organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,7,8,9,10,11,12,13-Octa­hydro-5H-1,3-di­thiole[4,5-b][1,4]di­thia­cyclo­tridecine-2-thione

aChemistry Department, K. N. Toosi University of Technology, PO Box 15875-4416, Tehran 15418, Iran, and bFachbereich Chemie der Universität Marburg, Marburg, Germany
*Correspondence e-mail: darvish@kntu.ac.ir

(Received 9 December 2007; accepted 31 December 2007; online 9 January 2008)

In the crystal structure of the title compound, C12H18S5, no significant inter­molecular ππ inter­actions are found. Weak inter­molecular C—S⋯π [S⋯centroid = 3.787 (1) Å] inter­actions and van der Waals forces may be effective in the stabilization of the structure.

Related literature

For general background, see: Ferraris et al. (1973[Ferraris, J., Walatka, V., Perlstein, J. H. & Cowan, D. O. (1973). J. Am. Chem. Soc. 95, 948-949.]); Williams et al. (1992[Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M.-H. (1992). Organic Superconductors (including Fullerenes). Englewood Cliffs, New Jersey: Prentice Hall.]); Bechgaard et al. (1975[Bechgaard, K., Cowan, D. O., Bloch, A. N. & Henriksen, L. (1975). J. Org. Chem. 40, 746-749.]); Engler et al. (1977[Engler, E. M., Scott, B. A., Etemad, S., Penney, T. & Patel, V. V. (1977). J. Am. Chem. Soc. 99, 5909-5916.]); Kini et al. (1999[Kini, A. M., Parakka, J. P., Geiser, U., Wang, H.-H., Rivas, F., DiNino, E., Thomas, S., Dudek, J. D. & Williams, J. M. (1999). J. Mater. Chem. 9, 883-892.]); Li et al. (2000[Li, H.-X., Zhang, D.-Q., Zhang, B., Yao, Y.-X., Xu, W., Zhu, D.-B. & Wang, Z.-M. (2000). J. Mater. Chem. 10, 2063-2067.]); Svenstrup & Becher (1995[Svenstrup, N. & Becher, J. (1995). Synthesis, pp. 215-235.]). For related literature, see: Kumar et al. (1998[Kumar, E. V. K. S., Singh, J. D., Singh, H. B., Das, K., Yakhmi, J. V. & Butcher, R. J. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1769-1777.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18S5

  • Mr = 322.56

  • Monoclinic, P 21 /c

  • a = 5.588 (1) Å

  • b = 13.067 (1) Å

  • c = 20.446 (2) Å

  • β = 97.07 (1)°

  • V = 1481.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 173 (2) K

  • 0.2 × 0.18 × 0.07 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical (shape of crystal determined optically; X-RED32 and X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA (Version 1.31), X-RED32 (Version 1.28b) and X-SHAPE (Version 2.05). Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.856, Tmax = 0.948

  • 20411 measured reflections

  • 2866 independent reflections

  • 1423 reflections with I > 2σ(I)

  • Rint = 0.107

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.046

  • S = 0.90

  • 2866 reflections

  • 155 parameters

  • H-atom paramteres constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA (Version 1.31), X-RED32 (Version 1.28b) and X-SHAPE (Version 2.05). Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA (Version 1.31), X-RED32 (Version 1.28b) and X-SHAPE (Version 2.05). Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Since the discovery of the first organic metal TTF-TCNQ (TTF: tetrathiafulvalene TCNQ: 7,7,8,8-tetracyanoquinodimethane) (Ferraris et al., 1973) organic electron donors with a TTF backbone have been widely investigated in terms of synthetic and structural as well as physical aspects (Williams et al., 1992). The most conventional route to these electron donors is based on the coupling of 1,3-thiole-2-thione (one) derivatives promoted by trialkyl phosphite (Bechgaard et al., 1975; Engler et al., 1977; Kini et al., 1999; Li et al., 2000). Thus, the key precursors to these TTF-based electron donors are 1,3-thiole-2-thione (one) derivatives. Among them, 4,5-bisalkylthio-1,3-dithiole-2-thione can be routinely prepared by the reaction between a zinc complex of 1,3-dithiole-2 -thione-4,5-dithiolate or the anion 1,3-dithiole-2-thione-4,5-dithiolate generated in situ and suitable electrophilic reagents (Svenstrup & Becher, 1995). Thus the interest in the synthesis of various 1,3-dithiole-2-chalcogenone is evident and promoted us to take up this project. In continuation of our work in this field, we report herein the crystal structure of title ligand, (I).

In the molecule of (I) (Fig. 1), the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, no significant intermolecular ππ interactions are observed. Weak intermolecular C—S···π interactions, with S1···Cg1 = 3.787 (1) Å [Cg1 denotes centroid of cyclotridecine ring; (S1/S4/C1/C2/C12), symmetry code: -1 + x, y, z] and van der Waals forces stabilize the crystal structure.

Related literature top

For general bakground, see: Ferraris et al. (1973); Williams et al. (1992); Bechgaard et al. (1975); Engler et al. (1977); Kini et al. (1999); Li et al. (2000); Svenstrup & Becher (1995). For related literature, see: Kumar et al. (1998). For bond-length data, see: Allen et al. (1987).

Experimental top

The synthesis of (I) was carried out via the coupling of 1,9-dibromooctane (1 mmol) with the zinc complex of 1,3-dithiole-2-thione-4,5-dithiolate (0.5 mmol) in acetone (5 ml) at 293 K. The color of the mixture was turned from red to yellow. The pure compound was obtained in 32% yield by washing of the crude product with chloroform, in which it is highly soluble (Kumar et al., 1998).

Refinement top

H atoms were positioned geometrically, with C—H = 0.99 Å for methylene H, and constrained to ride on their parent atoms, with Uiso(H) = 0.050 (2) Å2.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
6,7,8,9,10,11,12,13-Octahydro-5H-1,3-dithiole[4,5-b][1,4]dithiacyclotridecine- 2-thione top
Crystal data top
C12H18S5F(000) = 680
Mr = 322.56Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10000 reflections
a = 5.588 (1) Åθ = 1.9–25.9°
b = 13.067 (1) ŵ = 0.76 mm1
c = 20.446 (2) ÅT = 173 K
β = 97.07 (1)°Plates, yellow
V = 1481.6 (3) Å30.2 × 0.18 × 0.07 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
1423 reflections with I > 2σ(I)
ϕ scansRint = 0.107
Absorption correction: numerical
(shape of crystal determined optically; X-RED32 and X-SHAPE; Stoe & Cie, 2005)
θmax = 25.9°, θmin = 1.9°
Tmin = 0.856, Tmax = 0.948h = 66
20411 measured reflectionsk = 1516
2866 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.011P)2P]
where P = (Fo2 + 2Fc2)/3
2866 reflections(Δ/σ)max = 0.002
155 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H18S5V = 1481.6 (3) Å3
Mr = 322.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.588 (1) ŵ = 0.76 mm1
b = 13.067 (1) ÅT = 173 K
c = 20.446 (2) Å0.2 × 0.18 × 0.07 mm
β = 97.07 (1)°
Data collection top
Stoe IPDS-II
diffractometer
2866 independent reflections
Absorption correction: numerical
(shape of crystal determined optically; X-RED32 and X-SHAPE; Stoe & Cie, 2005)
1423 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.948Rint = 0.107
20411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 0.90Δρmax = 0.20 e Å3
2866 reflectionsΔρmin = 0.21 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15648 (13)0.36424 (6)0.20855 (4)0.0339 (2)
S20.60599 (13)0.38230 (7)0.30580 (4)0.0359 (2)
S30.55751 (13)0.13199 (7)0.32641 (4)0.0384 (2)
S40.11036 (13)0.14671 (6)0.22596 (4)0.0356 (2)
S50.26751 (12)0.25565 (8)0.13696 (3)0.03771 (19)
C10.0162 (4)0.2563 (3)0.18733 (11)0.0301 (6)
C20.3700 (5)0.3076 (2)0.26703 (13)0.0292 (7)
C30.4388 (5)0.4824 (2)0.34333 (15)0.0403 (8)
H310.55630.52990.36750.050 (2)*
H320.34470.52190.30770.050 (2)*
C40.2663 (6)0.4446 (3)0.39077 (15)0.0405 (8)
H410.18720.50450.40860.050 (2)*
H420.13900.40230.36590.050 (2)*
C50.3895 (5)0.3822 (3)0.44765 (14)0.0438 (8)
H510.53120.42060.46870.050 (2)*
H520.44860.31750.43030.050 (2)*
C60.2221 (5)0.3571 (3)0.50025 (14)0.0458 (9)
H610.32420.33400.54060.050 (2)*
H620.14240.42140.51140.050 (2)*
C70.0271 (5)0.2770 (2)0.48280 (14)0.0434 (9)
H710.01700.27690.43440.050 (2)*
H720.11790.29720.50300.050 (2)*
C80.0975 (6)0.1682 (3)0.50494 (14)0.0470 (9)
H810.16140.17040.55230.050 (2)*
H820.05070.12600.50080.050 (2)*
C90.2818 (6)0.1145 (3)0.46824 (14)0.0446 (9)
H910.34300.05330.49360.050 (2)*
H920.41990.16110.46530.050 (2)*
C100.1780 (5)0.0816 (2)0.39871 (14)0.0405 (8)
H1010.05090.02980.40210.050 (2)*
H1020.10090.14170.37530.050 (2)*
C110.3638 (5)0.0371 (2)0.35761 (15)0.0376 (8)
H1110.27770.00080.31990.050 (2)*
H1120.46560.01260.38500.050 (2)*
C120.3500 (5)0.2060 (2)0.27516 (13)0.0292 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0339 (4)0.0324 (5)0.0350 (4)0.0027 (4)0.0022 (3)0.0027 (4)
S20.0295 (4)0.0386 (5)0.0396 (4)0.0053 (4)0.0042 (4)0.0042 (4)
S30.0312 (4)0.0394 (5)0.0437 (5)0.0050 (4)0.0013 (4)0.0023 (4)
S40.0350 (5)0.0306 (5)0.0399 (4)0.0020 (4)0.0002 (4)0.0017 (4)
S50.0349 (4)0.0417 (5)0.0353 (4)0.0011 (4)0.0006 (3)0.0007 (4)
C10.0328 (15)0.0328 (17)0.0268 (15)0.0002 (15)0.0126 (11)0.0026 (15)
C20.0277 (18)0.034 (2)0.0275 (16)0.0014 (13)0.0094 (14)0.0018 (14)
C30.0429 (18)0.035 (2)0.0437 (19)0.0040 (15)0.0080 (15)0.0085 (15)
C40.0424 (19)0.039 (2)0.0399 (18)0.0058 (15)0.0050 (15)0.0045 (16)
C50.0462 (18)0.043 (2)0.0419 (18)0.0003 (16)0.0042 (14)0.0029 (16)
C60.055 (2)0.050 (2)0.0326 (17)0.0093 (19)0.0065 (15)0.0035 (17)
C70.0426 (17)0.054 (3)0.0351 (17)0.0132 (16)0.0122 (14)0.0030 (16)
C80.054 (2)0.051 (2)0.0371 (18)0.0110 (17)0.0114 (15)0.0080 (15)
C90.050 (2)0.043 (2)0.0398 (18)0.0173 (17)0.0005 (15)0.0056 (16)
C100.0394 (18)0.046 (2)0.0360 (18)0.0001 (15)0.0055 (14)0.0061 (15)
C110.0439 (19)0.0284 (19)0.0400 (19)0.0005 (15)0.0027 (15)0.0029 (14)
C120.0252 (17)0.039 (2)0.0244 (15)0.0002 (14)0.0058 (13)0.0016 (14)
Geometric parameters (Å, º) top
S1—C11.734 (3)C5—H520.9900
S1—C21.746 (3)C6—C71.521 (4)
S2—C21.750 (3)C6—H610.9900
S2—C31.830 (3)C6—H620.9900
S3—C121.754 (3)C7—C81.528 (4)
S3—C111.813 (3)C7—H710.9900
S4—C11.743 (3)C7—H720.9900
S4—C121.753 (3)C8—C91.519 (4)
S5—C11.636 (2)C8—H810.9900
C2—C121.345 (3)C8—H820.9900
C3—C41.531 (4)C9—C101.529 (4)
C3—H310.9900C9—H910.9900
C3—H320.9900C9—H920.9900
C4—C51.515 (4)C10—C111.529 (4)
C4—H410.9900C10—H1010.9900
C4—H420.9900C10—H1020.9900
C5—C61.545 (4)C11—H1110.9900
C5—H510.9900C11—H1120.9900
C1—S1—C297.99 (14)C6—C7—C8114.8 (3)
C2—S2—C3101.15 (14)C6—C7—H71108.6
C12—S3—C11101.98 (14)C8—C7—H71108.6
C1—S4—C1297.81 (14)C6—C7—H72108.6
S5—C1—S1124.7 (2)C8—C7—H72108.6
S5—C1—S4123.4 (2)H71—C7—H72107.5
S1—C1—S4111.88 (12)C9—C8—C7116.7 (2)
C12—C2—S1116.3 (2)C9—C8—H81108.1
C12—C2—S2124.3 (2)C7—C8—H81108.1
S1—C2—S2119.16 (18)C9—C8—H82108.1
C4—C3—S2115.4 (2)C7—C8—H82108.1
C4—C3—H31108.4H81—C8—H82107.3
S2—C3—H31108.4C8—C9—C10112.7 (3)
C4—C3—H32108.4C8—C9—H91109.0
S2—C3—H32108.4C10—C9—H91109.0
H31—C3—H32107.5C8—C9—H92109.0
C5—C4—C3113.5 (3)C10—C9—H92109.0
C5—C4—H41108.9H91—C9—H92107.8
C3—C4—H41108.9C11—C10—C9114.4 (2)
C5—C4—H42108.9C11—C10—H101108.7
C3—C4—H42108.9C9—C10—H101108.7
H41—C4—H42107.7C11—C10—H102108.7
C4—C5—C6113.1 (2)C9—C10—H102108.7
C4—C5—H51109.0H101—C10—H102107.6
C6—C5—H51109.0C10—C11—S3114.1 (2)
C4—C5—H52109.0C10—C11—H111108.7
C6—C5—H52109.0S3—C11—H111108.7
H51—C5—H52107.8C10—C11—H112108.7
C7—C6—C5117.4 (2)S3—C11—H112108.7
C7—C6—H61107.9H111—C11—H112107.6
C5—C6—H61107.9C2—C12—S4115.8 (2)
C7—C6—H62107.9C2—C12—S3124.0 (2)
C5—C6—H62107.9S4—C12—S3120.10 (19)
H61—C6—H62107.2

Experimental details

Crystal data
Chemical formulaC12H18S5
Mr322.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)5.588 (1), 13.067 (1), 20.446 (2)
β (°) 97.07 (1)
V3)1481.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.2 × 0.18 × 0.07
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionNumerical
(shape of crystal determined optically; X-RED32 and X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.856, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
20411, 2866, 1423
Rint0.107
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.046, 0.90
No. of reflections2866
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

 

Acknowledgements

The authors acknowledge K. N. Toosi University of Technology for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBechgaard, K., Cowan, D. O., Bloch, A. N. & Henriksen, L. (1975). J. Org. Chem. 40, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationEngler, E. M., Scott, B. A., Etemad, S., Penney, T. & Patel, V. V. (1977). J. Am. Chem. Soc. 99, 5909–5916.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerraris, J., Walatka, V., Perlstein, J. H. & Cowan, D. O. (1973). J. Am. Chem. Soc. 95, 948–949.  CrossRef CAS Web of Science Google Scholar
First citationKini, A. M., Parakka, J. P., Geiser, U., Wang, H.-H., Rivas, F., DiNino, E., Thomas, S., Dudek, J. D. & Williams, J. M. (1999). J. Mater. Chem. 9, 883–892.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, E. V. K. S., Singh, J. D., Singh, H. B., Das, K., Yakhmi, J. V. & Butcher, R. J. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1769–1777.  Web of Science CSD CrossRef Google Scholar
First citationLi, H.-X., Zhang, D.-Q., Zhang, B., Yao, Y.-X., Xu, W., Zhu, D.-B. & Wang, Z.-M. (2000). J. Mater. Chem. 10, 2063–2067.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA (Version 1.31), X-RED32 (Version 1.28b) and X-SHAPE (Version 2.05). Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSvenstrup, N. & Becher, J. (1995). Synthesis, pp. 215–235.  CrossRef Google Scholar
First citationWilliams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M.-H. (1992). Organic Superconductors (including Fullerenes). Englewood Cliffs, New Jersey: Prentice Hall.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds