metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-N,N′-Bis(3-meth­­oxy-2-oxido­benzyl­­idene)propane-1,3-di­amine]trinitratocopper(II)terbium(III) acetone solvate

aThe College of Chemical Engineering & Materials, Eastern Liaoning University, 325 Wenhua Road, Yuanbao District, Dandong City, Liaoning Province 118003, People's Republic of China
*Correspondence e-mail: berylliu8090@sina.com

(Received 19 December 2007; accepted 21 January 2008; online 25 January 2008)

In the title complex, [CuTb(C19H20N2O4)(NO3)3]·CH3COCH3, the CuII atom is four-coordinated by two O atoms and two N atoms from the deprotonated Schiff base in a square-planar geometry, while the TbIII atom is ten-coordin­ated by four O atoms from the deprotonated Schiff base and six O atoms from three bidentate nitrate anions. The compound is isostructural with the previously reported GdIII analogue [Elmali & Elerman (2004[Elmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535-540.]). Z. Naturforsch. Teil B, 59, 535–540], which was described in the space group P1 with two formula units in the asymmetric unit. The crystal stucture is, in fact, centrosymmetric and is described here in the space group P[\overline{1}] with one formula unit in the asymmetric unit.

Related literature

For the isostructural GdIII complex, see: Elmali & Elerman (2004[Elmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535-540.]). For a similar copper–cerium complex, see: Elmali & Elerman (2003[Elmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639-643.]).

[Scheme 1]

Experimental

Crystal data
  • [CuTb(C19H20N2O4)(NO3)3]·C3H6O

  • Mr = 806.94

  • Triclinic, [P \overline 1]

  • a = 9.388 (5) Å

  • b = 12.108 (6) Å

  • c = 13.604 (6) Å

  • α = 73.079 (16)°

  • β = 86.67 (2)°

  • γ = 72.33 (2)°

  • V = 1408.8 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 291 (2) K

  • 0.19 × 0.16 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.569, Tmax = 0.659

  • 12171 measured reflections

  • 6275 independent reflections

  • 5621 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.083

  • S = 1.11

  • 6275 reflections

  • 392 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Cu2—O1 1.939 (3)
Cu2—O3 1.947 (2)
Cu2—N2 1.957 (3)
Cu2—N1 1.989 (3)
O1—Tb1 2.352 (2)
O2—Tb1 2.506 (3)
O3—Tb1 2.344 (3)
O4—Tb1 2.492 (2)
O5—Tb1 2.470 (3)
O7—Tb1 2.501 (3)
O8—Tb1 2.455 (3)
O10—Tb1 2.494 (3)
O11—Tb1 2.491 (3)
O13—Tb1 2.564 (3)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As shown in Fig. 1, the hexadentate Schiff base ligand links the CuII and TbII atoms into a dinuclear complex through two phenolate O atoms. The TbIII atom is ten-coordinated by four O atoms from the ligand and six O atoms from three nitrate anions. The CuII atom is four-coordinated by two N atoms and two O atoms from the ligand. The acetone molecule is not associated with the complex. The complex is isostructural with its GdIII analogue (Elmali & Elerman, 2004), although that was refined in space group P1 with two independent complexes in the asymmetric unit. A similar compound with CeIII has also been reported (Elmali & Elerman, 2003).

Related literature top

For the isostructural GdIII complex, see: Elmali & Elerman (2004). For a similar copper–cerium complex, see: Elmali & Elerman (2003).

Experimental top

The title complex was obtained by reaction of copper(II) acetate monohydrate (0.05 g, 0.25 mmol) with the Schiff base (0.0855 g, 0.25 mmol) in methanol/acetone (20 ml:5 ml). Terbium (III) nitrate hexahydrate (0.1126 g, 0.25 mmol) was added and the mixture was refluxed for 3 h. The mixture was then cooled and filtered, and diethyl ether was allowed to diffuse slowly into the filtrate. Single crystals were obtained after several days. Elemental analysis calculated: C 32.65, H 3.29, N 8.67; found: C 32.75, H 3.25, N 8.68.

Refinement top

H atoms bound to C atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H = 0.93 Å (C sp2), C—H = 0.97Å (methylene C), C—H = 0.96 Å (methyl C), and with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 40% probability displacement ellipsoids for non-H atoms. The acetone solvent molecule is not shown.
[µ-N,N'-Bis(3-methoxy-2-oxidobenzylidene)propane-1,3- diamine]trinitratocopper(II)terbium(III) acetone solvate top
Crystal data top
[CuTb(C19H20N2O4)(NO3)3]·C3H6OZ = 2
Mr = 806.94F(000) = 798
Triclinic, P1Dx = 1.902 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.388 (5) ÅCell parameters from 11368 reflections
b = 12.108 (6) Åθ = 3.2–27.5°
c = 13.604 (6) ŵ = 3.32 mm1
α = 73.079 (16)°T = 291 K
β = 86.67 (2)°Block, green
γ = 72.33 (2)°0.19 × 0.16 × 0.14 mm
V = 1408.8 (12) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6275 independent reflections
Radiation source: fine-focus sealed tube5621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.569, Tmax = 0.659k = 1514
12171 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0525P)2]
where P = (Fo2 + 2Fc2)/3
6275 reflections(Δ/σ)max = 0.049
392 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[CuTb(C19H20N2O4)(NO3)3]·C3H6Oγ = 72.33 (2)°
Mr = 806.94V = 1408.8 (12) Å3
Triclinic, P1Z = 2
a = 9.388 (5) ÅMo Kα radiation
b = 12.108 (6) ŵ = 3.32 mm1
c = 13.604 (6) ÅT = 291 K
α = 73.079 (16)°0.19 × 0.16 × 0.14 mm
β = 86.67 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6275 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5621 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.659Rint = 0.025
12171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.11Δρmax = 0.74 e Å3
6275 reflectionsΔρmin = 0.50 e Å3
392 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5484 (3)0.7337 (3)0.4160 (3)0.0363 (7)
C20.6382 (4)0.7732 (3)0.3361 (3)0.0355 (7)
C30.7913 (4)0.7362 (3)0.3494 (3)0.0442 (8)
H10.85020.76330.29610.053*
C40.8589 (4)0.6565 (4)0.4446 (4)0.0527 (10)
H20.96240.63200.45370.063*
C50.7741 (4)0.6157 (3)0.5227 (3)0.0508 (10)
H30.82020.56190.58420.061*
C60.6164 (4)0.6543 (3)0.5113 (3)0.0421 (8)
C70.5320 (4)0.6050 (3)0.5939 (3)0.0482 (9)
H40.58790.54730.65030.058*
C80.3378 (6)0.5605 (5)0.6968 (3)0.0765 (15)
H50.34210.59700.75080.092*
H60.40500.47850.71720.092*
C90.1832 (6)0.5563 (4)0.6869 (4)0.0644 (12)
H80.16380.49540.74590.077*
H70.17420.53250.62590.077*
C100.0688 (5)0.6752 (4)0.6798 (3)0.0515 (9)
H90.02890.66320.69330.062*
H100.09180.70810.73180.062*
C110.0654 (4)0.8417 (3)0.5466 (3)0.0411 (7)
H110.14040.83820.59410.049*
C120.1088 (4)0.9332 (3)0.4497 (3)0.0381 (7)
C130.2582 (4)1.0089 (4)0.4359 (3)0.0467 (8)
H120.32291.00250.49030.056*
C140.3085 (4)1.0922 (4)0.3422 (3)0.0517 (9)
H130.40751.14090.33380.062*
C150.2132 (4)1.1044 (3)0.2598 (3)0.0445 (8)
H140.24841.16080.19680.053*
C160.0665 (4)1.0325 (3)0.2724 (2)0.0350 (6)
C170.0123 (3)0.9448 (3)0.3682 (2)0.0325 (6)
C180.0137 (5)1.1106 (4)0.0937 (3)0.0528 (9)
H150.08721.08260.07050.079*
H160.06921.10470.04870.079*
H170.05741.19340.09340.079*
C190.6458 (5)0.8876 (4)0.1589 (3)0.0559 (10)
H180.70780.92960.17660.084*
H190.57880.94100.10260.084*
H200.70760.81870.13930.084*
C200.1948 (9)0.3899 (6)0.0076 (6)0.105 (2)
H240.15390.40220.07430.158*
H250.12120.37780.04310.158*
H260.28140.31990.00780.158*
C210.2373 (7)0.4967 (4)0.0065 (4)0.0723 (14)
C220.3355 (8)0.4820 (5)0.0826 (5)0.0892 (17)
H210.34670.55900.08010.134*
H220.43190.42620.07890.134*
H230.29060.45150.14590.134*
Cu20.24442 (4)0.75725 (3)0.49586 (3)0.03510 (10)
N10.3899 (4)0.6295 (3)0.6009 (2)0.0473 (7)
N20.0640 (3)0.7635 (3)0.5764 (2)0.0388 (6)
N30.3245 (4)1.1092 (3)0.2292 (3)0.0481 (7)
N40.3809 (3)0.8115 (3)0.0469 (3)0.0479 (7)
N50.1404 (4)0.6928 (3)0.2358 (3)0.0500 (7)
O10.4010 (3)0.7715 (2)0.39786 (18)0.0432 (5)
O20.5608 (3)0.8481 (2)0.24596 (19)0.0437 (5)
O30.1291 (2)0.8745 (2)0.37547 (17)0.0392 (5)
O40.0382 (3)1.0369 (2)0.19704 (18)0.0426 (5)
O50.3132 (3)1.0309 (3)0.3128 (2)0.0533 (6)
O60.3324 (4)1.2069 (3)0.2294 (3)0.0737 (10)
O70.3240 (3)1.0788 (2)0.1473 (2)0.0492 (6)
O80.3023 (3)0.9175 (2)0.0474 (2)0.0493 (6)
O90.4110 (4)0.7857 (3)0.0338 (3)0.0720 (9)
O100.4244 (3)0.7372 (2)0.1352 (2)0.0505 (6)
O110.0991 (3)0.7990 (2)0.1769 (2)0.0533 (6)
O120.0819 (4)0.6173 (3)0.2310 (3)0.0802 (11)
O130.2473 (4)0.6682 (2)0.3006 (2)0.0574 (7)
O140.2026 (6)0.5872 (4)0.0747 (3)0.1106 (16)
Tb10.285531 (15)0.877969 (12)0.234617 (10)0.03350 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0339 (15)0.0339 (15)0.0403 (17)0.0059 (12)0.0049 (13)0.0129 (13)
C20.0362 (15)0.0292 (14)0.0398 (17)0.0085 (12)0.0044 (13)0.0084 (13)
C30.0336 (16)0.0386 (17)0.063 (2)0.0112 (13)0.0018 (15)0.0174 (17)
C40.0353 (17)0.051 (2)0.072 (3)0.0046 (15)0.0165 (18)0.024 (2)
C50.046 (2)0.0437 (19)0.055 (2)0.0031 (15)0.0219 (18)0.0149 (17)
C60.0411 (18)0.0354 (16)0.0444 (19)0.0003 (13)0.0121 (15)0.0131 (15)
C70.056 (2)0.0387 (18)0.0319 (17)0.0081 (15)0.0086 (16)0.0043 (14)
C80.077 (3)0.066 (3)0.040 (2)0.009 (2)0.010 (2)0.022 (2)
C90.105 (4)0.0377 (19)0.048 (2)0.027 (2)0.012 (2)0.0054 (17)
C100.057 (2)0.060 (2)0.0343 (18)0.0255 (19)0.0065 (16)0.0008 (17)
C110.0421 (17)0.0494 (19)0.0397 (18)0.0193 (15)0.0100 (14)0.0205 (16)
C120.0357 (16)0.0404 (16)0.0441 (18)0.0139 (13)0.0031 (13)0.0187 (15)
C130.0377 (17)0.057 (2)0.053 (2)0.0160 (16)0.0086 (15)0.0263 (18)
C140.0327 (17)0.057 (2)0.065 (2)0.0007 (15)0.0070 (17)0.029 (2)
C150.0382 (17)0.0423 (18)0.051 (2)0.0019 (14)0.0113 (15)0.0180 (16)
C160.0363 (15)0.0312 (14)0.0363 (16)0.0056 (12)0.0046 (13)0.0118 (13)
C170.0304 (14)0.0309 (14)0.0371 (16)0.0090 (11)0.0020 (12)0.0107 (13)
C180.056 (2)0.047 (2)0.0378 (19)0.0001 (17)0.0110 (17)0.0009 (16)
C190.047 (2)0.065 (2)0.052 (2)0.0237 (19)0.0100 (17)0.006 (2)
C200.127 (6)0.070 (4)0.099 (5)0.021 (4)0.041 (4)0.004 (3)
C210.093 (4)0.049 (2)0.056 (3)0.006 (2)0.018 (3)0.008 (2)
C220.124 (5)0.057 (3)0.080 (4)0.021 (3)0.001 (4)0.017 (3)
Cu20.0369 (2)0.03297 (19)0.02827 (19)0.00746 (16)0.00002 (15)0.00112 (16)
N10.0553 (18)0.0390 (15)0.0307 (14)0.0011 (13)0.0008 (13)0.0005 (12)
N20.0462 (15)0.0427 (15)0.0307 (14)0.0200 (13)0.0034 (12)0.0085 (12)
N30.0469 (17)0.0448 (17)0.0512 (19)0.0138 (14)0.0015 (14)0.0113 (15)
N40.0419 (16)0.0621 (19)0.0450 (17)0.0191 (15)0.0063 (13)0.0205 (16)
N50.0483 (17)0.0406 (16)0.060 (2)0.0183 (14)0.0202 (15)0.0117 (15)
O10.0304 (11)0.0507 (14)0.0324 (11)0.0035 (10)0.0023 (9)0.0036 (10)
O20.0343 (12)0.0521 (14)0.0374 (13)0.0126 (11)0.0025 (10)0.0025 (11)
O30.0319 (11)0.0414 (12)0.0307 (11)0.0015 (9)0.0007 (9)0.0001 (10)
O40.0387 (12)0.0368 (12)0.0369 (12)0.0031 (10)0.0076 (10)0.0011 (10)
O50.0615 (17)0.0517 (15)0.0443 (14)0.0160 (13)0.0051 (12)0.0118 (13)
O60.095 (3)0.0440 (16)0.084 (2)0.0250 (16)0.011 (2)0.0140 (16)
O70.0602 (16)0.0467 (14)0.0375 (13)0.0200 (12)0.0008 (12)0.0030 (11)
O80.0596 (16)0.0458 (14)0.0369 (13)0.0136 (12)0.0043 (11)0.0065 (11)
O90.075 (2)0.093 (2)0.0543 (18)0.0167 (18)0.0059 (16)0.0401 (18)
O100.0519 (15)0.0448 (14)0.0441 (14)0.0038 (11)0.0027 (12)0.0073 (12)
O110.0455 (14)0.0491 (15)0.0627 (17)0.0158 (12)0.0011 (13)0.0104 (13)
O120.079 (2)0.070 (2)0.115 (3)0.0458 (19)0.034 (2)0.042 (2)
O130.0661 (18)0.0377 (13)0.0569 (17)0.0112 (13)0.0044 (14)0.0016 (12)
O140.157 (5)0.065 (2)0.077 (3)0.011 (3)0.008 (3)0.004 (2)
Tb10.03237 (9)0.03267 (9)0.02717 (9)0.00535 (6)0.00082 (6)0.00045 (6)
Geometric parameters (Å, º) top
C1—O11.332 (4)C18—H160.960
C1—C21.399 (5)C18—H170.960
C1—C61.418 (5)C19—O21.435 (5)
C2—C31.375 (4)C19—H180.960
C2—O21.382 (4)C19—H190.960
C3—C41.417 (6)C19—H200.960
C3—H10.930C20—C211.469 (8)
C4—C51.357 (6)C20—H240.960
C4—H20.930C20—H250.960
C5—C61.414 (5)C20—H260.960
C5—H30.930C21—O141.181 (6)
C6—C71.428 (6)C21—C221.502 (8)
C7—N11.279 (5)C22—H210.960
C7—H40.930C22—H220.960
C8—N11.476 (5)C22—H230.960
C8—C91.483 (8)Cu2—O11.939 (3)
C8—H50.970Cu2—O31.947 (2)
C8—H60.970Cu2—N21.957 (3)
C9—C101.493 (6)Cu2—N11.989 (3)
C9—H80.970Cu2—Tb13.4749 (16)
C9—H70.970N3—O61.208 (4)
C10—N21.492 (5)N3—O71.271 (4)
C10—H90.970N3—O51.274 (4)
C10—H100.970N4—O91.222 (4)
C11—N21.293 (5)N4—O81.274 (4)
C11—C121.439 (5)N4—O101.275 (4)
C11—H110.930N5—O121.219 (4)
C12—C171.394 (5)N5—O111.257 (4)
C12—C131.411 (5)N5—O131.280 (5)
C13—C141.377 (6)O1—Tb12.352 (2)
C13—H120.930O2—Tb12.506 (3)
C14—C151.396 (6)O3—Tb12.344 (3)
C14—H130.930O4—Tb12.492 (2)
C15—C161.377 (5)O5—Tb12.470 (3)
C15—H140.930O7—Tb12.501 (3)
C16—O41.379 (4)O8—Tb12.455 (3)
C16—C171.424 (4)O10—Tb12.494 (3)
C17—O31.333 (4)O11—Tb12.491 (3)
C18—O41.448 (4)O13—Tb12.564 (3)
C18—H150.960
O1—C1—C2117.8 (3)O1—Cu2—Tb140.14 (7)
O1—C1—C6122.7 (3)O3—Cu2—Tb139.95 (7)
C2—C1—C6119.5 (3)N2—Cu2—Tb1130.52 (9)
C3—C2—O2124.7 (3)N1—Cu2—Tb1129.85 (10)
C3—C2—C1120.6 (3)C7—N1—C8115.4 (3)
O2—C2—C1114.7 (3)C7—N1—Cu2123.8 (3)
C2—C3—C4119.8 (4)C8—N1—Cu2120.7 (3)
C2—C3—H1120.1C11—N2—C10115.0 (3)
C4—C3—H1120.1C11—N2—Cu2124.3 (2)
C5—C4—C3120.7 (3)C10—N2—Cu2120.7 (2)
C5—C4—H2119.7O6—N3—O7123.1 (4)
C3—C4—H2119.7O6—N3—O5120.8 (4)
C4—C5—C6120.5 (3)O7—N3—O5116.1 (3)
C4—C5—H3119.7O9—N4—O8121.0 (4)
C6—C5—H3119.7O9—N4—O10123.8 (4)
C5—C6—C1118.9 (4)O8—N4—O10115.2 (3)
C5—C6—C7118.6 (3)O12—N5—O11121.5 (4)
C1—C6—C7122.3 (3)O12—N5—O13122.0 (4)
N1—C7—C6128.9 (3)O11—N5—O13116.5 (3)
N1—C7—H4115.6C1—O1—Cu2128.2 (2)
C6—C7—H4115.6C1—O1—Tb1124.0 (2)
N1—C8—C9113.1 (4)Cu2—O1—Tb1107.76 (10)
N1—C8—H5109.0C2—O2—C19118.0 (3)
C9—C8—H5109.0C2—O2—Tb1118.0 (2)
N1—C8—H6109.0C19—O2—Tb1123.2 (2)
C9—C8—H6109.0C17—O3—Cu2129.3 (2)
H5—C8—H6107.8C17—O3—Tb1122.90 (19)
C8—C9—C10112.3 (4)Cu2—O3—Tb1107.83 (10)
C8—C9—H8109.1C16—O4—C18117.7 (3)
C10—C9—H8109.1C16—O4—Tb1117.60 (18)
C8—C9—H7109.1C18—O4—Tb1122.5 (2)
C10—C9—H7109.1N3—O5—Tb196.8 (2)
H8—C9—H7107.9N3—O7—Tb195.4 (2)
N2—C10—C9111.7 (3)N4—O8—Tb197.5 (2)
N2—C10—H9109.3N4—O10—Tb195.6 (2)
C9—C10—H9109.3N5—O11—Tb198.5 (2)
N2—C10—H10109.3N5—O13—Tb194.4 (2)
C9—C10—H10109.3O3—Tb1—O163.45 (9)
H9—C10—H10107.9O3—Tb1—O8146.77 (9)
N2—C11—C12128.6 (3)O1—Tb1—O8147.69 (9)
N2—C11—H11115.7O3—Tb1—O572.83 (9)
C12—C11—H11115.7O1—Tb1—O573.37 (10)
C17—C12—C13119.4 (3)O8—Tb1—O5118.67 (9)
C17—C12—C11122.6 (3)O3—Tb1—O1181.12 (10)
C13—C12—C11117.9 (3)O1—Tb1—O11116.73 (9)
C14—C13—C12120.2 (4)O8—Tb1—O1172.71 (10)
C14—C13—H12119.9O5—Tb1—O11143.71 (10)
C12—C13—H12119.9O3—Tb1—O465.89 (8)
C13—C14—C15121.0 (3)O1—Tb1—O4126.51 (9)
C13—C14—H13119.5O8—Tb1—O485.75 (9)
C15—C14—H13119.5O5—Tb1—O476.54 (9)
C16—C15—C14119.5 (3)O11—Tb1—O469.87 (9)
C16—C15—H14120.2O3—Tb1—O10138.29 (9)
C14—C15—H14120.2O1—Tb1—O1099.56 (9)
C15—C16—O4124.8 (3)O8—Tb1—O1051.53 (9)
C15—C16—C17120.5 (3)O5—Tb1—O10142.00 (10)
O4—C16—C17114.6 (3)O11—Tb1—O1073.34 (10)
O3—C17—C12122.4 (3)O4—Tb1—O10130.23 (8)
O3—C17—C16118.3 (3)O3—Tb1—O7115.07 (9)
C12—C17—C16119.3 (3)O1—Tb1—O7117.69 (9)
O4—C18—H15109.5O8—Tb1—O767.18 (9)
O4—C18—H16109.5O5—Tb1—O751.50 (9)
H15—C18—H16109.5O11—Tb1—O7124.64 (9)
O4—C18—H17109.5O4—Tb1—O770.61 (10)
H15—C18—H17109.5O10—Tb1—O7106.57 (10)
H16—C18—H17109.5O3—Tb1—O2124.00 (8)
O2—C19—H18109.5O1—Tb1—O264.58 (8)
O2—C19—H19109.5O8—Tb1—O289.00 (9)
H18—C19—H19109.5O5—Tb1—O273.82 (9)
O2—C19—H20109.5O11—Tb1—O2142.46 (9)
H18—C19—H20109.5O4—Tb1—O2142.70 (9)
H19—C19—H20109.5O10—Tb1—O269.68 (9)
C21—C20—H24109.5O7—Tb1—O273.33 (9)
C21—C20—H25109.5O3—Tb1—O1371.12 (10)
H24—C20—H25109.5O1—Tb1—O1368.46 (10)
C21—C20—H26109.5O8—Tb1—O13105.29 (10)
H24—C20—H26109.5O5—Tb1—O13136.01 (10)
H25—C20—H26109.5O11—Tb1—O1350.51 (10)
O14—C21—C20121.7 (6)O4—Tb1—O13109.79 (10)
O14—C21—C22121.8 (5)O10—Tb1—O1367.18 (10)
C20—C21—C22116.4 (5)O7—Tb1—O13172.48 (9)
C21—C22—H21109.5O2—Tb1—O13107.22 (10)
C21—C22—H22109.5O3—Tb1—Cu232.23 (5)
H21—C22—H22109.5O1—Tb1—Cu232.10 (6)
C21—C22—H23109.5O8—Tb1—Cu2165.72 (6)
H21—C22—H23109.5O5—Tb1—Cu275.60 (7)
H22—C22—H23109.5O11—Tb1—Cu295.49 (8)
O1—Cu2—O378.92 (10)O4—Tb1—Cu297.89 (6)
O1—Cu2—N2170.42 (11)O10—Tb1—Cu2118.11 (7)
O3—Cu2—N291.51 (12)O7—Tb1—Cu2127.06 (6)
O1—Cu2—N191.40 (12)O2—Tb1—Cu296.16 (6)
O3—Cu2—N1169.69 (12)O13—Tb1—Cu260.46 (7)
N2—Cu2—N198.17 (13)

Experimental details

Crystal data
Chemical formula[CuTb(C19H20N2O4)(NO3)3]·C3H6O
Mr806.94
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.388 (5), 12.108 (6), 13.604 (6)
α, β, γ (°)73.079 (16), 86.67 (2), 72.33 (2)
V3)1408.8 (12)
Z2
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.19 × 0.16 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.569, 0.659
No. of measured, independent and
observed [I > 2σ(I)] reflections
12171, 6275, 5621
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.083, 1.11
No. of reflections6275
No. of parameters392
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.50

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu2—O11.939 (3)O4—Tb12.492 (2)
Cu2—O31.947 (2)O5—Tb12.470 (3)
Cu2—N21.957 (3)O7—Tb12.501 (3)
Cu2—N11.989 (3)O8—Tb12.455 (3)
O1—Tb12.352 (2)O10—Tb12.494 (3)
O2—Tb12.506 (3)O11—Tb12.491 (3)
O3—Tb12.344 (3)O13—Tb12.564 (3)
 

Acknowledgements

The authors gratefully acknowledge financial support from the Education Department of Liaoning Province (2006 B 112) and Liaoning University.

References

First citationElmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639–643.  CAS Google Scholar
First citationElmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535–540.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds