metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­phenyl­phospho­nium) bis­­[N-(octyl­sulfon­yl)di­thio­carbimato(2–)-κ2S,S′]­nickelate(II)

aDepartamento de Química, UFV, 36570-000 Viçosa, MG, Brazil, and bInstituto de Física, UFG, Caixa Postal 131, 74001-970 Goiânia, Brazil
*Correspondence e-mail: jrsabino@if.ufg.br

(Received 28 November 2007; accepted 2 December 2007; online 12 December 2007)

The Ni atom in the title complex, (C24H20P)2[Ni(C9H17NO2S3)2], lies on a twofold axis within a square-planar geometry defined by four S atoms derived from two dithio­carbimate dianions, each forming a four-membered chelate ring. A small distortion, described by a deviation of the NiII atom by 0.083 (1) Å from the plane through the four S atoms, and also by the torsion angles about the Ni—S bonds, implies a folded conformation for the chelate ring.

Related literature

The title complex is a new member of the class of Ni complexes with general formula [Ni(R—SO2N=CS2)2]2− (Hummel et al., 1989[Hummel, H. U. & Korn, U. Z. (1989). Z. Naturforsch. B Chem. Sci. 44, 29-34.]; Franca et al., 2006[Franca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, A. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119-2126.]; Oliveira et al., 1997[Oliveira, M. R. L., De Bellis, V. M. & Fernandes, N. G. (1997). Struct. Chem. 8, 205-209.], 1999[Oliveira, M. R. L., Graúdo, J. E. J. C., Speziali, N. L. & De Bellis, V. M. (1999). Struct. Chem. 10, 41-45.], 2003[Oliveira, M. R. L., Diniz, R., De Bellis, V. M. & Fernandes, N. G. (2003). Polyhedron, 22, 1561-1566.]). The literature describes only two other complexes of this class having tetra­phenyl­phospho­nium as counter-ion (Hummel & Korn, 1989[Hummel, H. U. & Korn, U. Z. (1989). Z. Naturforsch. B Chem. Sci. 44, 29-34.]; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For other related literature, see: Hogarth (2005[Hogarth, G. A. (2005). Prog. Inorg. Chem. 53, 71-561.]); Vogel (1966[Vogel, A. I. (1966). A Textbook of Practical Organic Chemistry Including Qualitative Organic Analysis, p. 543. London: Logmans, Green and Co. Ltd.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • (C24H20P)2[Ni(C9H17NO2S3)2]

  • Mr = 1272.32

  • Monoclinic, C 2/c

  • a = 29.113 (4) Å

  • b = 10.425 (2) Å

  • c = 22.966 (3) Å

  • β = 115.50 (1)°

  • V = 6291.3 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.17 mm−1

  • T = 297 (2) K

  • 0.16 × 0.16 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: Gaussian (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) Tmin = 0.629, Tmax = 0.787

  • 11798 measured reflections

  • 5696 independent reflections

  • 3927 reflections with I > 2σ(I)

  • Rint = 0.079

  • 2 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.208

  • S = 1.05

  • 5696 reflections

  • 367 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni—S1 2.2048 (12)
Ni—S2 2.2075 (11)
S1—Ni—S2 78.52 (4)
S2i—Ni—S1—C1 169.45 (15)
S1i—Ni—S2—C1 −169.41 (15)
C2—S3—N1—C1 −63.9 (4)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯S2 0.97 2.83 3.490 (5) 126
C13—H13⋯O2ii 0.93 2.58 3.276 (6) 132
Symmetry code: (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We became interested in the syntheses and characterization of nickel(II) dithiocarbimates complexes due to their similarity with the dithiocarbamates, which have been used as molecular precursors for various nickel sulfides by MOCVD techniques (Hogarth, 2005). Some anionic nickel-dithiocarbimato complexes with general formula [Ni(RSO2N=CS2)2]2- (R = aryl or alkyl groups) have had their structures determined by X-ray diffraction techniques (Oliveira et al., 1997; Oliveira et al., 1999; Oliveira et al., 2003). However, only two of these complexes have the tetraphenylphosphonium as the counterion (Hummel & Korn, 1989) and only two were aliphatic (Oliveira et al., 1997; Franca et al., 2006). Variations in the counter-ions and in the R group can be important to modulate the volatility of these compounds favouring their application in MOCVD techniques. The title complex, (I), which is quite stable under ambient conditions, comprises a complex dianion and two tetraphenylphosphonium cations, with the formula (Ph4P)2(Ni(C8H17SO2N=CS2)2)2-, Figs 1 & 2.

The NiII ion is located in a twofold axis of symmetry being coordinated by four sulfur atoms from the dithiocarbimate dianion in a square planar coordination environment, Fig. 1 & Table 1. The Ni centre is located at 0.083 (1) Å out of the plane through the 4 S atoms. The resultant 4-membered Ni/S1/C1/S2 chelate ring shows a folded conformation [C&P Q(2) of 0.113 (3) Å; (Cremer & Pople, 1975)], giving the torsion angles S1i—Ni—S2—C1 and S2i—Ni—S1—C1 of 169.5 (2)° and -169.4 (2)°, respectively [symmetry code: (i) -x, y, -z + 1/2]. These values are outside the range from 174° to 180° observed in the related structures, with the smaller value found in (C14H10N2NiO4S6)2-.2(C24H20P)+ (Hummel & Korn, 1989), showing an higher distortion of the chelate ring in (I). This might be caused by the requirements of the packing of the counterion.

The conformation of (I) is stabilized by a weak intra-molecular H-bond of type C2–H2B···S2 (Table 2), which defines the torsion angle C1–N1–S3–C2 of -63.9 (4)°. Due to the flexibility of the long C chain, disorder was evident [see Experimental] so that the only bond distances determined reliably were C2—C3 [1.517 (7) Å] and C3—C4 [1.507 (7) Å]. The other C—C bonds were restrained to 1.54 Å and the chain conformation might be described, starting from the torsion angle about the C2–C3 bond, as: trans, gauche, trans, trans, cis, respectively. The actual torsion angles deviate from the ideal 0°, 60° and 180° due to repulsion due to the neighbouring molecules' C chains.

Related literature top

The title complex is a new member of the class of Ni complexes with general formula [Ni(R—SO2N?CS2)2]2- (Hummel et al., 1989; Franca et al., 2006; Oliveira et al., 1997, 1999, 2003). The literature describes only two other complexes of this class having tetraphenylphosphonium as counter-ion (Hummel & Korn, 1989; Allen, 2002). For other related literature, see: Hogarth (2005); Vogel (1966); Cremer & Pople (1975).

Experimental top

The octanesulfonamide was prepared from octanesulfonyl chloride in a similar procedure as described elsewhere (Vogel, 1966). Potassium N-(octylsulfonyl)dithiocarbimate was prepared from the sulfonamide using procedures described in the literature for analogous compounds Complex (I) was prepared in 1:1 (10 ml) methanol:water mixture from NiCl2.6H2O (1.0 mmol), potassium N-(octylsulfonyl)dithiocarbimate dihydrate (1.0 mmol) and tetraphenylphosphonium bromide (2 mmol). The reaction mixture was stirred for 1 h at room temperature. The green solid obtained was filtered, washed with distilled water and dried under reduced pressure for 1 day. Suitable crystals of (I) were obtained by slow evaporation of the solvent water/methanol (1:1 v/v); m. pt. 427.5–429.1 K. Analysis found: C 62.43, H 5.81, N 2.42, Ni 4.59; C66H74N2NiO4P2S6 requires: C 62.30, H 5.86, N 2.20, Ni 4.61%. IR (most important bands, cm-1): 1398 ν(C=N); 1268 νasym(SO2); 1123 νsym(SO2); 936 νasym(CS2) and 381 ν(NiS).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.5 Ueq(C) for methyl-H atoms and Uiso(H) = 1.2 Ueq(C) for other atoms. The bond distances C4–C5, C5–C6, C6–C7, C7–C8 and C8–C9 were restrained to 1.54 Å. The atoms C5 to C9 are very disordered and any attempt to model this disorder over multiple sites was not reliable.

Structure description top

We became interested in the syntheses and characterization of nickel(II) dithiocarbimates complexes due to their similarity with the dithiocarbamates, which have been used as molecular precursors for various nickel sulfides by MOCVD techniques (Hogarth, 2005). Some anionic nickel-dithiocarbimato complexes with general formula [Ni(RSO2N=CS2)2]2- (R = aryl or alkyl groups) have had their structures determined by X-ray diffraction techniques (Oliveira et al., 1997; Oliveira et al., 1999; Oliveira et al., 2003). However, only two of these complexes have the tetraphenylphosphonium as the counterion (Hummel & Korn, 1989) and only two were aliphatic (Oliveira et al., 1997; Franca et al., 2006). Variations in the counter-ions and in the R group can be important to modulate the volatility of these compounds favouring their application in MOCVD techniques. The title complex, (I), which is quite stable under ambient conditions, comprises a complex dianion and two tetraphenylphosphonium cations, with the formula (Ph4P)2(Ni(C8H17SO2N=CS2)2)2-, Figs 1 & 2.

The NiII ion is located in a twofold axis of symmetry being coordinated by four sulfur atoms from the dithiocarbimate dianion in a square planar coordination environment, Fig. 1 & Table 1. The Ni centre is located at 0.083 (1) Å out of the plane through the 4 S atoms. The resultant 4-membered Ni/S1/C1/S2 chelate ring shows a folded conformation [C&P Q(2) of 0.113 (3) Å; (Cremer & Pople, 1975)], giving the torsion angles S1i—Ni—S2—C1 and S2i—Ni—S1—C1 of 169.5 (2)° and -169.4 (2)°, respectively [symmetry code: (i) -x, y, -z + 1/2]. These values are outside the range from 174° to 180° observed in the related structures, with the smaller value found in (C14H10N2NiO4S6)2-.2(C24H20P)+ (Hummel & Korn, 1989), showing an higher distortion of the chelate ring in (I). This might be caused by the requirements of the packing of the counterion.

The conformation of (I) is stabilized by a weak intra-molecular H-bond of type C2–H2B···S2 (Table 2), which defines the torsion angle C1–N1–S3–C2 of -63.9 (4)°. Due to the flexibility of the long C chain, disorder was evident [see Experimental] so that the only bond distances determined reliably were C2—C3 [1.517 (7) Å] and C3—C4 [1.507 (7) Å]. The other C—C bonds were restrained to 1.54 Å and the chain conformation might be described, starting from the torsion angle about the C2–C3 bond, as: trans, gauche, trans, trans, cis, respectively. The actual torsion angles deviate from the ideal 0°, 60° and 180° due to repulsion due to the neighbouring molecules' C chains.

The title complex is a new member of the class of Ni complexes with general formula [Ni(R—SO2N?CS2)2]2- (Hummel et al., 1989; Franca et al., 2006; Oliveira et al., 1997, 1999, 2003). The literature describes only two other complexes of this class having tetraphenylphosphonium as counter-ion (Hummel & Korn, 1989; Allen, 2002). For other related literature, see: Hogarth (2005); Vogel (1966); Cremer & Pople (1975).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC (Enraf–Nonius, 1993); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the dianion in (I) with 30% probability displacement ellipsoids showing atom labelling scheme. Symemtry operation (i): -x, y, -z + 1/2.
[Figure 2] Fig. 2. H-bonding in (I). The b axis is oriented upward and the a axis points to the right. Symmetry operation (iii): x+1/2, y - 1/2, z; (iv) -x+1, y, -z + 1/2. Only the hydrogen atoms participating in the interactions are shown.
Bis(tetraphenylphosphonium) bis[N-(octylsulfonyl)dithiocarbimato(2-)-κ2S,S']nickelate(II) top
Crystal data top
(C24H20P)2[Ni(C9H17NO2S3)2]F(000) = 2680
Mr = 1272.32Dx = 1.343 Mg m3
Monoclinic, C2/cMelting point: 428 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54180 Å
a = 29.113 (4) ÅCell parameters from 25 reflections
b = 10.425 (2) Åθ = 16.2–30.1°
c = 22.966 (3) ŵ = 3.17 mm1
β = 115.50 (1)°T = 297 K
V = 6291.3 (18) Å3Prism, dark-yellow
Z = 40.16 × 0.16 × 0.08 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3927 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 68°, θmin = 3.4°
non–profiled ω/2θ scansh = 3434
Absorption correction: gaussian
(Spek, 2003)
k = 1212
Tmin = 0.629, Tmax = 0.787l = 1827
11798 measured reflections2 standard reflections every 120 min
5696 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.1159P)2 + 8.6294P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.208(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.59 e Å3
5696 reflectionsΔρmin = 0.61 e Å3
367 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.00064 (8)
Secondary atom site location: difference Fourier map
Crystal data top
(C24H20P)2[Ni(C9H17NO2S3)2]V = 6291.3 (18) Å3
Mr = 1272.32Z = 4
Monoclinic, C2/cCu Kα radiation
a = 29.113 (4) ŵ = 3.17 mm1
b = 10.425 (2) ÅT = 297 K
c = 22.966 (3) Å0.16 × 0.16 × 0.08 mm
β = 115.50 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3927 reflections with I > 2σ(I)
Absorption correction: gaussian
(Spek, 2003)
Rint = 0.079
Tmin = 0.629, Tmax = 0.7872 standard reflections every 120 min
11798 measured reflections intensity decay: 1%
5696 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0615 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 1.05Δρmax = 0.59 e Å3
5696 reflectionsΔρmin = 0.61 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni00.82980 (10)0.250.0545 (3)
S10.07020 (4)0.82179 (13)0.34078 (6)0.0654 (4)
S20.05891 (4)0.82194 (12)0.21372 (5)0.0622 (3)
S30.18146 (4)0.73175 (12)0.27711 (5)0.0574 (3)
O20.17880 (14)0.8302 (3)0.23259 (18)0.0748 (9)
O10.23151 (12)0.6954 (4)0.32300 (17)0.0849 (11)
N10.15016 (13)0.7668 (4)0.31917 (17)0.0590 (9)
C10.10265 (16)0.7992 (4)0.2937 (2)0.0555 (10)
C20.15171 (18)0.5925 (5)0.2332 (3)0.0697 (12)
H2A0.14980.52870.26280.084*
H2B0.11720.61360.20280.084*
C30.1798 (2)0.5359 (5)0.1968 (3)0.0793 (15)
H3A0.18390.60160.16950.095*
H3B0.21340.5090.22750.095*
C40.1522 (2)0.4229 (6)0.1558 (3)0.0872 (16)
H4A0.14250.36460.18160.105*
H4B0.17520.37730.14260.105*
C50.1043 (2)0.4607 (7)0.0953 (3)0.113 (2)
H5A0.11260.51960.06860.136*
H5B0.07920.50030.10690.136*
C60.0845 (4)0.3320 (8)0.0602 (5)0.186 (5)
H6A0.1090.29480.04680.224*
H6B0.07830.27160.08810.224*
C70.0349 (5)0.3651 (11)0.0013 (6)0.271 (9)
H7A0.04240.42760.02460.325*
H7B0.0120.40560.01640.325*
C80.0069 (5)0.2514 (11)0.0422 (6)0.241 (8)
H8A0.02620.24940.04140.289*
H8B0.00050.27840.08550.289*
C90.0228 (4)0.1100 (10)0.0385 (5)0.191 (5)
H9A0.00510.06060.06870.286*
H9B0.03210.07830.00440.286*
H9C0.05130.10290.04880.286*
P10.36685 (3)0.78525 (10)0.07711 (5)0.0464 (3)
C210.35663 (14)0.6605 (4)0.0188 (2)0.0511 (9)
C220.32109 (16)0.5653 (4)0.0083 (2)0.0635 (11)
H220.30550.55560.03590.076*
C230.3090 (2)0.4840 (5)0.0440 (3)0.0807 (15)
H230.2850.41970.05140.097*
C240.3315 (2)0.4963 (6)0.0847 (3)0.0868 (17)
H240.32260.44110.11970.104*
C250.3678 (2)0.5917 (6)0.0740 (2)0.0788 (15)
H250.38340.60060.10160.095*
C260.38034 (18)0.6729 (5)0.0218 (2)0.0664 (12)
H260.40480.73610.01380.08*
C310.43463 (14)0.8089 (4)0.12143 (19)0.0496 (9)
C320.46464 (16)0.7003 (4)0.1410 (2)0.0606 (11)
H320.45040.61940.12820.073*
C330.51645 (17)0.7136 (5)0.1802 (2)0.0703 (13)
H330.53690.6410.19390.084*
C340.53720 (17)0.8314 (5)0.1985 (3)0.0727 (14)
H340.57180.83870.22530.087*
C350.50824 (18)0.9399 (5)0.1782 (3)0.0746 (14)
H350.52311.02030.19060.09*
C360.45635 (16)0.9291 (4)0.1388 (2)0.0621 (11)
H360.43641.00230.12420.075*
C410.33391 (14)0.9246 (4)0.03316 (18)0.0474 (9)
C420.30224 (14)0.9135 (4)0.03291 (19)0.0520 (9)
H420.2990.8350.05350.062*
C430.27604 (15)1.0182 (4)0.0673 (2)0.0556 (10)
H430.25461.00990.1110.067*
C440.28115 (16)1.1355 (5)0.0377 (2)0.0618 (11)
H440.26381.20660.06150.074*
C450.31226 (17)1.1474 (4)0.0278 (2)0.0634 (11)
H450.31571.22660.04790.076*
C460.33794 (15)1.0433 (4)0.0630 (2)0.0546 (10)
H460.35821.05170.10710.065*
C110.34119 (14)0.7416 (4)0.13264 (19)0.0488 (9)
C120.36240 (16)0.6398 (4)0.1756 (2)0.0601 (11)
H120.38910.59260.17440.072*
C130.34362 (17)0.6096 (5)0.2196 (2)0.0639 (11)
H130.35820.54320.24880.077*
C140.30335 (18)0.6772 (5)0.2207 (2)0.0675 (13)
H140.29070.65490.25030.081*
C150.28174 (17)0.7762 (5)0.1792 (2)0.0649 (12)
H150.25470.82160.18060.078*
C160.30044 (16)0.8092 (4)0.1344 (2)0.0589 (11)
H160.28570.87630.10570.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0469 (5)0.0568 (6)0.0611 (6)00.0243 (5)0
S10.0547 (6)0.0852 (9)0.0590 (7)0.0010 (5)0.0271 (5)0.0024 (6)
S20.0493 (6)0.0812 (8)0.0548 (6)0.0051 (5)0.0213 (5)0.0067 (5)
S30.0461 (5)0.0688 (7)0.0559 (6)0.0026 (4)0.0206 (5)0.0007 (5)
O20.088 (2)0.065 (2)0.087 (2)0.0014 (17)0.054 (2)0.0053 (17)
O10.0511 (18)0.126 (3)0.069 (2)0.0167 (18)0.0180 (16)0.006 (2)
N10.0489 (18)0.076 (2)0.0522 (19)0.0010 (17)0.0215 (15)0.0001 (18)
C10.052 (2)0.054 (2)0.059 (2)0.0034 (18)0.0225 (19)0.0018 (19)
C20.065 (3)0.066 (3)0.086 (3)0.000 (2)0.041 (3)0.003 (3)
C30.075 (3)0.080 (4)0.097 (4)0.006 (3)0.051 (3)0.011 (3)
C40.103 (4)0.078 (4)0.104 (4)0.005 (3)0.066 (4)0.006 (3)
C50.102 (5)0.131 (6)0.117 (6)0.024 (4)0.058 (5)0.019 (5)
C60.151 (9)0.249 (14)0.147 (9)0.014 (9)0.054 (7)0.079 (9)
C70.259 (18)0.29 (2)0.175 (12)0.043 (14)0.007 (13)0.060 (14)
C80.154 (10)0.306 (19)0.185 (12)0.055 (12)0.000 (9)0.129 (13)
C90.182 (11)0.218 (14)0.141 (9)0.021 (10)0.040 (8)0.020 (9)
P10.0402 (5)0.0469 (6)0.0489 (6)0.0006 (4)0.0164 (4)0.0005 (4)
C210.0459 (19)0.049 (2)0.055 (2)0.0075 (16)0.0184 (17)0.0009 (18)
C220.056 (2)0.051 (2)0.079 (3)0.0062 (19)0.025 (2)0.004 (2)
C230.070 (3)0.060 (3)0.094 (4)0.005 (2)0.018 (3)0.019 (3)
C240.087 (4)0.076 (4)0.083 (4)0.015 (3)0.022 (3)0.028 (3)
C250.082 (3)0.090 (4)0.060 (3)0.011 (3)0.027 (3)0.013 (3)
C260.062 (3)0.070 (3)0.067 (3)0.001 (2)0.028 (2)0.005 (2)
C310.0409 (19)0.055 (2)0.050 (2)0.0031 (16)0.0177 (17)0.0007 (18)
C320.048 (2)0.061 (3)0.069 (3)0.0011 (19)0.021 (2)0.002 (2)
C330.047 (2)0.083 (3)0.078 (3)0.008 (2)0.023 (2)0.014 (3)
C340.043 (2)0.096 (4)0.073 (3)0.010 (2)0.019 (2)0.007 (3)
C350.056 (2)0.076 (3)0.089 (4)0.020 (2)0.028 (2)0.002 (3)
C360.049 (2)0.062 (3)0.075 (3)0.0077 (19)0.027 (2)0.003 (2)
C410.0435 (18)0.049 (2)0.047 (2)0.0023 (16)0.0167 (16)0.0017 (17)
C420.047 (2)0.052 (2)0.051 (2)0.0022 (17)0.0163 (17)0.0052 (18)
C430.052 (2)0.060 (3)0.050 (2)0.0046 (19)0.0181 (18)0.004 (2)
C440.058 (2)0.057 (3)0.066 (3)0.013 (2)0.023 (2)0.009 (2)
C450.068 (3)0.050 (2)0.067 (3)0.008 (2)0.024 (2)0.007 (2)
C460.053 (2)0.054 (2)0.053 (2)0.0023 (18)0.0191 (18)0.0032 (19)
C110.0417 (19)0.049 (2)0.051 (2)0.0034 (16)0.0154 (17)0.0023 (17)
C120.054 (2)0.057 (2)0.067 (3)0.0031 (19)0.023 (2)0.007 (2)
C130.061 (2)0.065 (3)0.063 (3)0.008 (2)0.024 (2)0.007 (2)
C140.063 (3)0.084 (3)0.060 (3)0.021 (2)0.030 (2)0.008 (2)
C150.056 (2)0.075 (3)0.073 (3)0.002 (2)0.037 (2)0.002 (3)
C160.048 (2)0.064 (3)0.063 (3)0.0029 (18)0.0214 (19)0.004 (2)
Geometric parameters (Å, º) top
Ni—S12.2048 (12)C22—H220.93
Ni—S1i2.2048 (12)C23—C241.359 (8)
Ni—S2i2.2075 (11)C23—H230.93
Ni—S22.2075 (11)C24—C251.394 (8)
S1—C11.731 (4)C24—H240.93
S2—C11.743 (4)C25—C261.383 (7)
S3—O21.427 (3)C25—H250.93
S3—O11.434 (3)C26—H260.93
S3—N11.629 (4)C31—C321.381 (6)
S3—C21.766 (5)C31—C361.382 (6)
N1—C11.294 (5)C32—C331.391 (6)
C2—C31.517 (7)C32—H320.93
C2—H2A0.97C33—C341.353 (7)
C2—H2B0.97C33—H330.93
C3—C41.507 (7)C34—C351.367 (7)
C3—H3A0.97C34—H340.93
C3—H3B0.97C35—C361.392 (6)
C4—C51.537 (9)C35—H350.93
C4—H4A0.97C36—H360.93
C4—H4B0.97C41—C461.396 (6)
C5—C61.543 (11)C41—C421.400 (6)
C5—H5A0.97C42—C431.370 (6)
C5—H5B0.97C42—H420.93
C6—C71.534 (17)C43—C441.376 (6)
C6—H6A0.97C43—H430.93
C6—H6B0.97C44—C451.388 (7)
C7—C81.538 (17)C44—H440.93
C7—H7A0.97C45—C461.367 (6)
C7—H7B0.97C45—H450.93
C8—C91.536 (18)C46—H460.93
C8—H8A0.97C11—C161.395 (6)
C8—H8B0.97C11—C121.399 (6)
C9—H9A0.96C12—C131.377 (6)
C9—H9B0.96C12—H120.93
C9—H9C0.96C13—C141.377 (7)
P1—C111.792 (4)C13—H130.93
P1—C411.793 (4)C14—C151.362 (7)
P1—C211.796 (4)C14—H140.93
P1—C311.806 (4)C15—C161.399 (6)
C21—C221.378 (6)C15—H150.93
C21—C261.385 (6)C16—H160.93
C22—C231.386 (7)
S1—Ni—S1i175.66 (8)C22—C21—C26120.2 (4)
S1—Ni—S2i101.31 (4)C22—C21—P1121.6 (3)
S1i—Ni—S2i78.52 (4)C26—C21—P1117.6 (3)
S1—Ni—S278.52 (4)C21—C22—C23118.9 (5)
S1i—Ni—S2101.31 (4)C21—C22—H22120.5
S2i—Ni—S2175.75 (8)C23—C22—H22120.5
C1—S1—Ni87.00 (15)C24—C23—C22121.4 (5)
C1—S2—Ni86.61 (15)C24—C23—H23119.3
O2—S3—O1116.2 (2)C22—C23—H23119.3
O2—S3—N1113.0 (2)C23—C24—C25120.0 (5)
O1—S3—N1105.9 (2)C23—C24—H24120
O2—S3—C2108.7 (2)C25—C24—H24120
O1—S3—C2107.2 (2)C26—C25—C24119.1 (5)
N1—S3—C2105.1 (2)C26—C25—H25120.5
C1—N1—S3123.6 (3)C24—C25—H25120.5
N1—C1—S1121.2 (3)C25—C26—C21120.4 (5)
N1—C1—S2131.7 (4)C25—C26—H26119.8
S1—C1—S2107.0 (2)C21—C26—H26119.8
C3—C2—S3112.7 (3)C32—C31—C36120.1 (4)
C3—C2—H2A109.1C32—C31—P1117.1 (3)
S3—C2—H2A109.1C36—C31—P1122.6 (3)
C3—C2—H2B109.1C31—C32—C33119.2 (4)
S3—C2—H2B109.1C31—C32—H32120.4
H2A—C2—H2B107.8C33—C32—H32120.4
C4—C3—C2112.4 (4)C34—C33—C32120.4 (5)
C4—C3—H3A109.1C34—C33—H33119.8
C2—C3—H3A109.1C32—C33—H33119.8
C4—C3—H3B109.1C33—C34—C35121.2 (4)
C2—C3—H3B109.1C33—C34—H34119.4
H3A—C3—H3B107.9C35—C34—H34119.4
C3—C4—C5113.4 (5)C34—C35—C36119.5 (5)
C3—C4—H4A108.9C34—C35—H35120.3
C5—C4—H4A108.9C36—C35—H35120.3
C3—C4—H4B108.9C31—C36—C35119.6 (4)
C5—C4—H4B108.9C31—C36—H36120.2
H4A—C4—H4B107.7C35—C36—H36120.2
C4—C5—C6103.8 (6)C46—C41—C42118.8 (4)
C4—C5—H5A111C46—C41—P1122.1 (3)
C6—C5—H5A111C42—C41—P1119.1 (3)
C4—C5—H5B111C43—C42—C41120.2 (4)
C6—C5—H5B111C43—C42—H42119.9
H5A—C5—H5B109C41—C42—H42119.9
C7—C6—C5105.2 (7)C42—C43—C44120.5 (4)
C7—C6—H6A110.7C42—C43—H43119.7
C5—C6—H6A110.7C44—C43—H43119.7
C7—C6—H6B110.7C43—C44—C45119.7 (4)
C5—C6—H6B110.7C43—C44—H44120.1
H6A—C6—H6B108.8C45—C44—H44120.1
C6—C7—C8115.7 (9)C46—C45—C44120.4 (4)
C6—C7—H7A108.4C46—C45—H45119.8
C8—C7—H7A108.4C44—C45—H45119.8
C6—C7—H7B108.4C45—C46—C41120.3 (4)
C8—C7—H7B108.4C45—C46—H46119.8
H7A—C7—H7B107.4C41—C46—H46119.8
C9—C8—C7129.8 (11)C16—C11—C12119.1 (4)
C9—C8—H8A104.8C16—C11—P1120.8 (3)
C7—C8—H8A104.8C12—C11—P1120.1 (3)
C9—C8—H8B104.8C13—C12—C11119.8 (4)
C7—C8—H8B104.8C13—C12—H12120.1
H8A—C8—H8B105.8C11—C12—H12120.1
C8—C9—H9A109.5C12—C13—C14120.5 (5)
C8—C9—H9B109.5C12—C13—H13119.8
H9A—C9—H9B109.5C14—C13—H13119.8
C8—C9—H9C109.5C15—C14—C13121.0 (4)
H9A—C9—H9C109.5C15—C14—H14119.5
H9B—C9—H9C109.5C13—C14—H14119.5
C11—P1—C41108.68 (18)C14—C15—C16119.5 (4)
C11—P1—C21111.12 (19)C14—C15—H15120.2
C41—P1—C21106.86 (19)C16—C15—H15120.2
C11—P1—C31108.82 (19)C11—C16—C15120.1 (4)
C41—P1—C31113.36 (18)C11—C16—H16119.9
C21—P1—C31108.01 (18)C15—C16—H16119.9
S2i—Ni—S1—C1169.45 (15)C11—P1—C31—C3699.4 (4)
S2—Ni—S1—C16.21 (15)C41—P1—C31—C3621.7 (4)
S1—Ni—S2—C16.17 (15)C21—P1—C31—C36139.9 (4)
S1i—Ni—S2—C1169.41 (15)C36—C31—C32—C332.3 (7)
O2—S3—N1—C154.5 (5)P1—C31—C32—C33174.3 (4)
O1—S3—N1—C1177.2 (4)C31—C32—C33—C340.4 (8)
C2—S3—N1—C163.9 (4)C32—C33—C34—C351.1 (8)
S3—N1—C1—S1174.3 (2)C33—C34—C35—C360.9 (8)
S3—N1—C1—S22.7 (7)C32—C31—C36—C352.5 (7)
Ni—S1—C1—N1169.6 (4)P1—C31—C36—C35173.9 (4)
Ni—S1—C1—S28.07 (19)C34—C35—C36—C310.9 (8)
Ni—S2—C1—N1169.3 (5)C11—P1—C41—C4666.4 (4)
Ni—S2—C1—S18.06 (19)C21—P1—C41—C46173.6 (3)
O2—S3—C2—C365.5 (4)C31—P1—C41—C4654.8 (4)
O1—S3—C2—C360.8 (5)C11—P1—C41—C42112.2 (3)
N1—S3—C2—C3173.2 (4)C21—P1—C41—C427.8 (4)
S3—C2—C3—C4175.9 (4)C31—P1—C41—C42126.7 (3)
C2—C3—C4—C573.1 (6)C46—C41—C42—C430.3 (6)
C3—C4—C5—C6177.4 (6)P1—C41—C42—C43179.0 (3)
C4—C5—C6—C7176.9 (10)C41—C42—C43—C441.1 (6)
C5—C6—C7—C8179.6 (12)C42—C43—C44—C451.4 (7)
C6—C7—C8—C95 (3)C43—C44—C45—C460.2 (7)
C11—P1—C21—C2217.5 (4)C44—C45—C46—C411.2 (7)
C41—P1—C21—C22100.9 (4)C42—C41—C46—C451.5 (6)
C31—P1—C21—C22136.8 (3)P1—C41—C46—C45179.9 (3)
C11—P1—C21—C26171.4 (3)C41—P1—C11—C162.8 (4)
C41—P1—C21—C2670.1 (4)C21—P1—C11—C16114.5 (4)
C31—P1—C21—C2652.1 (4)C31—P1—C11—C16126.7 (3)
C26—C21—C22—C231.1 (7)C41—P1—C11—C12176.3 (3)
P1—C21—C22—C23169.7 (4)C21—P1—C11—C1266.4 (4)
C21—C22—C23—C240.2 (7)C31—P1—C11—C1252.4 (4)
C22—C23—C24—C250.4 (8)C16—C11—C12—C131.4 (6)
C23—C24—C25—C260.1 (8)P1—C11—C12—C13177.8 (3)
C24—C25—C26—C210.8 (8)C11—C12—C13—C141.4 (7)
C22—C21—C26—C251.4 (7)C12—C13—C14—C151.0 (7)
P1—C21—C26—C25169.7 (4)C13—C14—C15—C160.5 (7)
C11—P1—C31—C3277.1 (4)C12—C11—C16—C150.9 (6)
C41—P1—C31—C32161.9 (3)P1—C11—C16—C15178.3 (3)
C21—P1—C31—C3243.6 (4)C14—C15—C16—C110.5 (7)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···S20.972.833.490 (5)126
C13—H13···O2ii0.932.583.276 (6)132
Symmetry code: (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C24H20P)2[Ni(C9H17NO2S3)2]
Mr1272.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)29.113 (4), 10.425 (2), 22.966 (3)
β (°) 115.50 (1)
V3)6291.3 (18)
Z4
Radiation typeCu Kα
µ (mm1)3.17
Crystal size (mm)0.16 × 0.16 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionGaussian
(Spek, 2003)
Tmin, Tmax0.629, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
11798, 5696, 3927
Rint0.079
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.208, 1.05
No. of reflections5696
No. of parameters367
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.61

Computer programs: CAD-4-PC (Enraf–Nonius, 1993), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni—S12.2048 (12)S2—C11.743 (4)
Ni—S22.2075 (11)N1—C11.294 (5)
S1—C11.731 (4)
S1—Ni—S278.52 (4)C1—S2—Ni86.61 (15)
C1—S1—Ni87.00 (15)S1—C1—S2107.0 (2)
S2i—Ni—S1—C1169.45 (15)C2—S3—N1—C163.9 (4)
S1i—Ni—S2—C1169.41 (15)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···S20.972.833.490 (5)126
C13—H13···O2ii0.932.583.276 (6)132
Symmetry code: (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to PRPPG-UFG and CNPq for financial support and LMGC acknowledges a fellowship from CNPq.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1993). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFranca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, A. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119–2126.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHogarth, G. A. (2005). Prog. Inorg. Chem. 53, 71–561.  Web of Science CrossRef CAS Google Scholar
First citationHummel, H. U. & Korn, U. Z. (1989). Z. Naturforsch. B Chem. Sci. 44, 29–34.  CAS Google Scholar
First citationOliveira, M. R. L., De Bellis, V. M. & Fernandes, N. G. (1997). Struct. Chem. 8, 205–209.  CSD CrossRef CAS Web of Science Google Scholar
First citationOliveira, M. R. L., Diniz, R., De Bellis, V. M. & Fernandes, N. G. (2003). Polyhedron, 22, 1561–1566.  Web of Science CSD CrossRef CAS Google Scholar
First citationOliveira, M. R. L., Graúdo, J. E. J. C., Speziali, N. L. & De Bellis, V. M. (1999). Struct. Chem. 10, 41–45.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogel, A. I. (1966). A Textbook of Practical Organic Chemistry Including Qualitative Organic Analysis, p. 543. London: Logmans, Green and Co. Ltd.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds