metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-1,2-bis­­(di­phenyl­phosphino)methane-κ2P:P′]bis­­[(η2-ethene)nickel(0)] toluene disolvate

aFriedrich-Schiller-Universität Jena, Institut für Anorganische und Analytische Chemie, August-Bebel-Strasse 2, D-07743 Jena, Germany
*Correspondence e-mail: dirk.walther@uni-jena.de.de

(Received 13 December 2007; accepted 21 January 2008; online 25 January 2008)

In the title compound, [Ni2(C2H4)2(C25H22P2)2]·2C7H8, each Ni atom is coordinated in a trigonal-planar geometry by two P atoms of the bridging 1,2-bis­(diphenyl­phosphino)methane (dppm) ligands and by the centroid of the double bond of an ethene ligand. An eight-membered ring comprising the two Ni atoms, four P atoms and the CH2 groups of the two dppm ligands is thus formed. The methyl group in one of the solvent toluene mol­ecules is disordered over two positions with equal occupancies.

Related literature

For related literature, see: Aresta & Dibenedetto (2007[Aresta, M. & Dibenedetto, A. (2007). J. Chem. Soc. Dalton Trans. pp. 2975-2992.]); Cheng et al. (1971[Cheng, P.-T., Cook, C. D., Koo, C. H., Nyburg, S. C. & Shiomi, M. T. (1971). Acta Cryst. B27, 1904-1908.]); Fischer et al. (2006[Fischer, R., Langer, J., Malassa, A., Walther, D., Görls, H. & Vaughan, G. (2006). J. Chem. Soc. Chem. Commun. pp. 2510-2512.]); Hoberg et al. (1987[Hoberg, H., Jemni, H. K., Angermund, K. & Krüger, C. (1987). Angew. Chem. Int. Ed. Engl. 26, 153-158.]); Krüger & Tsay (1972[Krüger, C. & Tsay, Y.-H. (1972). J. Organomet. Chem. 34, 387-395.]); Langer et al. (2007[Langer, J., Fischer, R., Görls, H. & Walther, D. (2007). Eur. J. Inorg. Chem. pp. 2257-2264.]); Papai et al. (2004[Papai, I., Schubert, G., Mayer, I., Besenyei, G. & Aresta, M. (2004). Organometallics, 23, 5252-5273.]); Wilke & Herrmann (1962[Wilke, G. & Herrmann, G. (1962). Angew. Chem. 74, 693-694.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C2H4)2(C25H22P2)2]·2C7H8

  • Mr = 1126.52

  • Triclinic, [P \overline 1]

  • a = 13.0963 (12) Å

  • b = 15.2367 (16) Å

  • c = 15.6177 (16) Å

  • α = 70.566 (4)°

  • β = 78.727 (4)°

  • γ = 78.689 (7)°

  • V = 2853.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 183 (2) K

  • 0.05 × 0.05 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.834, Tmax = 0.994

  • 16239 measured reflections

  • 11467 independent reflections

  • 8057 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.233

  • S = 1.14

  • 11467 reflections

  • 666 parameters

  • H-atom parameters constrained

  • Δρmax = 1.46 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Our recent research has shown, that 1,2-bis(diphenylphosphino)methane (dppm) is a suitable ligand to promote \&s-hydride elimination in nickelacyclic carboxylates under formation of nickel acrylate complexes (Fischer et al. 2006, Langer et al. 2007). This reaction models the final step of the hypothetical acrylic acid synthesis from ethene and CO2, catalyzed by homogeneous Ni catalysts (Hoberg et al. 1987; Papai & Aresta 2004, Langer et al. 2007, Aresta & Dibenedetto 2007). In connection with these investigations we were also interested in isolating a well defined dppm Ni complex containing ethene as a ligand, which can be considered as starting complex for the first step of this catalytic reaction. Since the method of choice for preparing nickel ethene complexes is often the reduction of Ni(acac)2 with Al(Et)3 in presence of ligands (Wilke & Herrmann 1962) we used this method. In the presence of dppm a mixture of products were formed as judged by the 31P NMR spectrum of the reaction solution. After removing of half of the solvent in vacuum, subsequent cooling, filtration and storing the mother liquor of the reaction at -40 °C orange crystals of the desired ethene nickel(0) complex having the composition {(µ-dppm)2[Ni(C2H4)]2(toluene)2} were isolated together with [(dppm)Ni(et)(acac)(toluene)] as by-product. The crystal structure of this new Ni(0) complex, presented in Figure 1, shows that a nickel(0) dimer is formed in which two µ-dppm bridges connect the two Ni atoms, thus forming a eight-membered inner ring of the two Ni atoms, four P atoms and the two CH2 groups of the dppm ligand. The nickel atoms are in a distorted trigonal planar environment formed by two phosphorous atoms of two dppm ligands and the centroid of the coordinated double bond of ethene. The angle between the planes defined by Ni1P1P4 (Ni2P2P3) and Ni1C1C2 (Ni2C3C4) is 12.27 ° (10.21 °) and lies in typical range for ethene complexes of nickel. The Ni—P bond between 2.1396 (18) and 2.1665 (19) Å and the Ni—C bond length between 1.969 (7) and 1.976 (7) Å compare well with those found in bis(triphenylphosphine)(ethene) nickel (Cheng et al. 1971) and the corresponding tricyclohexylphosphine complex (Krüger & Tsay 1972). As expected, the C=C bonds of the coordinated olefins are lengthened compared with the uncoordinated olefin.

Related literature top

For related literature, see: Aresta & Dibenedetto (2007); Cheng et al. (1971); Fischer et al. (2006); Hoberg et al. (1987); Krüger & Tsay (1972); Langer et al. (2007); Papai et al. (2004); Wilke & Herrmann (1962).

Experimental top

All manipulations were carried out by using modified Schlenk techniques under an atmosphere of argon. Prior to use, toluene was distilled over sodium/benzophenone.

A filtered solution of Ni(acac)2 (1.06 g, 4.12 mmol) in toluene (10 ml) was treated with 1,2 bis(diphenylphosphino)methane (1.58 g, 4.11 mmol). The resulting green solution was cooled to 0 °C and placed under an atmosphere of ethene. Afterwards AlEt3 (1.25 ml, 9.03 mmol) was added dropwise at this temperature with rapid stirring. The resulting brown solution was stirred for an hour at 0 °C and then stored at -20 °C for three days. The formed partial crystalline precipitate was removed by filtration. Afterwards the brown mother liquor was reduced to half of the original volume and stored for three weeks at -40 °C. During this time, well shaped orange crystals of {(µ-dppm)2[Ni(C2H4)]2(toluene)2} precipitated from the brown oily solution, together with pale yellow crystals of [(dppm)Ni(et)(acac)(toluene)]. After separation, the cystals of{(µ-dppm)2[Ni(C2H4)]2(toluene)2} so formed were suitable for X-ray diffraction.

Refinement top

The quality of the crystal was very bad (mosaicity 2.512 (3)°), so hundreds of high order reflections are missing from the data set. All hydrogen atoms were set to idealized positions and were refined with 1.2 times (1.5 for methyl groups) the isotropic displacement parameter of the corresponding carbon atom. The central Ni-atom shows an interaction to the ethene molecules, giving the C-atoms a partial sp3 hybridization. For this reason, the AFIX 2 instruction was used for these hydrogen positions. Atoms C7TB and C7TC of a toluene molecule are disordered over two positions with equal occupancies. The carbon atoms of disordered part of the toluene molecule were refined using isotropic thermal parameters.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of 1. Displacement ellipsoids are drawn at the 40% probability level. Except for the ethene ligands, all H atoms have been omitted for clarity.
Bis[µ-1,2-bis(diphenylphosphino)methane-κ2P:P']bis[(η2– ethene)nickel(0)] toluene disolvate top
Crystal data top
[Ni2(C2H4)2(C25H22P2)2]·2C7H8Z = 2
Mr = 1126.52F(000) = 1184
Triclinic, P1Dx = 1.311 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.0963 (12) ÅCell parameters from 16239 reflections
b = 15.2367 (16) Åθ = 2.0–27.5°
c = 15.6177 (16) ŵ = 0.81 mm1
α = 70.566 (4)°T = 183 K
β = 78.727 (4)°Prism, orange
γ = 78.689 (7)°0.05 × 0.05 × 0.03 mm
V = 2853.1 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
11467 independent reflections
Radiation source: fine-focus sealed tube8057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(Blessing, 1997)
h = 1416
Tmin = 0.834, Tmax = 0.994k = 1719
16239 measured reflectionsl = 1720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.233H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0587P)2 + 15.5715P]
where P = (Fo2 + 2Fc2)/3
11467 reflections(Δ/σ)max = 0.001
666 parametersΔρmax = 1.46 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Ni2(C2H4)2(C25H22P2)2]·2C7H8γ = 78.689 (7)°
Mr = 1126.52V = 2853.1 (5) Å3
Triclinic, P1Z = 2
a = 13.0963 (12) ÅMo Kα radiation
b = 15.2367 (16) ŵ = 0.81 mm1
c = 15.6177 (16) ÅT = 183 K
α = 70.566 (4)°0.05 × 0.05 × 0.03 mm
β = 78.727 (4)°
Data collection top
Nonius KappaCCD
diffractometer
11467 independent reflections
Absorption correction: multi-scan
(Blessing, 1997)
8057 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.994Rint = 0.050
16239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.233H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0587P)2 + 15.5715P]
where P = (Fo2 + 2Fc2)/3
11467 reflectionsΔρmax = 1.46 e Å3
666 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.79325 (6)0.90928 (6)0.58612 (5)0.0336 (2)
Ni20.94947 (7)0.73710 (6)0.79352 (6)0.0375 (2)
P10.73773 (13)0.94131 (12)0.71209 (11)0.0338 (4)
P20.80241 (14)0.76591 (12)0.87616 (11)0.0366 (4)
P30.92014 (13)0.65602 (12)0.71245 (11)0.0355 (4)
P40.74457 (13)0.77889 (12)0.59627 (11)0.0332 (4)
C10.8393 (6)1.0309 (5)0.5101 (4)0.0448 (17)
H1A0.78431.08670.49990.054*
H1B0.90691.04340.51980.054*
C20.8452 (6)0.9699 (5)0.4560 (4)0.0426 (15)
H2A0.91650.94440.43200.051*
H2B0.79390.98770.41210.051*
C31.1034 (6)0.7358 (6)0.7689 (6)0.0543 (19)
H3A1.14730.67340.78590.065*
H3B1.13160.77970.71030.065*
C41.0589 (6)0.7737 (6)0.8399 (6)0.0533 (19)
H4A1.05890.84190.82670.064*
H4B1.07450.73560.90220.064*
C50.6950 (5)0.8506 (5)0.8197 (4)0.0353 (13)
H5A0.65320.88270.86350.042*
H5B0.64800.81490.80600.042*
C60.6151 (5)1.0238 (5)0.6959 (4)0.0354 (14)
C70.6130 (6)1.1210 (5)0.6618 (5)0.0458 (16)
H7A0.67701.14660.64820.055*
C80.5196 (6)1.1810 (6)0.6473 (5)0.0521 (19)
H8A0.52001.24700.62560.063*
C90.4261 (6)1.1457 (6)0.6642 (5)0.0501 (18)
H9A0.36231.18720.65340.060*
C100.4258 (6)1.0502 (6)0.6966 (5)0.0492 (18)
H10A0.36161.02550.70820.059*
C110.5192 (5)0.9896 (5)0.7126 (4)0.0422 (15)
H11A0.51770.92370.73540.051*
C120.8149 (5)1.0058 (5)0.7518 (4)0.0389 (15)
C130.7702 (6)1.0600 (5)0.8089 (4)0.0423 (15)
H13A0.69651.06580.82860.051*
C140.8324 (6)1.1061 (5)0.8374 (5)0.0475 (17)
H14A0.80111.14330.87660.057*
C150.9390 (6)1.0980 (5)0.8091 (5)0.0492 (18)
H15A0.98121.12990.82850.059*
C160.9850 (6)1.0438 (5)0.7526 (4)0.0441 (16)
H16A1.05901.03750.73410.053*
C170.9231 (5)0.9981 (5)0.7225 (4)0.0393 (15)
H17A0.95450.96210.68240.047*
C180.7414 (6)0.6594 (5)0.9333 (4)0.0393 (15)
C190.6330 (6)0.6560 (5)0.9527 (5)0.0468 (17)
H19A0.58530.71160.93170.056*
C200.5944 (7)0.5725 (6)1.0020 (6)0.0556 (19)
H20A0.52060.57171.01480.067*
C210.6616 (8)0.4900 (6)1.0331 (6)0.064 (2)
H21A0.63410.43321.06680.077*
C220.7696 (7)0.4909 (5)1.0145 (5)0.0535 (19)
H22A0.81660.43491.03580.064*
C230.8079 (6)0.5747 (5)0.9646 (4)0.0418 (15)
H23A0.88190.57470.95110.050*
C240.7971 (5)0.8071 (5)0.9760 (4)0.0411 (15)
C250.7317 (6)0.7762 (6)1.0571 (5)0.0531 (19)
H25A0.68680.73191.06290.064*
C260.7302 (7)0.8088 (7)1.1312 (6)0.063 (2)
H26A0.68640.78521.18740.075*
C270.7924 (7)0.8752 (6)1.1226 (5)0.058 (2)
H27A0.79060.89831.17240.069*
C280.8570 (7)0.9080 (6)1.0419 (5)0.0519 (19)
H28A0.89880.95471.03570.062*
C290.8616 (6)0.8734 (5)0.9688 (5)0.0444 (16)
H29A0.90850.89480.91410.053*
C300.7847 (5)0.6702 (5)0.6872 (4)0.0373 (14)
H30A0.73530.66890.74430.045*
H30B0.77750.61550.66910.045*
C310.9419 (5)0.5287 (5)0.7717 (4)0.0371 (14)
C320.8869 (6)0.4623 (5)0.7658 (5)0.0495 (18)
H32A0.83310.48250.72760.059*
C330.9073 (7)0.3675 (5)0.8135 (6)0.059 (2)
H33A0.86730.32410.80860.071*
C340.9861 (7)0.3367 (5)0.8680 (5)0.057 (2)
H34A1.00110.27200.90100.068*
C351.0417 (7)0.4000 (6)0.8740 (6)0.062 (2)
H35A1.09630.37880.91130.074*
C361.0215 (6)0.4940 (6)0.8275 (5)0.0531 (19)
H36A1.06230.53640.83340.064*
C371.0022 (5)0.6633 (5)0.6006 (4)0.0388 (14)
C381.0313 (5)0.5889 (5)0.5651 (4)0.0411 (15)
H38A1.00810.53020.59910.049*
C391.0940 (6)0.5983 (5)0.4808 (5)0.0477 (17)
H39A1.11340.54640.45740.057*
C401.1282 (5)0.6839 (5)0.4307 (5)0.0458 (17)
H40A1.17060.69070.37270.055*
C411.1006 (6)0.7593 (5)0.4651 (5)0.0439 (16)
H41A1.12400.81790.43090.053*
C421.0384 (5)0.7491 (5)0.5503 (5)0.0423 (15)
H42A1.02040.80070.57430.051*
C430.7689 (5)0.7306 (5)0.4990 (4)0.0359 (14)
C440.8451 (5)0.7592 (5)0.4255 (4)0.0401 (15)
H44A0.88380.80660.42350.048*
C450.8665 (6)0.7198 (5)0.3537 (5)0.0450 (16)
H45A0.91960.74010.30360.054*
C460.8102 (6)0.6512 (5)0.3558 (5)0.0449 (16)
H46A0.82430.62450.30700.054*
C470.7335 (6)0.6215 (5)0.4289 (5)0.0472 (17)
H47A0.69550.57370.43080.057*
C480.7116 (6)0.6613 (5)0.4999 (5)0.0418 (15)
H48A0.65760.64150.54930.050*
C490.6002 (5)0.7883 (4)0.6211 (4)0.0343 (13)
C500.5452 (5)0.8611 (5)0.5580 (5)0.0425 (15)
H50A0.58310.90120.50650.051*
C510.4361 (5)0.8758 (5)0.5694 (5)0.0478 (17)
H51A0.40020.92510.52540.057*
C520.3800 (6)0.8198 (6)0.6436 (6)0.0554 (19)
H52A0.30530.83060.65160.066*
C530.4324 (6)0.7472 (6)0.7073 (6)0.057 (2)
H53A0.39350.70820.75900.069*
C540.5423 (5)0.7312 (5)0.6957 (5)0.0447 (16)
H54A0.57770.68080.73930.054*
C1TA0.5103 (7)0.5123 (7)0.3440 (7)0.066 (2)
C2TA0.5831 (8)0.5413 (8)0.2679 (7)0.080 (3)
H2TA0.56180.59040.21580.096*
C3TA0.6876 (8)0.4994 (10)0.2664 (8)0.092 (4)
H3TA0.73770.52100.21400.111*
C4TA0.7178 (8)0.4275 (9)0.3399 (8)0.082 (3)
H4TA0.78900.39850.33840.099*
C5TA0.6461 (8)0.3962 (7)0.4165 (8)0.076 (3)
H5TA0.66700.34570.46790.091*
C6TA0.5430 (8)0.4400 (7)0.4170 (7)0.070 (2)
H6TA0.49330.41910.46990.084*
C7TA0.3960 (7)0.5584 (8)0.3462 (8)0.080 (3)
H7TA0.35600.52890.40540.120*
H7TB0.36620.55040.29680.120*
H7TC0.39240.62560.33760.120*
C1TB0.3093 (12)0.7418 (12)0.0031 (15)0.121 (6)
H1TA0.26690.70460.00910.146*
C2TB0.3580 (14)0.7099 (10)0.0797 (14)0.125 (6)
H2TB0.34870.65030.12310.150*
C3TB0.4189 (10)0.7641 (11)0.0926 (10)0.106 (4)
H3TB0.45450.74000.14490.127*
C4TB0.4329 (11)0.8513 (10)0.0356 (10)0.098 (4)
H4TB0.47330.88880.04960.118*0.50
C5TB0.3894 (10)0.8821 (9)0.0393 (10)0.094 (4)
H5TB0.40310.94090.08250.112*
C6TB0.3244 (10)0.8322 (10)0.0573 (9)0.095 (4)
H6TB0.28970.85820.11010.114*0.50
C7TB0.2704 (19)0.8666 (17)0.1299 (16)0.093 (7)*0.50
H7TD0.28810.92910.16640.139*0.50
H7TE0.19470.87120.10790.139*0.50
H7TF0.28920.82440.16780.139*0.50
C7TC0.486 (3)0.923 (2)0.039 (2)0.140 (11)*0.50
H7TG0.47950.97770.01570.210*0.50
H7TH0.56100.89910.04280.210*0.50
H7TI0.45510.94270.09390.210*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0344 (4)0.0384 (5)0.0293 (4)0.0054 (3)0.0067 (3)0.0105 (3)
Ni20.0354 (5)0.0443 (5)0.0360 (4)0.0035 (4)0.0094 (3)0.0154 (4)
P10.0339 (8)0.0384 (9)0.0293 (8)0.0028 (7)0.0070 (6)0.0107 (6)
P20.0383 (9)0.0411 (9)0.0313 (8)0.0021 (7)0.0101 (7)0.0113 (7)
P30.0362 (9)0.0383 (9)0.0331 (8)0.0030 (7)0.0104 (7)0.0107 (7)
P40.0323 (8)0.0379 (9)0.0298 (8)0.0048 (6)0.0072 (6)0.0091 (6)
C10.057 (4)0.038 (4)0.038 (4)0.014 (3)0.017 (3)0.000 (3)
C20.041 (4)0.046 (4)0.037 (3)0.005 (3)0.008 (3)0.006 (3)
C30.035 (4)0.079 (6)0.058 (5)0.012 (4)0.006 (3)0.031 (4)
C40.047 (4)0.059 (5)0.065 (5)0.001 (3)0.024 (4)0.028 (4)
C50.031 (3)0.043 (4)0.031 (3)0.005 (3)0.006 (2)0.010 (3)
C60.035 (3)0.047 (4)0.027 (3)0.000 (3)0.009 (2)0.016 (3)
C70.047 (4)0.050 (4)0.042 (4)0.002 (3)0.011 (3)0.016 (3)
C80.064 (5)0.047 (4)0.041 (4)0.016 (4)0.017 (3)0.015 (3)
C90.047 (4)0.063 (5)0.038 (4)0.013 (4)0.015 (3)0.019 (3)
C100.039 (4)0.073 (5)0.036 (4)0.001 (3)0.008 (3)0.018 (3)
C110.042 (4)0.051 (4)0.033 (3)0.003 (3)0.006 (3)0.014 (3)
C120.044 (4)0.037 (3)0.033 (3)0.005 (3)0.013 (3)0.004 (3)
C130.044 (4)0.051 (4)0.037 (3)0.004 (3)0.006 (3)0.021 (3)
C140.053 (5)0.048 (4)0.048 (4)0.004 (3)0.010 (3)0.023 (3)
C150.061 (5)0.049 (4)0.042 (4)0.013 (4)0.016 (3)0.013 (3)
C160.039 (4)0.066 (5)0.031 (3)0.018 (3)0.009 (3)0.012 (3)
C170.045 (4)0.043 (4)0.029 (3)0.000 (3)0.007 (3)0.012 (3)
C180.048 (4)0.037 (4)0.034 (3)0.003 (3)0.007 (3)0.013 (3)
C190.048 (4)0.047 (4)0.046 (4)0.007 (3)0.008 (3)0.015 (3)
C200.054 (5)0.053 (5)0.062 (5)0.013 (4)0.005 (4)0.020 (4)
C210.093 (7)0.045 (5)0.053 (5)0.018 (4)0.003 (4)0.012 (4)
C220.068 (5)0.039 (4)0.050 (4)0.001 (4)0.014 (4)0.011 (3)
C230.047 (4)0.043 (4)0.035 (3)0.000 (3)0.008 (3)0.014 (3)
C240.039 (4)0.048 (4)0.037 (3)0.004 (3)0.012 (3)0.015 (3)
C250.042 (4)0.076 (6)0.046 (4)0.005 (4)0.004 (3)0.028 (4)
C260.061 (5)0.092 (7)0.044 (4)0.012 (5)0.004 (4)0.033 (4)
C270.063 (5)0.074 (6)0.043 (4)0.007 (4)0.018 (4)0.031 (4)
C280.064 (5)0.052 (4)0.046 (4)0.001 (4)0.024 (4)0.019 (3)
C290.054 (4)0.046 (4)0.034 (3)0.007 (3)0.014 (3)0.010 (3)
C300.034 (3)0.044 (4)0.033 (3)0.004 (3)0.009 (3)0.009 (3)
C310.038 (3)0.045 (4)0.028 (3)0.001 (3)0.006 (3)0.014 (3)
C320.049 (4)0.046 (4)0.052 (4)0.007 (3)0.015 (3)0.009 (3)
C330.058 (5)0.041 (4)0.072 (5)0.009 (4)0.007 (4)0.007 (4)
C340.079 (6)0.037 (4)0.046 (4)0.005 (4)0.014 (4)0.005 (3)
C350.071 (6)0.055 (5)0.060 (5)0.016 (4)0.036 (4)0.017 (4)
C360.061 (5)0.050 (4)0.051 (4)0.001 (4)0.028 (4)0.014 (3)
C370.034 (3)0.044 (4)0.040 (3)0.005 (3)0.013 (3)0.011 (3)
C380.044 (4)0.045 (4)0.035 (3)0.005 (3)0.007 (3)0.012 (3)
C390.050 (4)0.051 (4)0.045 (4)0.002 (3)0.008 (3)0.021 (3)
C400.036 (4)0.062 (5)0.039 (4)0.010 (3)0.005 (3)0.014 (3)
C410.044 (4)0.045 (4)0.043 (4)0.010 (3)0.008 (3)0.009 (3)
C420.040 (4)0.044 (4)0.046 (4)0.007 (3)0.012 (3)0.014 (3)
C430.039 (3)0.042 (4)0.029 (3)0.002 (3)0.011 (3)0.015 (3)
C440.039 (4)0.047 (4)0.036 (3)0.008 (3)0.007 (3)0.014 (3)
C450.048 (4)0.051 (4)0.036 (3)0.005 (3)0.004 (3)0.016 (3)
C460.049 (4)0.054 (4)0.038 (4)0.002 (3)0.010 (3)0.024 (3)
C470.061 (5)0.045 (4)0.040 (4)0.006 (3)0.010 (3)0.018 (3)
C480.043 (4)0.041 (4)0.043 (4)0.007 (3)0.008 (3)0.013 (3)
C490.036 (3)0.039 (3)0.034 (3)0.006 (3)0.008 (3)0.017 (3)
C500.039 (4)0.052 (4)0.036 (3)0.002 (3)0.008 (3)0.015 (3)
C510.032 (4)0.054 (4)0.059 (4)0.003 (3)0.019 (3)0.018 (4)
C520.034 (4)0.068 (5)0.062 (5)0.006 (3)0.009 (3)0.017 (4)
C530.042 (4)0.069 (5)0.056 (5)0.016 (4)0.004 (3)0.015 (4)
C540.037 (4)0.044 (4)0.050 (4)0.005 (3)0.013 (3)0.008 (3)
C1TA0.042 (5)0.071 (6)0.090 (7)0.002 (4)0.016 (4)0.031 (5)
C2TA0.053 (6)0.111 (9)0.078 (7)0.001 (5)0.013 (5)0.036 (6)
C3TA0.060 (6)0.149 (11)0.083 (7)0.006 (7)0.008 (5)0.061 (8)
C4TA0.052 (5)0.125 (9)0.099 (8)0.012 (6)0.017 (6)0.083 (7)
C5TA0.062 (6)0.084 (7)0.102 (8)0.009 (5)0.035 (6)0.052 (6)
C6TA0.064 (6)0.072 (6)0.079 (6)0.019 (5)0.012 (5)0.024 (5)
C7TA0.051 (5)0.086 (7)0.091 (7)0.003 (5)0.005 (5)0.018 (6)
C1TB0.086 (10)0.097 (11)0.207 (19)0.025 (8)0.027 (11)0.101 (13)
C2TB0.099 (12)0.066 (8)0.177 (17)0.016 (8)0.068 (11)0.041 (10)
C3TB0.065 (7)0.119 (11)0.106 (10)0.010 (7)0.017 (6)0.029 (8)
C4TB0.097 (9)0.103 (10)0.098 (9)0.030 (7)0.034 (8)0.053 (8)
C5TB0.080 (8)0.084 (8)0.112 (10)0.027 (6)0.046 (7)0.047 (7)
C6TB0.082 (8)0.110 (10)0.091 (8)0.004 (7)0.010 (6)0.052 (7)
Geometric parameters (Å, º) top
Ni1—C21.976 (7)C31—C321.387 (10)
Ni1—C11.976 (6)C32—C331.387 (10)
Ni1—P12.1396 (18)C32—H32A0.9500
Ni1—P42.1508 (19)C33—C341.378 (11)
Ni2—C41.969 (7)C33—H33A0.9500
Ni2—C31.974 (7)C34—C351.353 (12)
Ni2—P22.154 (2)C34—H34A0.9500
Ni2—P32.1665 (19)C35—C361.372 (11)
P1—C61.838 (6)C35—H35A0.9500
P1—C121.847 (7)C36—H36A0.9500
P1—C51.854 (6)C37—C381.380 (10)
P2—C181.826 (7)C37—C421.402 (9)
P2—C241.849 (7)C38—C391.389 (10)
P2—C51.854 (6)C38—H38A0.9500
P3—C311.842 (7)C39—C401.388 (10)
P3—C371.844 (7)C39—H39A0.9500
P3—C301.848 (6)C40—C411.382 (10)
P4—C491.841 (7)C40—H40A0.9500
P4—C431.849 (6)C41—C421.395 (10)
P4—C301.850 (6)C41—H41A0.9500
C1—C21.433 (10)C42—H42A0.9500
C1—H1A0.9900C43—C441.376 (9)
C1—H1B0.9900C43—C481.404 (9)
C2—H2A0.9900C44—C451.400 (9)
C2—H2B0.9900C44—H44A0.9500
C3—C41.394 (11)C45—C461.379 (10)
C3—H3A0.9900C45—H45A0.9500
C3—H3B0.9900C46—C471.380 (10)
C4—H4A0.9900C46—H46A0.9500
C4—H4B0.9900C47—C481.390 (10)
C5—H5A0.9900C47—H47A0.9500
C5—H5B0.9900C48—H48A0.9500
C6—C71.394 (10)C49—C541.389 (9)
C6—C111.398 (9)C49—C501.400 (9)
C7—C81.383 (10)C50—C511.387 (9)
C7—H7A0.9500C50—H50A0.9500
C8—C91.377 (11)C51—C521.366 (11)
C8—H8A0.9500C51—H51A0.9500
C9—C101.373 (11)C52—C531.386 (11)
C9—H9A0.9500C52—H52A0.9500
C10—C111.390 (10)C53—C541.398 (10)
C10—H10A0.9500C53—H53A0.9500
C11—H11A0.9500C54—H54A0.9500
C12—C131.385 (10)C1TA—C6TA1.367 (13)
C12—C171.396 (9)C1TA—C2TA1.374 (14)
C13—C141.389 (10)C1TA—C7TA1.522 (12)
C13—H13A0.9500C2TA—C3TA1.391 (14)
C14—C151.374 (11)C2TA—H2TA0.9500
C14—H14A0.9500C3TA—C4TA1.358 (16)
C15—C161.382 (11)C3TA—H3TA0.9500
C15—H15A0.9500C4TA—C5TA1.378 (15)
C16—C171.396 (9)C4TA—H4TA0.9500
C16—H16A0.9500C5TA—C6TA1.383 (13)
C17—H17A0.9500C5TA—H5TA0.9500
C18—C191.400 (10)C6TA—H6TA0.9500
C18—C231.404 (9)C7TA—H7TA0.9800
C19—C201.384 (10)C7TA—H7TB0.9800
C19—H19A0.9500C7TA—H7TC0.9800
C20—C211.384 (12)C1TB—C2TB1.36 (2)
C20—H20A0.9500C1TB—C6TB1.41 (2)
C21—C221.388 (12)C1TB—H1TA0.9500
C21—H21A0.9500C2TB—C3TB1.34 (2)
C22—C231.388 (10)C2TB—H2TB0.9500
C22—H22A0.9500C3TB—C4TB1.354 (18)
C23—H23A0.9500C3TB—H3TB0.9500
C24—C251.378 (10)C4TB—C5TB1.305 (18)
C24—C291.404 (10)C4TB—C7TC1.44 (3)
C25—C261.399 (11)C4TB—H4TB0.9500
C25—H25A0.9500C5TB—C6TB1.368 (17)
C26—C271.377 (12)C5TB—H5TB0.9500
C26—H26A0.9500C6TB—C7TB1.35 (2)
C27—C281.372 (12)C6TB—H6TB0.9500
C27—H27A0.9500C7TB—H7TD0.9800
C28—C291.395 (10)C7TB—H7TE0.9800
C28—H28A0.9500C7TB—H7TF0.9800
C29—H29A0.9500C7TC—H7TG0.9800
C30—H30A0.9900C7TC—H7TH0.9800
C30—H30B0.9900C7TC—H7TI0.9800
C31—C361.400 (9)
C2—Ni1—C142.5 (3)P3—C30—P4115.3 (3)
C2—Ni1—P1141.0 (2)P3—C30—H30A108.4
C1—Ni1—P198.9 (2)P4—C30—H30A108.4
C2—Ni1—P4107.9 (2)P3—C30—H30B108.4
C1—Ni1—P4149.8 (2)P4—C30—H30B108.4
P1—Ni1—P4109.21 (7)H30A—C30—H30B107.5
C4—Ni2—C341.4 (3)C36—C31—C32115.9 (6)
C4—Ni2—P2106.9 (2)C36—C31—P3118.0 (5)
C3—Ni2—P2148.3 (2)C32—C31—P3126.0 (5)
C4—Ni2—P3144.8 (2)C31—C32—C33122.5 (7)
C3—Ni2—P3104.2 (2)C31—C32—H32A118.7
P2—Ni2—P3106.67 (7)C33—C32—H32A118.7
C6—P1—C12101.5 (3)C34—C33—C32119.4 (8)
C6—P1—C5100.9 (3)C34—C33—H33A120.3
C12—P1—C5102.4 (3)C32—C33—H33A120.3
C6—P1—Ni1107.00 (19)C35—C34—C33119.1 (7)
C12—P1—Ni1119.8 (2)C35—C34—H34A120.5
C5—P1—Ni1121.9 (2)C33—C34—H34A120.5
C18—P2—C2499.5 (3)C34—C35—C36121.8 (7)
C18—P2—C5103.0 (3)C34—C35—H35A119.1
C24—P2—C599.9 (3)C36—C35—H35A119.1
C18—P2—Ni2111.1 (2)C35—C36—C31121.2 (7)
C24—P2—Ni2121.3 (2)C35—C36—H36A119.4
C5—P2—Ni2118.9 (2)C31—C36—H36A119.4
C31—P3—C37101.4 (3)C38—C37—C42118.7 (7)
C31—P3—C30100.5 (3)C38—C37—P3123.7 (5)
C37—P3—C30103.7 (3)C42—C37—P3117.6 (5)
C31—P3—Ni2111.9 (2)C37—C38—C39121.2 (7)
C37—P3—Ni2118.9 (2)C37—C38—H38A119.4
C30—P3—Ni2117.8 (2)C39—C38—H38A119.4
C49—P4—C43100.1 (3)C38—C39—C40119.8 (7)
C49—P4—C30101.5 (3)C38—C39—H39A120.1
C43—P4—C3098.9 (3)C40—C39—H39A120.1
C49—P4—Ni1109.9 (2)C41—C40—C39120.1 (7)
C43—P4—Ni1122.8 (2)C41—C40—H40A120.0
C30—P4—Ni1120.1 (2)C39—C40—H40A120.0
C2—C1—Ni168.8 (4)C40—C41—C42119.8 (7)
C2—C1—H1A116.8C40—C41—H41A120.1
Ni1—C1—H1A116.8C42—C41—H41A120.1
C2—C1—H1B116.8C41—C42—C37120.4 (7)
Ni1—C1—H1B116.8C41—C42—H42A119.8
H1A—C1—H1B113.8C37—C42—H42A119.8
C1—C2—Ni168.7 (4)C44—C43—C48118.5 (6)
C1—C2—H2A116.8C44—C43—P4121.1 (5)
Ni1—C2—H2A116.8C48—C43—P4120.4 (5)
C1—C2—H2B116.8C43—C44—C45121.1 (6)
Ni1—C2—H2B116.8C43—C44—H44A119.4
H2A—C2—H2B113.8C45—C44—H44A119.4
C4—C3—Ni269.1 (4)C46—C45—C44119.8 (7)
C4—C3—H3A116.7C46—C45—H45A120.1
Ni2—C3—H3A116.7C44—C45—H45A120.1
C4—C3—H3B116.7C45—C46—C47120.0 (7)
Ni2—C3—H3B116.7C45—C46—H46A120.0
H3A—C3—H3B113.8C47—C46—H46A120.0
C3—C4—Ni269.5 (4)C46—C47—C48120.2 (7)
C3—C4—H4A116.7C46—C47—H47A119.9
Ni2—C4—H4A116.7C48—C47—H47A119.9
C3—C4—H4B116.7C47—C48—C43120.4 (7)
Ni2—C4—H4B116.7C47—C48—H48A119.8
H4A—C4—H4B113.7C43—C48—H48A119.8
P2—C5—P1115.5 (3)C54—C49—C50118.0 (6)
P2—C5—H5A108.4C54—C49—P4126.4 (5)
P1—C5—H5A108.4C50—C49—P4115.6 (5)
P2—C5—H5B108.4C51—C50—C49121.1 (7)
P1—C5—H5B108.4C51—C50—H50A119.5
H5A—C5—H5B107.5C49—C50—H50A119.5
C7—C6—C11117.1 (6)C52—C51—C50120.4 (7)
C7—C6—P1122.8 (5)C52—C51—H51A119.8
C11—C6—P1120.0 (5)C50—C51—H51A119.8
C8—C7—C6121.3 (7)C51—C52—C53119.8 (7)
C8—C7—H7A119.3C51—C52—H52A120.1
C6—C7—H7A119.3C53—C52—H52A120.1
C9—C8—C7120.6 (7)C52—C53—C54120.2 (7)
C9—C8—H8A119.7C52—C53—H53A119.9
C7—C8—H8A119.7C54—C53—H53A119.9
C8—C9—C10119.4 (7)C49—C54—C53120.5 (6)
C8—C9—H9A120.3C49—C54—H54A119.7
C10—C9—H9A120.3C53—C54—H54A119.7
C9—C10—C11120.3 (7)C6TA—C1TA—C2TA118.1 (9)
C9—C10—H10A119.9C6TA—C1TA—C7TA120.9 (9)
C11—C10—H10A119.8C2TA—C1TA—C7TA120.9 (9)
C10—C11—C6121.3 (7)C1TA—C2TA—C3TA120.8 (11)
C10—C11—H11A119.4C1TA—C2TA—H2TA119.6
C6—C11—H11A119.4C3TA—C2TA—H2TA119.6
C13—C12—C17119.5 (6)C4TA—C3TA—C2TA119.8 (11)
C13—C12—P1123.0 (5)C4TA—C3TA—H3TA120.1
C17—C12—P1117.6 (5)C2TA—C3TA—H3TA120.1
C12—C13—C14120.5 (7)C3TA—C4TA—C5TA120.7 (10)
C12—C13—H13A119.8C3TA—C4TA—H4TA119.7
C14—C13—H13A119.8C5TA—C4TA—H4TA119.7
C15—C14—C13120.0 (7)C6TA—C5TA—C4TA118.5 (10)
C15—C14—H14A120.0C6TA—C5TA—H5TA120.8
C13—C14—H14A120.0C4TA—C5TA—H5TA120.8
C16—C15—C14120.3 (7)C1TA—C6TA—C5TA122.2 (10)
C16—C15—H15A119.8C1TA—C6TA—H6TA118.9
C14—C15—H15A119.8C5TA—C6TA—H6TA118.9
C15—C16—C17120.1 (7)C1TA—C7TA—H7TA109.5
C15—C16—H16A119.9C1TA—C7TA—H7TB109.5
C17—C16—H16A119.9H7TA—C7TA—H7TB109.5
C16—C17—C12119.6 (7)C1TA—C7TA—H7TC109.5
C16—C17—H17A120.2H7TA—C7TA—H7TC109.5
C12—C17—H17A120.2H7TB—C7TA—H7TC109.5
C19—C18—C23117.1 (6)C2TB—C1TB—C6TB117.4 (14)
C19—C18—P2125.2 (5)C2TB—C1TB—H1TA121.3
C23—C18—P2117.6 (5)C6TB—C1TB—H1TA121.3
C20—C19—C18120.7 (7)C3TB—C2TB—C1TB118.9 (15)
C20—C19—H19A119.6C3TB—C2TB—H2TB120.5
C18—C19—H19A119.6C1TB—C2TB—H2TB120.5
C19—C20—C21121.1 (8)C2TB—C3TB—C4TB124.0 (16)
C19—C20—H20A119.4C2TB—C3TB—H3TB118.0
C21—C20—H20A119.4C4TB—C3TB—H3TB118.0
C22—C21—C20119.6 (8)C5TB—C4TB—C3TB118.0 (14)
C22—C21—H21A120.2C5TB—C4TB—C7TC108.6 (18)
C20—C21—H21A120.2C3TB—C4TB—C7TC133 (2)
C23—C22—C21119.1 (7)C5TB—C4TB—H4TB121.0
C23—C22—H22A120.4C3TB—C4TB—H4TB121.0
C21—C22—H22A120.4C7TC—C4TB—H4TB12.5
C22—C23—C18122.4 (7)C4TB—C5TB—C6TB121.8 (13)
C22—C23—H23A118.8C4TB—C5TB—H5TB119.1
C18—C23—H23A118.8C6TB—C5TB—H5TB119.1
C25—C24—C29118.3 (7)C7TB—C6TB—C5TB122.9 (17)
C25—C24—P2122.9 (6)C7TB—C6TB—C1TB117.5 (18)
C29—C24—P2118.8 (5)C5TB—C6TB—C1TB119.6 (14)
C24—C25—C26121.2 (8)C7TB—C6TB—H6TB3.2
C24—C25—H25A119.4C5TB—C6TB—H6TB120.2
C26—C25—H25A119.4C1TB—C6TB—H6TB120.2
C27—C26—C25119.8 (8)C6TB—C7TB—H7TD109.5
C27—C26—H26A120.1C6TB—C7TB—H7TE109.5
C25—C26—H26A120.1H7TD—C7TB—H7TE109.5
C26—C27—C28120.0 (7)C6TB—C7TB—H7TF109.5
C26—C27—H27A120.0H7TD—C7TB—H7TF109.5
C28—C27—H27A120.0H7TE—C7TB—H7TF109.5
C27—C28—C29120.5 (8)C4TB—C7TC—H7TG109.5
C27—C28—H28A119.7C4TB—C7TC—H7TH109.5
C29—C28—H28A119.7H7TG—C7TC—H7TH109.5
C28—C29—C24120.2 (7)C4TB—C7TC—H7TI109.5
C28—C29—H29A119.9H7TG—C7TC—H7TI109.5
C24—C29—H29A119.9H7TH—C7TC—H7TI109.5

Experimental details

Crystal data
Chemical formula[Ni2(C2H4)2(C25H22P2)2]·2C7H8
Mr1126.52
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)13.0963 (12), 15.2367 (16), 15.6177 (16)
α, β, γ (°)70.566 (4), 78.727 (4), 78.689 (7)
V3)2853.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.05 × 0.05 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1997)
Tmin, Tmax0.834, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
16239, 11467, 8057
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.233, 1.14
No. of reflections11467
No. of parameters666
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0587P)2 + 15.5715P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.46, 0.63

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (SFB 436). JL acknowledges the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt, DBU) for a PhD grant.

References

First citationAresta, M. & Dibenedetto, A. (2007). J. Chem. Soc. Dalton Trans. pp. 2975–2992.  CrossRef Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCheng, P.-T., Cook, C. D., Koo, C. H., Nyburg, S. C. & Shiomi, M. T. (1971). Acta Cryst. B27, 1904–1908.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFischer, R., Langer, J., Malassa, A., Walther, D., Görls, H. & Vaughan, G. (2006). J. Chem. Soc. Chem. Commun. pp. 2510–2512.  CrossRef Google Scholar
First citationHoberg, H., Jemni, H. K., Angermund, K. & Krüger, C. (1987). Angew. Chem. Int. Ed. Engl. 26, 153–158.  CSD CrossRef Web of Science Google Scholar
First citationKrüger, C. & Tsay, Y.-H. (1972). J. Organomet. Chem. 34, 387–395.  Google Scholar
First citationLanger, J., Fischer, R., Görls, H. & Walther, D. (2007). Eur. J. Inorg. Chem. pp. 2257–2264.  Web of Science CSD CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPapai, I., Schubert, G., Mayer, I., Besenyei, G. & Aresta, M. (2004). Organometallics, 23, 5252–5273.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilke, G. & Herrmann, G. (1962). Angew. Chem. 74, 693–694.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds