organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1-Naphth­yl)acetoacetamide

aDepartment of Chemistry, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 23 January 2008; accepted 23 January 2008; online 30 January 2008)

The title compound, C14H13NO2, exists in the keto form. An N—H⋯O hydrogen bond helps to establish the packing.

Related literature

For background, see: Huang et al. (2001[Huang, L., Wang, K. Z., Huang, C. H., Li, F. Y. & Huang, Y. Y. (2001). J. Mater. Chem. 11, 790-793.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO2

  • Mr = 227.25

  • Monoclinic, P 21 /c

  • a = 17.856 (2) Å

  • b = 8.1076 (12) Å

  • c = 8.5153 (14) Å

  • β = 102.777 (2)°

  • V = 1202.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.50 × 0.40 × 0.38 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.969

  • 5815 measured reflections

  • 2116 independent reflections

  • 1335 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.05

  • 2116 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.01 2.853 (2) 168
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The europium(III) and terbium(III) complexes of beta-diketonato and related conjugated ligands have been studied as emitting materials for organic light emitting diodes (OLEDs) (e.g. Huang et al., 2001). However, the quantum efficiency of most these complexes are unfortunately still low. This may be due to inefficiency of the trpilet-triplet energy transfer in these complexes. Therefore, there is a need to design ligands which have better energy transfer properties when coordinated to the lanthanide metal ion. As part of our studies in this area, we now report the synthesis and structure of the title compound, (I).

In (I), the C=O bonds length are 1.226 (2)Å and 1.208 (2) Å, indicating that it exists in the keto form (Fig. 1) in the solid state.

In the crystal structure, the molecules are stabilized by an N—H···O intermolecular hydrogen bond (Table 1) leading to [001] chains.

Related literature top

For background, see: Huang et al. (2001).

Experimental top

A solution of 1-naphthaline (10 mmol) in 30 ml benzene was added to a solution of ethyl acetoacetate (10 mmol). The reaction mixture was refluxed for 2 h with stirring, then the resulting pale precipitate was obtained by filtration, washed several times with benzene and dried in vacuo (yield 89%). Colourless blocks of (I) were recrystallized from ethanol by slow evaporation. IR (KBr, cm-1): 3242 (m, N—H), 1723 (s, CH3C=O), 1665 (s, amide C=O).

Refinement top

The H atoms were geometrically placed (C—H = 0.93–0.97 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probabiility ellipsoids (arbitrary spheres for the H atoms).
N-(1-Naphthyl)acetoacetamide top
Crystal data top
C14H13NO2F(000) = 480
Mr = 227.25Dx = 1.256 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1643 reflections
a = 17.856 (2) Åθ = 2.3–23.5°
b = 8.1076 (12) ŵ = 0.08 mm1
c = 8.5153 (14) ÅT = 298 K
β = 102.777 (2)°Block, colourless
V = 1202.2 (3) Å30.50 × 0.40 × 0.38 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2116 independent reflections
Radiation source: fine-focus sealed tube1335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2121
Tmin = 0.959, Tmax = 0.969k = 96
5815 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.3082P]
where P = (Fo2 + 2Fc2)/3
2116 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H13NO2V = 1202.2 (3) Å3
Mr = 227.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.856 (2) ŵ = 0.08 mm1
b = 8.1076 (12) ÅT = 298 K
c = 8.5153 (14) Å0.50 × 0.40 × 0.38 mm
β = 102.777 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2116 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1335 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.969Rint = 0.042
5815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
2116 reflectionsΔρmin = 0.17 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.21814 (9)0.2430 (2)0.4659 (2)0.0487 (5)
H10.20990.20730.55570.058*
O10.16833 (8)0.38359 (18)0.23841 (18)0.0561 (4)
O20.05169 (8)0.08943 (19)0.29965 (19)0.0631 (5)
C10.16240 (11)0.3270 (2)0.3687 (3)0.0429 (5)
C20.08902 (11)0.3457 (2)0.4262 (2)0.0445 (5)
H2A0.10110.35250.54280.053*
H2B0.06420.44800.38450.053*
C30.03443 (11)0.2049 (3)0.3741 (2)0.0453 (5)
C40.04209 (12)0.2179 (3)0.4158 (3)0.0648 (7)
H4A0.07240.12290.37570.097*
H4B0.06770.31570.36790.097*
H4C0.03550.22360.53070.097*
C50.29076 (11)0.2094 (3)0.4290 (2)0.0451 (5)
C60.34536 (13)0.3281 (3)0.4510 (3)0.0623 (6)
H60.33470.43240.48600.075*
C70.41772 (14)0.2943 (4)0.4212 (3)0.0737 (8)
H70.45470.37690.43550.088*
C80.43444 (13)0.1437 (3)0.3720 (3)0.0694 (7)
H80.48340.12270.35570.083*
C90.37919 (12)0.0178 (3)0.3450 (3)0.0531 (6)
C100.30501 (11)0.0509 (3)0.3728 (2)0.0460 (5)
C110.24937 (13)0.0750 (3)0.3404 (3)0.0631 (7)
H110.20060.05580.35830.076*
C120.26597 (16)0.2243 (3)0.2834 (4)0.0827 (9)
H120.22840.30570.26160.099*
C130.33885 (17)0.2560 (4)0.2574 (4)0.0852 (9)
H130.34960.35840.21860.102*
C140.39381 (15)0.1396 (3)0.2880 (3)0.0719 (7)
H140.44240.16340.27130.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0492 (10)0.0576 (11)0.0413 (10)0.0042 (9)0.0144 (8)0.0041 (8)
O10.0621 (9)0.0623 (10)0.0472 (9)0.0061 (7)0.0196 (7)0.0069 (8)
O20.0646 (10)0.0575 (10)0.0711 (11)0.0038 (8)0.0237 (8)0.0201 (8)
C10.0510 (12)0.0366 (11)0.0421 (12)0.0014 (9)0.0124 (10)0.0047 (10)
C20.0494 (12)0.0423 (12)0.0427 (12)0.0050 (9)0.0124 (9)0.0022 (9)
C30.0513 (12)0.0463 (13)0.0388 (12)0.0039 (10)0.0110 (10)0.0022 (10)
C40.0586 (14)0.0655 (16)0.0763 (17)0.0046 (12)0.0281 (13)0.0085 (13)
C50.0398 (11)0.0541 (13)0.0406 (12)0.0009 (10)0.0072 (9)0.0017 (10)
C60.0578 (14)0.0590 (15)0.0686 (16)0.0085 (12)0.0109 (12)0.0098 (12)
C70.0507 (15)0.0733 (19)0.096 (2)0.0191 (13)0.0133 (14)0.0021 (16)
C80.0432 (13)0.084 (2)0.0812 (18)0.0005 (13)0.0156 (12)0.0075 (15)
C90.0444 (12)0.0598 (15)0.0547 (14)0.0070 (11)0.0101 (10)0.0058 (11)
C100.0407 (11)0.0494 (13)0.0459 (13)0.0014 (10)0.0053 (9)0.0045 (10)
C110.0501 (13)0.0556 (15)0.0823 (18)0.0022 (11)0.0115 (12)0.0008 (13)
C120.0718 (18)0.0572 (17)0.114 (2)0.0058 (14)0.0102 (16)0.0108 (16)
C130.091 (2)0.0591 (17)0.103 (2)0.0171 (16)0.0165 (18)0.0126 (16)
C140.0645 (16)0.0731 (18)0.0809 (19)0.0219 (14)0.0223 (14)0.0032 (15)
Geometric parameters (Å, º) top
N1—C11.332 (2)C6—H60.9300
N1—C51.427 (2)C7—C81.346 (3)
N1—H10.8600C7—H70.9300
O1—C11.226 (2)C8—C91.403 (3)
O2—C31.208 (2)C8—H80.9300
C1—C21.504 (3)C9—C141.410 (3)
C2—C31.503 (3)C9—C101.422 (3)
C2—H2A0.9700C10—C111.408 (3)
C2—H2B0.9700C11—C121.361 (3)
C3—C41.490 (3)C11—H110.9300
C4—H4A0.9600C12—C131.391 (4)
C4—H4B0.9600C12—H120.9300
C4—H4C0.9600C13—C141.344 (4)
C5—C61.353 (3)C13—H130.9300
C5—C101.413 (3)C14—H140.9300
C6—C71.398 (3)
C1—N1—C5123.47 (17)C7—C6—H6119.9
C1—N1—H1118.3C8—C7—C6120.8 (2)
C5—N1—H1118.3C8—C7—H7119.6
O1—C1—N1123.44 (18)C6—C7—H7119.6
O1—C1—C2120.82 (19)C7—C8—C9121.0 (2)
N1—C1—C2115.72 (18)C7—C8—H8119.5
C3—C2—C1112.45 (16)C9—C8—H8119.5
C3—C2—H2A109.1C8—C9—C14122.5 (2)
C1—C2—H2A109.1C8—C9—C10118.9 (2)
C3—C2—H2B109.1C14—C9—C10118.6 (2)
C1—C2—H2B109.1C11—C10—C5123.57 (19)
H2A—C2—H2B107.8C11—C10—C9118.3 (2)
O2—C3—C4122.28 (19)C5—C10—C9118.16 (18)
O2—C3—C2121.29 (18)C12—C11—C10121.0 (2)
C4—C3—C2116.41 (18)C12—C11—H11119.5
C3—C4—H4A109.5C10—C11—H11119.5
C3—C4—H4B109.5C11—C12—C13120.4 (2)
H4A—C4—H4B109.5C11—C12—H12119.8
C3—C4—H4C109.5C13—C12—H12119.8
H4A—C4—H4C109.5C14—C13—C12120.5 (3)
H4B—C4—H4C109.5C14—C13—H13119.7
C6—C5—C10121.01 (19)C12—C13—H13119.7
C6—C5—N1119.7 (2)C13—C14—C9121.3 (2)
C10—C5—N1119.28 (17)C13—C14—H14119.4
C5—C6—C7120.1 (2)C9—C14—H14119.4
C5—C6—H6119.9
C5—N1—C1—O10.2 (3)N1—C5—C10—C114.3 (3)
C5—N1—C1—C2178.25 (17)C6—C5—C10—C92.0 (3)
O1—C1—C2—C390.1 (2)N1—C5—C10—C9176.73 (18)
N1—C1—C2—C388.3 (2)C8—C9—C10—C11178.1 (2)
C1—C2—C3—O22.6 (3)C14—C9—C10—C110.6 (3)
C1—C2—C3—C4175.97 (18)C8—C9—C10—C50.9 (3)
C1—N1—C5—C679.3 (3)C14—C9—C10—C5179.6 (2)
C1—N1—C5—C10101.9 (2)C5—C10—C11—C12178.7 (2)
C10—C5—C6—C71.3 (3)C9—C10—C11—C120.3 (3)
N1—C5—C6—C7177.5 (2)C10—C11—C12—C130.7 (4)
C5—C6—C7—C80.7 (4)C11—C12—C13—C140.1 (5)
C6—C7—C8—C91.8 (4)C12—C13—C14—C90.8 (4)
C7—C8—C9—C14177.7 (2)C8—C9—C14—C13177.4 (3)
C7—C8—C9—C100.9 (4)C10—C9—C14—C131.2 (4)
C6—C5—C10—C11176.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.012.853 (2)168
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO2
Mr227.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.856 (2), 8.1076 (12), 8.5153 (14)
β (°) 102.777 (2)
V3)1202.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.40 × 0.38
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.959, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
5815, 2116, 1335
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.05
No. of reflections2116
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.012.853 (2)168
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20671073), NingXia Natural Gas Transferring Key Laboratory (grant No. 2004007) and Weifang University for a research grant.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, L., Wang, K. Z., Huang, C. H., Li, F. Y. & Huang, Y. Y. (2001). J. Mater. Chem. 11, 790–793.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds