organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-{[Bis(tri­fluoro­meth­yl)methyl­ene]di-p-phenyl­ene}diphthalimide

aKey Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and bSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: lytm1234@yahoo.com.cn

(Received 5 November 2007; accepted 22 December 2007; online 9 January 2008)

The molecule of the title compound, C31H16F6N2O4, consists of two phthalimide units linked by a [bis­(trifluoro­meth­yl)methyl­ene]di-p-phenyl­ene bridge, with the two halves of the mol­ecule related to each other by a twofold rotation axis. The dihedral angle between the planes of the two central benzene rings is 70.5 (3)°. The terminal isoindole groups are approximately planar, with a maximum r.m.s. deviation of 0.006 Å from the mean plane, and they form dihedral angles of 46.03 (3)° to the attached benzene rings. Inter­molecular C—H⋯O hydrogen bonds link neighboring mol­ecules into chains along the c axis.

Related literature

For details of the biological activity and uses of bis(­imide) derivatives, see: Rich et al. (1975[Rich, D. H., Gesellchen, P. D., Tong, A., Cheung, A. & Buckner, C. K. (1975). J. Med. Chem. 18, 1004-1010.]); Degenhardt et al. (2002[Degenhardt, C. F., Smith, M. D. & Shimizu, K. D. (2002). Org. Lett. 4, 723-726.]); Mallakpour & Kowsari (2004[Mallakpour, S. & Kowsari, E. (2004). J. Appl. Polym. Sci. 91, 2992-3000.]); Zhang et al. (1999[Zhang, Q., Hamilton, D. G., Feeder, N., Teat, S. J., Goodman, J. M. & Sanders, J. K. (1999). New J. Chem. 23, 897-903.]); Langhals & Kirner (2000[Langhals, H. & Kirner, S. (2000). Eur. J. Org. Chem. pp. 365-380.]); Yakimov & Forrest (2002[Yakimov, A. & Forrest, S. R. (2002). Appl. Phys. Lett. 81, 3085-3087.]). For a related structure, see: Li et al. (2007[Li, J., Li, Y.-T. & Wang, Z.-H. (2007). Acta Cryst. E63, o3420.]).

[Scheme 1]

Experimental

Crystal data
  • C31H16F6N2O4

  • Mr = 594.46

  • Orthorhombic, P c c a

  • a = 13.3588 (19) Å

  • b = 12.5340 (18) Å

  • c = 15.792 (2) Å

  • V = 2644.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 292 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: none

  • 15610 measured reflections

  • 2607 independent reflections

  • 1864 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.168

  • S = 1.05

  • 2607 reflections

  • 232 parameters

  • 64 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.42 3.199 (4) 141
Symmetry code: (i) [x, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.054) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.054) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bisimides are heterocyclic compounds that sometimes exhibit biological activity (Rich et al., 1975). Moreover, they are synthetic precursors with applications in organic synthesis (Degenhardt et al., 2002), polymer synthesis (Mallakpour & Kowsari, 2004), supramolecular chemistry (Zhang et al., 1999), and for the development of new materials (Langhals & Kirner, 2000) and molecular electronic devices (Yakimov & Forrest, 2002).

Following our studies on the synthesis of bisimides derivatives (Li et al., 2007), we report here the structure of the title compound (I), Fig. 1. In the molecule, two phthalimide units are linked by a (1,1-di-trifluoromethyl)-methylenedi-p-phenylene bridge. The dihedral angle between the planes of the two central benzene rings is 70.5 (3)°. The terminal isoindole group is approximately planar with a maximum r.m.s. deviation of 0.006Å from the best fit plane by C11 and makes a dihedral angle of 46.03 (3)° to the attached central benzene ring. Intermolecular C—H···O hydrogen bonds contribute to the stability of the structure (Table 1).

Related literature top

For details of the biological activity and uses of bisimide derivatives, see: Rich et al. (1975); Degenhardt et al. (2002); Mallakpour & Kowsari (2004); Zhang et al. (1999); Langhals & Kirner (2000); Yakimov & Forrest (2002). For a related structure, see: Li et al. (2007).

Experimental top

A solution of phthaloyl dichoride (420 mg, 2 mmol) was added slowly over a period of 10 min to a solution of 4-(2-(4-aminophenyl)-1,1,1,3,3,3- hexafluoropropan-2-yl)benzenamine (334 mg, 1 mmol) in dichloromethane (25 ml) at 273 K to yield a light yellow precipitate. Triethylamine (5 ml) was then added to dissolve the precipitate which became a yellow suspension after stirring for 12 h. The compound was filtered and dried to give (I), (yield 362 mg, 61%). Single crystals of (I) were obtained by recrystallization from DMF at room temperature.

Refinement top

Non-hydrogen atoms were refined with anisotropic displacement parameters. One of the trifluoromethyl groups (C1/F1/F2/F3) of the title compound was found to be disordered over two orientations. The occupancies of the disordered positions C1/C1', F1/F1', F2/F2'and F3/F3' were refined to 0.59 (5) /0.41 (5). All H atoms were initially located in a difference Fourier map and then included with constrained bond lengths and isotropic displacement parameters: C—H=0.93Å and Uiso(H)=1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labels with 50% probability displacement ellipsoids.
N,N'-{[Bis(trifluoromethyl)methylene]di-p- phenylene}diphthalimide top
Crystal data top
C31H16F6N2O4F(000) = 1208
Mr = 594.46Dx = 1.493 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 2679 reflections
a = 13.3588 (19) Åθ = 2.6–21.8°
b = 12.5340 (18) ŵ = 0.13 mm1
c = 15.792 (2) ÅT = 292 K
V = 2644.2 (6) Å3Block, colorless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1864 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.119
Graphite monochromatorθmax = 26.0°, θmin = 2.6°
ϕ and ω scansh = 1616
15610 measured reflectionsk = 1513
2607 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0607P)2 + 1.4164P]
where P = (Fo2 + 2Fc2)/3
2607 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.24 e Å3
64 restraintsΔρmin = 0.23 e Å3
Crystal data top
C31H16F6N2O4V = 2644.2 (6) Å3
Mr = 594.46Z = 4
Orthorhombic, PccaMo Kα radiation
a = 13.3588 (19) ŵ = 0.13 mm1
b = 12.5340 (18) ÅT = 292 K
c = 15.792 (2) Å0.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1864 reflections with I > 2σ(I)
15610 measured reflectionsRint = 0.119
2607 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06664 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
2607 reflectionsΔρmin = 0.23 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1413 (6)0.5169 (6)0.0925 (5)0.061 (3)0.59
F10.1409 (5)0.5845 (3)0.0233 (3)0.110 (2)0.59
F20.0992 (5)0.4244 (3)0.0577 (3)0.115 (2)0.59
F30.0585 (4)0.5547 (4)0.1406 (4)0.0905 (18)0.59
C1'0.1891 (7)0.5093 (6)0.0641 (4)0.067 (3)0.41
F1'0.2253 (6)0.5779 (5)0.0078 (4)0.088 (2)0.41
F2'0.1774 (6)0.4132 (4)0.0295 (4)0.083 (2)0.41
F3'0.1045 (5)0.5408 (7)0.1022 (6)0.072 (3)0.41
C20.25000.50000.1377 (3)0.089 (2)
C30.2705 (3)0.6000 (2)0.1916 (2)0.0590 (10)
C40.2369 (3)0.7005 (3)0.1690 (2)0.0572 (10)
H40.19670.70890.12140.069*
C50.3309 (3)0.5905 (3)0.2625 (2)0.0641 (11)
H50.35310.52330.27880.077*
C60.2630 (3)0.7884 (2)0.21707 (19)0.0460 (8)
H60.23880.85540.20220.055*
C70.3592 (3)0.6783 (3)0.3097 (2)0.0555 (9)
H70.40110.67060.35640.067*
C80.3240 (2)0.7780 (2)0.28632 (19)0.0419 (7)
C90.3798 (2)0.9679 (2)0.29929 (19)0.0414 (7)
C100.3466 (2)0.8763 (3)0.42443 (19)0.0414 (7)
C110.3948 (2)1.0421 (2)0.37121 (19)0.0404 (7)
C120.4248 (3)1.1469 (3)0.3716 (2)0.0517 (9)
H120.44031.18260.32170.062*
C130.4310 (3)1.1972 (3)0.4497 (2)0.0595 (10)
H130.45061.26830.45220.071*
C140.4084 (3)1.1434 (3)0.5240 (2)0.0560 (10)
H140.41291.17910.57550.067*
C150.3795 (2)1.0383 (3)0.5228 (2)0.0500 (9)
H150.36481.00210.57260.060*
C160.3731 (2)0.9880 (2)0.44536 (18)0.0382 (7)
N10.35108 (19)0.86997 (19)0.33529 (15)0.0405 (6)
O10.38753 (18)0.98510 (18)0.22441 (13)0.0569 (7)
O30.32502 (19)0.80458 (19)0.47064 (14)0.0570 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.104 (8)0.039 (5)0.040 (4)0.000 (5)0.012 (5)0.007 (4)
F10.228 (7)0.043 (2)0.060 (3)0.030 (4)0.054 (4)0.018 (2)
F20.200 (6)0.041 (2)0.105 (4)0.026 (3)0.081 (5)0.001 (2)
F30.091 (4)0.067 (3)0.114 (5)0.007 (3)0.036 (3)0.013 (3)
C1'0.129 (8)0.038 (5)0.033 (5)0.027 (6)0.005 (5)0.008 (4)
F1'0.146 (6)0.055 (4)0.061 (4)0.008 (5)0.025 (5)0.007 (3)
F2'0.120 (5)0.053 (4)0.075 (5)0.010 (4)0.040 (4)0.014 (3)
F3'0.046 (5)0.055 (5)0.115 (8)0.016 (4)0.029 (4)0.005 (5)
C20.199 (8)0.028 (3)0.039 (3)0.018 (4)0.0000.000
C30.107 (3)0.0301 (17)0.0400 (19)0.0091 (18)0.004 (2)0.0000 (14)
C40.095 (3)0.0373 (18)0.0391 (18)0.0116 (18)0.0078 (19)0.0001 (14)
C50.111 (3)0.0280 (17)0.053 (2)0.0087 (18)0.003 (2)0.0038 (15)
C60.071 (2)0.0292 (15)0.0377 (17)0.0012 (15)0.0008 (16)0.0028 (13)
C70.076 (2)0.0424 (19)0.048 (2)0.0042 (17)0.0049 (18)0.0026 (16)
C80.0587 (19)0.0338 (16)0.0333 (16)0.0039 (14)0.0052 (15)0.0013 (13)
C90.0523 (19)0.0385 (17)0.0333 (17)0.0040 (14)0.0012 (14)0.0000 (13)
C100.0429 (17)0.0455 (19)0.0358 (17)0.0020 (14)0.0023 (13)0.0026 (15)
C110.0427 (16)0.0434 (18)0.0351 (17)0.0030 (13)0.0015 (14)0.0020 (13)
C120.063 (2)0.0432 (19)0.049 (2)0.0073 (16)0.0010 (17)0.0029 (16)
C130.062 (2)0.049 (2)0.068 (3)0.0036 (17)0.0006 (19)0.0192 (19)
C140.0503 (19)0.068 (3)0.049 (2)0.0047 (17)0.0017 (16)0.0275 (18)
C150.0458 (18)0.068 (2)0.0362 (18)0.0035 (16)0.0020 (15)0.0117 (16)
C160.0369 (16)0.0454 (18)0.0322 (15)0.0037 (13)0.0015 (13)0.0020 (13)
N10.0558 (15)0.0345 (14)0.0313 (14)0.0033 (12)0.0005 (12)0.0015 (11)
O10.0885 (18)0.0518 (14)0.0305 (12)0.0178 (12)0.0006 (12)0.0018 (10)
O30.0754 (16)0.0545 (15)0.0411 (13)0.0073 (12)0.0015 (12)0.0129 (11)
Geometric parameters (Å, º) top
C1—F11.382 (7)C5—H50.9300
C1—F21.401 (8)C6—C81.370 (4)
C1—F31.422 (8)C6—H60.9300
C1—C21.632 (7)C7—C81.386 (4)
C1'—F1'1.329 (8)C7—H70.9300
C1'—F2'1.332 (7)C8—N11.434 (4)
C1'—F3'1.339 (8)C9—O11.207 (4)
C1'—C21.423 (7)C9—N11.406 (4)
C1'—C1'i1.645 (18)C9—C111.482 (4)
C1'—F1'i1.815 (12)C10—O31.194 (4)
F1'—F2'i1.350 (11)C10—N11.411 (4)
F1'—C1'i1.815 (12)C10—C161.481 (4)
F2'—F1'i1.350 (11)C11—C121.373 (4)
C2—C1'i1.423 (7)C11—C161.383 (4)
C2—C31.540 (4)C12—C131.387 (5)
C2—C3i1.540 (4)C12—H120.9300
C2—C1i1.632 (7)C13—C141.386 (5)
C3—C41.384 (5)C13—H130.9300
C3—C51.386 (5)C14—C151.374 (5)
C4—C61.383 (4)C14—H140.9300
C4—H40.9300C15—C161.378 (4)
C5—C71.381 (5)C15—H150.9300
F1—C1—F2101.3 (5)C6—C4—C3120.1 (3)
F1—C1—F3102.4 (6)C6—C4—H4119.9
F2—C1—F3100.0 (6)C3—C4—H4119.9
F1—C1—C2115.3 (6)C7—C5—C3121.8 (3)
F2—C1—C2114.9 (5)C7—C5—H5119.1
F3—C1—C2120.1 (6)C3—C5—H5119.1
F1'—C1'—F2'110.6 (6)C8—C6—C4120.8 (3)
F1'—C1'—F3'114.7 (8)C8—C6—H6119.6
F2'—C1'—F3'110.6 (7)C4—C6—H6119.6
F1'—C1'—C2113.0 (6)C5—C7—C8118.8 (3)
F2'—C1'—C2109.2 (7)C5—C7—H7120.6
F3'—C1'—C298.1 (6)C8—C7—H7120.6
F1'—C1'—C1'i74.4 (6)C6—C8—C7120.0 (3)
F2'—C1'—C1'i89.3 (7)C6—C8—N1120.3 (3)
F3'—C1'—C1'i151.2 (6)C7—C8—N1119.7 (3)
C2—C1'—C1'i54.7 (4)O1—C9—N1125.2 (3)
F1'—C1'—F1'i80.3 (6)O1—C9—C11128.9 (3)
F2'—C1'—F1'i47.8 (5)N1—C9—C11105.9 (2)
F3'—C1'—F1'i158.3 (7)O3—C10—N1125.3 (3)
C2—C1'—F1'i89.4 (6)O3—C10—C16129.3 (3)
C1'i—C1'—F1'i44.8 (4)N1—C10—C16105.4 (3)
C1'—F1'—F2'i103.5 (6)C12—C11—C16121.7 (3)
C1'—F1'—C1'i60.8 (6)C12—C11—C9130.1 (3)
F2'i—F1'—C1'i47.0 (4)C16—C11—C9108.2 (3)
C1'—F2'—F1'i85.2 (6)C11—C12—C13117.2 (3)
C1'—C2—C1'i70.6 (8)C11—C12—H12121.4
C1'—C2—C3119.1 (3)C13—C12—H12121.4
C1'i—C2—C3114.6 (4)C14—C13—C12121.2 (3)
C1'—C2—C3i114.6 (4)C14—C13—H13119.4
C1'i—C2—C3i119.1 (3)C12—C13—H13119.4
C3—C2—C3i112.9 (4)C15—C14—C13121.1 (3)
C1'—C2—C1i99.4 (6)C15—C14—H14119.5
C1'i—C2—C1i28.8 (4)C13—C14—H14119.5
C3—C2—C1i100.9 (3)C14—C15—C16117.9 (3)
C3i—C2—C1i107.1 (3)C14—C15—H15121.0
C1'—C2—C128.8 (4)C16—C15—H15121.0
C1'i—C2—C199.4 (6)C15—C16—C11120.9 (3)
C3—C2—C1107.1 (3)C15—C16—C10130.1 (3)
C3i—C2—C1100.9 (3)C11—C16—C10108.9 (3)
C1i—C2—C1128.2 (7)C9—N1—C10111.5 (2)
C4—C3—C5118.4 (3)C9—N1—C8123.5 (2)
C4—C3—C2122.7 (3)C10—N1—C8124.9 (2)
C5—C3—C2118.8 (3)
F2'—C1'—F1'—F2'i103.3 (7)C1'—C2—C3—C43.8 (6)
F3'—C1'—F1'—F2'i130.7 (8)C1'i—C2—C3—C476.8 (6)
C2—C1'—F1'—F2'i19.4 (8)C3i—C2—C3—C4142.5 (4)
C1'i—C1'—F1'—F2'i20.2 (6)C1i—C2—C3—C4103.5 (5)
F1'i—C1'—F1'—F2'i65.8 (7)C1—C2—C3—C432.4 (5)
F2'—C1'—F1'—C1'i83.2 (8)C1'—C2—C3—C5179.2 (5)
F3'—C1'—F1'—C1'i150.9 (8)C1'i—C2—C3—C598.6 (6)
C2—C1'—F1'—C1'i39.6 (5)C3i—C2—C3—C542.1 (3)
F1'i—C1'—F1'—C1'i45.6 (4)C1i—C2—C3—C571.9 (5)
F1'—C1'—F2'—F1'i54.2 (8)C1—C2—C3—C5152.2 (4)
F3'—C1'—F2'—F1'i177.6 (8)C5—C3—C4—C60.5 (6)
C2—C1'—F2'—F1'i70.8 (7)C2—C3—C4—C6175.9 (3)
C1'i—C1'—F2'—F1'i18.8 (5)C4—C3—C5—C71.0 (6)
F1'—C1'—C2—C1'i48.7 (5)C2—C3—C5—C7174.6 (3)
F2'—C1'—C2—C1'i74.8 (7)C3—C4—C6—C81.5 (5)
F3'—C1'—C2—C1'i170.0 (9)C3—C5—C7—C81.5 (6)
F1'i—C1'—C2—C1'i30.4 (3)C4—C6—C8—C70.9 (5)
F1'—C1'—C2—C359.2 (8)C4—C6—C8—N1179.5 (3)
F2'—C1'—C2—C3177.2 (5)C5—C7—C8—C60.5 (5)
F3'—C1'—C2—C362.0 (7)C5—C7—C8—N1179.0 (3)
C1'i—C1'—C2—C3108.0 (5)O1—C9—C11—C123.0 (6)
F1'i—C1'—C2—C3138.4 (4)N1—C9—C11—C12178.6 (3)
F1'—C1'—C2—C3i162.7 (5)O1—C9—C11—C16177.2 (3)
F2'—C1'—C2—C3i39.1 (8)N1—C9—C11—C161.2 (3)
F3'—C1'—C2—C3i76.1 (7)C16—C11—C12—C131.0 (5)
C1'i—C1'—C2—C3i114.0 (5)C9—C11—C12—C13179.2 (3)
F1'i—C1'—C2—C3i83.5 (5)C11—C12—C13—C140.5 (5)
F1'—C1'—C2—C1i48.9 (7)C12—C13—C14—C150.2 (5)
F2'—C1'—C2—C1i74.7 (7)C13—C14—C15—C160.4 (5)
F3'—C1'—C2—C1i170.1 (6)C14—C15—C16—C110.2 (5)
C1'i—C1'—C2—C1i0.2 (6)C14—C15—C16—C10178.5 (3)
F1'i—C1'—C2—C1i30.3 (5)C12—C11—C16—C150.9 (5)
F1'—C1'—C2—C1130.9 (12)C9—C11—C16—C15179.2 (3)
F2'—C1'—C2—C1105.5 (12)C12—C11—C16—C10178.0 (3)
F3'—C1'—C2—C19.7 (8)C9—C11—C16—C101.8 (3)
C1'i—C1'—C2—C1179.7 (12)O3—C10—C16—C150.3 (6)
F1'i—C1'—C2—C1149.9 (11)N1—C10—C16—C15179.4 (3)
F1—C1—C2—C1'42.3 (8)O3—C10—C16—C11178.6 (3)
F2—C1—C2—C1'75.0 (10)N1—C10—C16—C111.7 (3)
F3—C1—C2—C1'165.7 (13)O1—C9—N1—C10178.4 (3)
F1—C1—C2—C1'i42.0 (7)C11—C9—N1—C100.0 (3)
F2—C1—C2—C1'i75.3 (7)O1—C9—N1—C82.0 (5)
F3—C1—C2—C1'i165.4 (6)C11—C9—N1—C8176.4 (3)
F1—C1—C2—C377.5 (7)O3—C10—N1—C9179.3 (3)
F2—C1—C2—C3165.2 (5)C16—C10—N1—C91.0 (3)
F3—C1—C2—C345.9 (7)O3—C10—N1—C84.4 (5)
F1—C1—C2—C3i164.3 (5)C16—C10—N1—C8175.3 (3)
F2—C1—C2—C3i47.0 (7)C6—C8—N1—C943.6 (4)
F3—C1—C2—C3i72.4 (6)C7—C8—N1—C9136.9 (3)
F1—C1—C2—C1i42.1 (5)C6—C8—N1—C10132.3 (3)
F2—C1—C2—C1i75.2 (6)C7—C8—N1—C1047.2 (4)
F3—C1—C2—C1i165.5 (7)
Symmetry code: (i) x+1/2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1ii0.932.423.199 (4)141
Symmetry code: (ii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC31H16F6N2O4
Mr594.46
Crystal system, space groupOrthorhombic, Pcca
Temperature (K)292
a, b, c (Å)13.3588 (19), 12.5340 (18), 15.792 (2)
V3)2644.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15610, 2607, 1864
Rint0.119
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.168, 1.05
No. of reflections2607
No. of parameters232
No. of restraints64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.423.199 (4)141.2
Symmetry code: (i) x, y+2, z+1/2.
 

Acknowledgements

The authors thank Dr Xiang-Gao Meng for the X-ray data collection.

References

First citationBruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART (Version 5.054) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDegenhardt, C. F., Smith, M. D. & Shimizu, K. D. (2002). Org. Lett. 4, 723–726.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLanghals, H. & Kirner, S. (2000). Eur. J. Org. Chem. pp. 365–380.  CrossRef Google Scholar
First citationLi, J., Li, Y.-T. & Wang, Z.-H. (2007). Acta Cryst. E63, o3420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMallakpour, S. & Kowsari, E. (2004). J. Appl. Polym. Sci. 91, 2992–3000.  Web of Science CrossRef CAS Google Scholar
First citationRich, D. H., Gesellchen, P. D., Tong, A., Cheung, A. & Buckner, C. K. (1975). J. Med. Chem. 18, 1004–1010.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakimov, A. & Forrest, S. R. (2002). Appl. Phys. Lett. 81, 3085–3087.  Web of Science CrossRef Google Scholar
First citationZhang, Q., Hamilton, D. G., Feeder, N., Teat, S. J., Goodman, J. M. & Sanders, J. K. (1999). New J. Chem. 23, 897–903.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds