metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(dipyrido[3,2-a:2′,3′-c]phenazine)cobalt(II)]-μ-bi­phenyl-2,2′-di­carboxyl­ato]

aDepartment of Chemistry, Baicheng Normal College, Baicheng 137000, People's Republic of China
*Correspondence e-mail: fangwei1026@yahoo.com.cn

(Received 15 January 2008; accepted 17 January 2008; online 23 January 2008)

In the title compound, [Co(C14H8O4)(C18H10N4)]n, the CoII atom is six-coordinated by four O atoms from two different biphenyl-2,2′-dicarboxyl­ate ligands and two N atoms from the bidentate dipyrido[3,2-a:2′,3′-c]phenazine ligand in a distorted octa­hedral geometry. The CoII atoms are bridged by the biphenyl-2,2′-dicarboxyl­ate ligands to form a one-dimensional chain structure. ππ inter­actions between neighbouring chains result in a two-dimensional supra­molecular network (centroid-to-centroid separation = 3.381 Å).

Related literature

For related literature, see: Hao et al. (2004[Hao, N., Shen, E.-H., Li, Y.-G., Wang, E.-B., Hu, C.-W. & Xu, L. (2004). Inorg. Chem. Commun. 7, 510-512.]); Li et al. (2006[Li, C.-B., Fang, W., Gao, G.-G. & Liu, B. (2006). Acta Cryst. E62, m1312-m1314.]); Noveron et al. (2002[Noveron, J. C., Lah, M. S., Sesto, R. E. D., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613-6625.]); Dickeson & Summers (1970[Dickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023-1027.]); Li et al. (2007[Li, C.-B., Fang, W., Dong, E.-J., Liu, B. & Li, Y.-W. (2007). Acta Cryst. E63, m150-m152.]); Zhang et al. (2001[Zhang, H. X., Kang, B. S., Xu, A. W., Chen, Z. N., Zhou, Z. Y., Yu, K. B. & Ren, C. (2001). J. Chem. Soc. Dalton Trans. pp. 2559-2566.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C14H8O4)(C18H10N4)]

  • Mr = 581.43

  • Monoclinic, P 21 /c

  • a = 9.311 (4) Å

  • b = 12.521 (5) Å

  • c = 21.831 (10) Å

  • β = 102.31°

  • V = 2486.5 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 293 (2) K

  • 0.43 × 0.11 × 0.07 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.904, Tmax = 0.951

  • 13141 measured reflections

  • 5022 independent reflections

  • 1796 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.085

  • S = 0.87

  • 5022 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O3i 2.087 (3)
Co1—N2 2.093 (4)
Co1—O1 2.105 (3)
Co1—N1 2.115 (4)
Co1—O2 2.151 (3)
Co1—O4i 2.185 (3)
N2—Co1—O1 95.31 (15)
N2—Co1—N1 78.05 (16)
O1—Co1—N1 159.78 (13)
N2—Co1—O2 97.96 (13)
O1—Co1—O2 61.86 (10)
N1—Co1—O2 99.79 (13)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

Metal-organic hybrid compounds have attracted considerable interest and importance in recent years, not only due to their intriguing structural motifs but also their potential applications in areas such as catalysis, medicine and host–guest chemistry (Hao et al., 2004). The chelating ligand 1,10-phenanthroline (phen) and its derivatives have been widely used in the construction of metal-organic coordination polymers (Li et al., 2006). On the other hand, carboxylate ligands have already been proven to be efficient for the generation of a helical coordination polymer (Li et al., 2007), so we reacted dipydo[3,2 - a:2',3'-c]phenazine with cobalt and biphenyl-2,2'-dicarboxylate, resulting in the title molecular complex, [Co(C14H8O4)(C18H10N4)]n, (I)

Compound (I) is a one-dimensional chain structure, which is constructed from one CoII atom, one L ligand and two biphenyl-2,2'-dicarboxylate dianion (Fig. 1). The CoII center is six-coordinated by two N atoms from the bidentate L ligand and four O atoms from two different 2,6'-biphenyl dicarboxylic acid ligands to result in a substantially distorted cis-CoN2O4 octahedron. The mean Co—O and Co—N distances are 2.112 (3) and 2.104 (4) Å, respectively. The C—O bond lengths of the 2,6'-biphenyl dicarboxylic acid groups imply electronic delocalizations of the negative charges.

Neighboring CoII atoms are bridged by the biphenyl-2,2'-dicarboxylate ligands, forming a one-dimensional chain structure as shown in (Fig. 2). Then, neighbouring chains are connected by π-π interactions, generating a two-dimensional supramolecular structure (Fig. 3). The π-π stacking distances are 3.381Å between L ligands. Similar values are seen in related structures (Noveron et al., 2002).

Related literature top

For related literature, see: Hao et al. (2004); Li et al. (2006); Noveron et al. (2002); Dickeson & Summers (1970); Li et al. (2007); Zhang et al. (2001).

Experimental top

The L ligand was synthesized by the literature method of Dickeson & Summers (1970). A mixture of CoCl2.2H2O (0.3 mmol), L (0.1 mmol) and 2,6'-biphenyl dicarboxylic acid (0.3 mmol) in 30 ml of distilled water was stirred thoroughly for 1 h at ambient temperature. The pH value was adjusted to about 7.5 with NaOH aqueous solution. The suspension was sealed in a Teflon-lined stainless reaction vessel (40 ml) and heated at 443 K for 5 days. The vessel was cooled slowly to room temperature at a rate of 10 K h-1 before opening and yellow crystals of (I) were collected.

Refinement top

All H atoms were placed geometrically (C—H = 0.93 Å) and refined as riding with Uiso(H)= 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), together with additional atoms to complete the coordination of Co1 with displacement ellipsoids drawn at the 30% probability level (arbitrary spheres for the H atoms). Symmetry codes: (i) -x, -y + 1/2, -z + 1/2; (ii) -x, y - 1/2, -z + 1/2.
[Figure 2] Fig. 2. A view of the one-chain structure of (I). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. View of the two-dimensional supramolecular structure of (I) generated by π-π interations. H atoms have been omitted for clarity.
catena-Poly[[(dipyrido[3,2 - a:2',3'-c]phenazine)cobalt(II)]-µ-biphenyl-2,2'- dicarboxylato] top
Crystal data top
[Co(C14H8O4)(C18H10N4)]F(000) = 1188.0
Mr = 581.43Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2096 reflections
a = 9.311 (4) Åθ = 2.3–26.0°
b = 12.521 (5) ŵ = 0.74 mm1
c = 21.831 (10) ÅT = 293 K
β = 102.31°Block, amethyst
V = 2486.5 (19) Å30.44 × 0.11 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
5022 independent reflections
Radiation source: fine-focus sealed tube1796 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 0 pixels mm-1θmax = 26.2°, θmin = 1.9°
not measured scansh = 911
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1515
Tmin = 0.904, Tmax = 0.951l = 2718
13141 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.002P)2]
where P = (Fo2 + 2Fc2)/3
5022 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Co(C14H8O4)(C18H10N4)]V = 2486.5 (19) Å3
Mr = 581.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.311 (4) ŵ = 0.74 mm1
b = 12.521 (5) ÅT = 293 K
c = 21.831 (10) Å0.44 × 0.11 × 0.07 mm
β = 102.31°
Data collection top
Bruker APEXII
diffractometer
5022 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1796 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.951Rint = 0.085
13141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.87Δρmax = 0.92 e Å3
5022 reflectionsΔρmin = 0.30 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.02037 (7)0.27680 (5)0.19183 (3)0.0511 (2)
O10.1414 (3)0.2191 (3)0.27808 (13)0.0644 (10)
O20.0977 (3)0.2343 (2)0.26292 (13)0.0526 (9)
N20.0064 (4)0.1293 (3)0.14589 (18)0.0486 (11)
C50.3420 (5)0.1185 (4)0.0118 (2)0.0458 (13)
N10.1583 (4)0.3017 (3)0.11521 (17)0.0496 (11)
C40.3106 (5)0.2151 (4)0.0256 (2)0.0455 (13)
C120.2475 (5)0.0282 (4)0.0016 (2)0.0449 (13)
N40.4625 (4)0.1169 (3)0.05836 (18)0.0521 (12)
C130.1245 (5)0.0309 (4)0.0561 (2)0.0454 (13)
N30.2692 (4)0.0605 (3)0.03208 (19)0.0512 (11)
C180.1927 (5)0.2156 (4)0.0769 (2)0.0436 (12)
C170.1001 (5)0.1222 (4)0.0925 (2)0.0422 (13)
C190.0254 (5)0.2107 (4)0.2984 (2)0.0457 (13)
C60.4883 (5)0.0253 (5)0.0920 (2)0.0519 (14)
C200.0350 (5)0.1783 (3)0.3653 (2)0.0395 (12)
C310.2806 (5)0.0171 (4)0.3290 (2)0.0454 (13)
C260.2356 (5)0.1185 (4)0.3516 (2)0.0461 (13)
C110.3907 (6)0.0624 (4)0.0800 (2)0.0526 (14)
C230.0737 (5)0.1393 (4)0.4925 (2)0.0661 (16)
H23A0.08460.12790.53540.079*
C210.1700 (5)0.1932 (3)0.4056 (2)0.0498 (14)
H21A0.24900.21700.38940.060*
C30.3955 (5)0.3080 (4)0.0141 (2)0.0569 (15)
H3B0.47440.31080.02010.068*
C250.0827 (5)0.1402 (4)0.3883 (2)0.0454 (13)
C240.0610 (5)0.1215 (4)0.4522 (2)0.0587 (15)
H24A0.13900.09630.46860.070*
C300.4302 (6)0.0057 (4)0.3079 (2)0.0628 (16)
H30A0.45970.07430.29440.075*
C70.6179 (5)0.0173 (4)0.1408 (2)0.0602 (16)
H7A0.68330.07430.14900.072*
C140.0337 (5)0.0574 (4)0.0756 (2)0.0569 (15)
H14A0.04580.11990.05200.068*
C270.3441 (6)0.1970 (4)0.3493 (2)0.0624 (15)
H27A0.31630.26560.36340.075*
C20.3632 (5)0.3954 (4)0.0528 (2)0.0692 (17)
H2B0.42010.45700.04600.083*
C160.0876 (5)0.0434 (5)0.1629 (2)0.0578 (15)
H16A0.15940.04710.19970.069*
C10.2411 (5)0.3880 (4)0.1032 (2)0.0574 (15)
H1B0.21740.44690.12940.069*
C100.4203 (6)0.1538 (4)0.1182 (3)0.0649 (16)
H10A0.35510.21100.11230.078*
C150.0737 (5)0.0517 (4)0.1299 (3)0.0635 (16)
H15A0.13440.10970.14380.076*
C220.1907 (5)0.1739 (4)0.4688 (2)0.0571 (15)
H22A0.28230.18400.49510.069*
C290.5345 (6)0.0734 (5)0.3071 (2)0.0678 (16)
H29A0.63370.05780.29320.081*
C280.4916 (6)0.1750 (5)0.3267 (2)0.0697 (17)
H28A0.56130.22870.32480.084*
C80.6444 (6)0.0731 (5)0.1747 (2)0.0716 (18)
H8A0.72990.07900.20550.086*
C90.5458 (7)0.1579 (5)0.1642 (2)0.0695 (17)
H9A0.56550.21880.18900.083*
C320.1725 (6)0.0692 (4)0.3244 (2)0.0483 (14)
O30.1965 (3)0.1613 (3)0.34207 (15)0.0616 (10)
O40.0650 (3)0.0519 (2)0.30026 (15)0.0594 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0506 (4)0.0622 (5)0.0386 (4)0.0010 (4)0.0055 (3)0.0012 (4)
O10.0366 (19)0.114 (3)0.044 (2)0.004 (2)0.0134 (17)0.015 (2)
O20.0424 (19)0.076 (2)0.038 (2)0.0024 (18)0.0062 (16)0.0077 (18)
N20.050 (3)0.051 (3)0.043 (3)0.000 (2)0.004 (2)0.005 (2)
C50.039 (3)0.064 (4)0.036 (3)0.006 (3)0.013 (3)0.007 (3)
N10.048 (3)0.059 (3)0.040 (3)0.005 (2)0.006 (2)0.000 (2)
C40.036 (3)0.060 (4)0.040 (3)0.003 (3)0.006 (2)0.002 (3)
C120.043 (3)0.056 (4)0.038 (3)0.008 (3)0.013 (3)0.004 (3)
N40.046 (3)0.072 (3)0.039 (3)0.008 (2)0.009 (2)0.001 (2)
C130.042 (3)0.054 (4)0.042 (3)0.003 (3)0.014 (3)0.006 (3)
N30.051 (3)0.060 (3)0.045 (3)0.013 (2)0.015 (2)0.006 (2)
C180.040 (3)0.056 (4)0.036 (3)0.005 (3)0.012 (2)0.001 (3)
C170.039 (3)0.051 (4)0.039 (3)0.005 (3)0.014 (3)0.007 (3)
C190.047 (3)0.046 (3)0.043 (3)0.002 (3)0.007 (3)0.005 (3)
C60.051 (4)0.066 (4)0.040 (4)0.015 (3)0.014 (3)0.002 (3)
C200.038 (3)0.047 (3)0.031 (3)0.001 (3)0.001 (2)0.000 (2)
C310.039 (3)0.062 (4)0.035 (3)0.001 (3)0.008 (3)0.002 (3)
C260.039 (3)0.066 (4)0.037 (3)0.003 (3)0.014 (3)0.009 (3)
C110.060 (4)0.063 (4)0.041 (4)0.022 (3)0.025 (3)0.004 (3)
C230.063 (4)0.097 (5)0.035 (3)0.011 (4)0.003 (3)0.007 (3)
C210.049 (3)0.060 (4)0.041 (3)0.003 (3)0.012 (3)0.005 (3)
C30.042 (3)0.072 (4)0.052 (4)0.004 (3)0.001 (3)0.004 (3)
C250.040 (3)0.055 (3)0.041 (3)0.003 (3)0.005 (3)0.001 (3)
C240.049 (3)0.084 (4)0.043 (4)0.005 (3)0.011 (3)0.004 (3)
C300.056 (4)0.076 (4)0.056 (4)0.003 (3)0.010 (3)0.004 (3)
C70.052 (4)0.084 (5)0.043 (4)0.016 (3)0.009 (3)0.004 (3)
C140.053 (3)0.062 (4)0.060 (4)0.010 (3)0.022 (3)0.002 (3)
C270.053 (4)0.069 (4)0.067 (4)0.003 (3)0.018 (3)0.002 (3)
C20.066 (4)0.069 (4)0.065 (4)0.002 (3)0.003 (3)0.011 (4)
C160.051 (3)0.072 (4)0.048 (4)0.005 (3)0.007 (3)0.008 (4)
C10.058 (4)0.057 (4)0.055 (4)0.011 (3)0.009 (3)0.014 (3)
C100.076 (4)0.068 (4)0.058 (4)0.015 (3)0.029 (3)0.010 (3)
C150.062 (4)0.061 (4)0.068 (4)0.001 (3)0.016 (3)0.001 (4)
C220.047 (3)0.074 (4)0.046 (4)0.002 (3)0.001 (3)0.002 (3)
C290.037 (3)0.103 (5)0.062 (4)0.004 (4)0.006 (3)0.006 (4)
C280.048 (4)0.091 (5)0.073 (4)0.011 (4)0.019 (3)0.007 (4)
C80.074 (5)0.097 (5)0.044 (4)0.028 (4)0.011 (3)0.004 (4)
C90.090 (5)0.079 (5)0.042 (4)0.034 (4)0.019 (4)0.016 (3)
C320.052 (4)0.056 (4)0.032 (3)0.001 (4)0.002 (3)0.007 (3)
O30.066 (2)0.057 (2)0.070 (3)0.004 (2)0.032 (2)0.006 (2)
O40.050 (2)0.068 (3)0.063 (2)0.003 (2)0.019 (2)0.004 (2)
Geometric parameters (Å, º) top
Co1—O3i2.087 (3)C23—C221.372 (5)
Co1—N22.093 (4)C23—C241.388 (5)
Co1—O12.105 (3)C23—H23A0.9300
Co1—N12.115 (4)C21—C221.374 (5)
Co1—O22.151 (3)C21—H21A0.9300
Co1—O4i2.185 (3)C3—C21.376 (5)
Co1—C192.460 (5)C3—H3B0.9300
Co1—C32i2.463 (6)C25—C241.386 (5)
O1—C191.256 (4)C24—H24A0.9300
O2—C191.274 (4)C30—C291.384 (6)
N2—C161.322 (5)C30—H30A0.9300
N2—C171.363 (5)C7—C81.346 (6)
C5—N41.344 (5)C7—H7A0.9300
C5—C121.424 (6)C14—C151.381 (6)
C5—C41.454 (6)C14—H14A0.9300
N1—C11.322 (5)C27—C281.384 (6)
N1—C181.360 (5)C27—H27A0.9300
C4—C181.391 (5)C2—C11.406 (5)
C4—C31.398 (5)C2—H2B0.9300
C12—N31.323 (5)C16—C151.383 (5)
C12—C131.465 (5)C16—H16A0.9300
N4—C61.355 (5)C1—H1B0.9300
C13—C171.384 (6)C10—C91.369 (6)
C13—C141.402 (6)C10—H10A0.9300
N3—C111.367 (5)C15—H15A0.9300
C18—C171.450 (6)C22—H22A0.9300
C19—C201.501 (6)C29—C281.374 (6)
C6—C111.414 (6)C29—H29A0.9300
C6—C71.432 (6)C28—H28A0.9300
C20—C251.384 (5)C8—C91.390 (6)
C20—C211.385 (5)C8—H8A0.9300
C31—C261.394 (6)C9—H9A0.9300
C31—C301.400 (5)C32—O41.246 (5)
C31—C321.494 (6)C32—O31.252 (5)
C26—C271.403 (5)C32—Co1ii2.463 (6)
C26—C251.502 (5)O3—Co1ii2.087 (3)
C11—C101.409 (6)O4—Co1ii2.185 (3)
O3i—Co1—N297.50 (14)C31—C26—C27117.8 (5)
O3i—Co1—O197.66 (12)C31—C26—C25122.2 (5)
N2—Co1—O195.31 (15)C27—C26—C25119.0 (5)
O3i—Co1—N1102.12 (13)N3—C11—C10119.5 (6)
N2—Co1—N178.05 (16)N3—C11—C6121.5 (5)
O1—Co1—N1159.78 (13)C10—C11—C6119.0 (5)
O3i—Co1—O2155.35 (12)C22—C23—C24119.6 (5)
N2—Co1—O297.96 (13)C22—C23—H23A120.2
O1—Co1—O261.86 (10)C24—C23—H23A120.2
N1—Co1—O299.79 (13)C22—C21—C20121.8 (5)
O3i—Co1—O4i60.87 (12)C22—C21—H21A119.1
N2—Co1—O4i153.61 (14)C20—C21—H21A119.1
O1—Co1—O4i102.11 (12)C2—C3—C4120.6 (5)
N1—Co1—O4i91.27 (14)C2—C3—H3B119.7
O2—Co1—O4i107.67 (12)C4—C3—H3B119.7
O3i—Co1—C19127.04 (14)C20—C25—C24117.8 (4)
N2—Co1—C1998.21 (15)C20—C25—C26127.0 (4)
O1—Co1—C1930.71 (11)C24—C25—C26115.1 (4)
N1—Co1—C19130.56 (15)C25—C24—C23121.9 (5)
O2—Co1—C1931.16 (11)C25—C24—H24A119.0
O4i—Co1—C19106.91 (14)C23—C24—H24A119.0
O3i—Co1—C32i30.54 (13)C29—C30—C31120.3 (5)
N2—Co1—C32i126.93 (16)C29—C30—H30A119.9
O1—Co1—C32i100.54 (13)C31—C30—H30A119.9
N1—Co1—C32i98.65 (15)C8—C7—C6119.6 (5)
O2—Co1—C32i134.08 (15)C8—C7—H7A120.2
O4i—Co1—C32i30.36 (12)C6—C7—H7A120.2
C19—Co1—C32i120.29 (15)C15—C14—C13120.0 (5)
C19—O1—Co190.5 (3)C15—C14—H14A120.0
C19—O2—Co187.9 (3)C13—C14—H14A120.0
C16—N2—C17117.1 (4)C28—C27—C26121.7 (5)
C16—N2—Co1127.6 (4)C28—C27—H27A119.2
C17—N2—Co1115.3 (3)C26—C27—H27A119.2
N4—C5—C12121.5 (5)C3—C2—C1117.6 (5)
N4—C5—C4118.2 (5)C3—C2—H2B121.2
C12—C5—C4120.3 (5)C1—C2—H2B121.2
C1—N1—C18118.4 (4)N2—C16—C15124.8 (5)
C1—N1—Co1127.2 (4)N2—C16—H16A117.6
C18—N1—Co1114.3 (3)C15—C16—H16A117.6
C18—C4—C3117.4 (5)N1—C1—C2123.3 (5)
C18—C4—C5119.0 (5)N1—C1—H1B118.3
C3—C4—C5123.5 (4)C2—C1—H1B118.3
N3—C12—C5122.5 (5)C9—C10—C11119.5 (5)
N3—C12—C13118.1 (5)C9—C10—H10A120.2
C5—C12—C13119.3 (5)C11—C10—H10A120.2
C5—N4—C6116.5 (4)C14—C15—C16117.5 (5)
C17—C13—C14117.5 (5)C14—C15—H15A121.2
C17—C13—C12119.3 (5)C16—C15—H15A121.2
C14—C13—C12123.0 (5)C23—C22—C21118.9 (4)
C12—N3—C11116.3 (4)C23—C22—H22A120.6
N1—C18—C4122.7 (5)C21—C22—H22A120.6
N1—C18—C17116.4 (4)C28—C29—C30120.1 (5)
C4—C18—C17120.9 (5)C28—C29—H29A119.9
N2—C17—C13123.1 (5)C30—C29—H29A119.9
N2—C17—C18115.9 (5)C29—C28—C27119.7 (5)
C13—C17—C18121.0 (5)C29—C28—H28A120.1
O1—C19—O2119.7 (4)C27—C28—H28A120.1
O1—C19—C20119.3 (4)C7—C8—C9121.0 (6)
O2—C19—C20120.9 (4)C7—C8—H8A119.5
O1—C19—Co158.8 (2)C9—C8—H8A119.5
O2—C19—Co160.9 (2)C10—C9—C8121.5 (6)
C20—C19—Co1175.4 (3)C10—C9—H9A119.2
N4—C6—C11121.6 (5)C8—C9—H9A119.2
N4—C6—C7119.1 (5)O4—C32—O3120.2 (5)
C11—C6—C7119.3 (5)O4—C32—C31121.1 (5)
C25—C20—C21119.9 (4)O3—C32—C31118.6 (5)
C25—C20—C19124.0 (4)O4—C32—Co1ii62.4 (3)
C21—C20—C19116.0 (4)O3—C32—Co1ii57.9 (3)
C26—C31—C30120.3 (5)C31—C32—Co1ii172.7 (3)
C26—C31—C32121.8 (5)C32—O3—Co1ii91.6 (3)
C30—C31—C32117.9 (5)C32—O4—Co1ii87.3 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C14H8O4)(C18H10N4)]
Mr581.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.311 (4), 12.521 (5), 21.831 (10)
β (°) 102.31
V3)2486.5 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.44 × 0.11 × 0.07
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.904, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
13141, 5022, 1796
Rint0.085
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.085, 0.87
No. of reflections5022
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O3i2.087 (3)Co1—N12.115 (4)
Co1—N22.093 (4)Co1—O22.151 (3)
Co1—O12.105 (3)Co1—O4i2.185 (3)
N2—Co1—O195.31 (15)N2—Co1—O297.96 (13)
N2—Co1—N178.05 (16)O1—Co1—O261.86 (10)
O1—Co1—N1159.78 (13)N1—Co1—O299.79 (13)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Baicheng Normal College for supporting this work.

References

First citationBruker (2002). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023–1027.  CrossRef CAS Web of Science Google Scholar
First citationHao, N., Shen, E.-H., Li, Y.-G., Wang, E.-B., Hu, C.-W. & Xu, L. (2004). Inorg. Chem. Commun. 7, 510–512.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, C.-B., Fang, W., Dong, E.-J., Liu, B. & Li, Y.-W. (2007). Acta Cryst. E63, m150–m152.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-B., Fang, W., Gao, G.-G. & Liu, B. (2006). Acta Cryst. E62, m1312–m1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNoveron, J. C., Lah, M. S., Sesto, R. E. D., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613–6625.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H. X., Kang, B. S., Xu, A. W., Chen, Z. N., Zhou, Z. Y., Yu, K. B. & Ren, C. (2001). J. Chem. Soc. Dalton Trans. pp. 2559–2566.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds