8)O1—C13—C14—N3179.67 (10)
N2—Cu1—O2—C13173.77 (8)O2—C13—C14—C15178.44 (10)
N1—Cu1—O2—C1390.96 (8)O1—C13—C14—C150.78 (15)
O3—Cu1—O2—C133.16 (12)N3—C14—C15—C160.40 (15)
O6—Cu1—O3—C1986.68 (9)C13—C14—C15—C16179.12 (10)
N3—Cu1—O3—C196.06 (8)C14—C15—C16—O5179.62 (10)
N2—Cu1—O3—C19176.89 (8)C14—C15—C16—C170.57 (15)
N1—Cu1—O3—C19102.33 (9)O5—C16—C17—C18179.53 (10)
O2—Cu1—O3—C196.11 (13)C15—C16—C17—C180.52 (15)
C12—N1—C1—C20.7 (2)C14—N3—C18—C171.47 (15)
Cu1—N1—C1—C2172.03 (11)Cu1—N3—C18—C17178.27 (8)
N1—C1—C2—C30.0 (2)C14—N3—C18—C19179.53 (9)
C1—C2—C3—C40.7 (2)Cu1—N3—C18—C190.73 (12)
C2—C3—C4—C120.7 (2)C16—C17—C18—N30.50 (15)
C2—C3—C4—C5178.00 (14)C16—C17—C18—C19179.45 (9)
C3—C4—C5—C6178.98 (15)Cu1—O3—C19—O4173.59 (10)
C12—C4—C5—C60.3 (2)Cu1—O3—C19—C188.18 (12)
C4—C5—C6—C70.5 (2)N3—C18—C19—O36.64 (14)
C5—C6—C7—C110.5 (2)C17—C18—C19—O3172.37 (10)
C5—C6—C7—C8179.23 (14)N3—C18—C19—O4174.98 (10)
C11—C7—C8—C90.7 (2)C17—C18—C19—O46.01 (15)
C6—C7—C8—C9179.07 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O5W0.851.732.5771 (14)174
O6—H6D···O1i0.851.882.7059 (12)162
O6—H6C···O4ii0.851.762.6048 (11)174
O1W—H1C···O1iii0.851.972.8154 (12)171
O2W—H2C···O3iv0.852.373.1062 (16)145
O2W—H2D···O4W0.851.902.7470 (16)172
O3W—H3D···O2v0.851.932.7757 (13)175
O3W—H3C···O40.851.902.7496 (13)175
O4W—H4D···O3W0.851.842.6834 (15)171
O4W—H4C···O5i0.852.263.0835 (16)165
O5W—H5C···O1W0.852.032.8604 (15)164
O5W—H5D···O2Wvi0.851.912.7204 (15)159
C1—H1···O5vii0.932.413.1610 (18)137
C3—H3···O3viii0.932.253.130 (2)158
C8—H8···O3Wix0.932.423.315 (2)161
C10—H10···O60.932.502.9995 (17)114
C10—H10···O5Wii0.932.423.1809 (19)139
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y, z1; (iv) x1/4, y+1/4, z1/4; (v) x, y, z1; (vi) x+3/4, y1/4, z+1/4; (vii) x+1, y, z; (viii) x+1/4, y+1/4, z+1/4; (ix) x1/4, y+1/4, z+3/4.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2O
Mr523.94
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)296
a, b, c (Å)18.686 (4), 44.033 (8), 10.3812 (18)
V3)8542 (3)
Z16
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.34 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART 1000
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.709, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
59661, 10800, 9609
Rint0.032
(sin θ/λ)max1)0.878
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.01
No. of reflections10800
No. of parameters300
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.33
Absolute structureFlack (1983), 4504 Friedel pairs
Absolute structure parameter0.007 (4)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O5W0.851.732.5771 (14)174
O6—H6D···O1i0.851.882.7059 (12)162
O6—H6C···O4ii0.851.762.6048 (11)174
O1W—H1C···O1iii0.851.972.8154 (12)171
O2W—H2C···O3iv0.852.373.1062 (16)145
O2W—H2D···O4W0.851.902.7470 (16)172
O3W—H3D···O2v0.851.932.7757 (13)175
O3W—H3C···O40.851.902.7496 (13)175
O4W—H4D···O3W0.851.842.6834 (15)171
O4W—H4C···O5i0.852.263.0835 (16)165
O5W—H5C···O1W0.852.032.8604 (15)164.
O5W—H5D···O2Wvi0.851.912.7204 (15)159
C1—H1···O5vii0.932.413.1610 (18)137
C3—H3···O3viii0.932.253.130 (2)158
C8—H8···O3Wix0.932.423.315 (2)161
C10—H10···O60.932.502.9995 (17)114
C10—H10···O5Wii0.932.423.1809 (19)139
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y, z1; (iv) x1/4, y+1/4, z1/4; (v) x, y, z1; (vi) x+3/4, y1/4, z+1/4; (vii) x+1, y, z; (viii) x+1/4, y+1/4, z+1/4; (ix) x1/4, y+1/4, z+3/4.
 

Acknowledgements

Financial support from Ilam University and the Teacher Training University is gratefully acknowledged.

References

First citationAghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SADABS (Version 2004/1), SAINT (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds