metal-organic compounds
Tetraaquabis(2-oxo-1,2-dihydroquinoline-4-carboxylato-κO4)nickel(II)
aInstitute of Functional Materials Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: zmsu@nenu.edu.cn
In the title compound, [Ni(C10H6NO3)2(H2O)4], the central NiII atom is located on an inversion center and coordinated in a slightly distorted octahedral geometry by two O atoms from two 2-oxo-1,2-dihydroquinoline-4-carboxylate ligands and four water molecules, all of which act as monodentate ligands. The features an extensive network of intermolecular hydrogen-bonding interactions (O—H⋯O and N—H⋯O) and offset face-to-face π–π stacking interactions [centroid–centroid distances = 3.525 (3) and 3.281 (5) Å].
Related literature
For related literature, see: Bai et al. (2007); Bu et al. (2005); Liu (2007); Pang et al. (2007); Wu et al. (2007); Xiong et al. (2000); Zhang et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Siemens, 1990); software used to prepare material for publication: SHELXTL-Plus.
Supporting information
10.1107/S1600536807065671/hy2104sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807065671/hy2104Isup2.hkl
A mixture of 2-hydroxyquinoline-4-carboxylic acid (0.945 g, 5 mmol), NaOH(0.4 g, 10 mmol) and NiCl2.6H2O (2.3 g,10 mmol) in water (50 ml) was boiled for 20 min with stirring. Then the mixture was cooled to room temperature. The resulting solution was filtered and allowed to stand. After a week, green crystals of the title compound were obtained.
H atoms on C atoms and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å, N—H = 0.86Å and Uiso(H)=1.2Ueq(C,N). Water H atoms were located in a difference Fourier map and refined with a restraint of O—H = 0.85 (1) Å, and Uiso(H)=1.5Ueq(O).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Siemens, 1990); software used to prepare material for publication: SHELXTL-Plus (Siemens, 1990).Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1 - x, 2 - y, 1 - z.] |
[Ni(C10H6NO3)2(H2O)4] | Z = 1 |
Mr = 507.07 | F(000) = 262 |
Triclinic, P1 | Dx = 1.696 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 7.105 (5) Å | Cell parameters from 2250 reflections |
b = 8.507 (5) Å | θ = 1.3–26.0° |
c = 9.216 (5) Å | µ = 1.04 mm−1 |
α = 108.723 (5)° | T = 293 K |
β = 108.396 (5)° | Block, green |
γ = 90.840 (5)° | 0.5 × 0.4 × 0.3 mm |
V = 496.4 (5) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 2250 independent reflections |
Radiation source: fine-focus sealed tube | 2064 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.601, Tmax = 0.721 | k = −8→11 |
3041 measured reflections | l = −12→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0726P)2 + 0.4272P] where P = (Fo2 + 2Fc2)/3 |
2250 reflections | (Δ/σ)max = 0.001 |
151 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.57 e Å−3 |
[Ni(C10H6NO3)2(H2O)4] | γ = 90.840 (5)° |
Mr = 507.07 | V = 496.4 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.105 (5) Å | Mo Kα radiation |
b = 8.507 (5) Å | µ = 1.04 mm−1 |
c = 9.216 (5) Å | T = 293 K |
α = 108.723 (5)° | 0.5 × 0.4 × 0.3 mm |
β = 108.396 (5)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2250 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2064 reflections with I > 2σ(I) |
Tmin = 0.601, Tmax = 0.721 | Rint = 0.015 |
3041 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.40 e Å−3 |
2250 reflections | Δρmin = −0.57 e Å−3 |
151 parameters |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 1.0000 | 0.5000 | 0.02024 (16) | |
C1 | 0.6765 (4) | 0.6477 (3) | −0.1760 (3) | 0.0260 (5) | |
C2 | 0.6843 (4) | 0.7807 (3) | −0.0285 (3) | 0.0276 (6) | |
H2A | 0.6609 | 0.8868 | −0.0322 | 0.033* | |
C3 | 0.7249 (4) | 0.7538 (3) | 0.1145 (3) | 0.0234 (5) | |
C4 | 0.7688 (4) | 0.5932 (3) | 0.1253 (3) | 0.0241 (5) | |
C5 | 0.8169 (4) | 0.5563 (4) | 0.2709 (3) | 0.0316 (6) | |
H5A | 0.8186 | 0.6386 | 0.3666 | 0.038* | |
C6 | 0.8610 (5) | 0.4004 (4) | 0.2722 (4) | 0.0363 (7) | |
H6A | 0.8936 | 0.3779 | 0.3689 | 0.044* | |
C7 | 0.8573 (4) | 0.2754 (4) | 0.1295 (4) | 0.0342 (6) | |
H7A | 0.8882 | 0.1702 | 0.1320 | 0.041* | |
C8 | 0.8084 (4) | 0.3057 (3) | −0.0152 (3) | 0.0289 (6) | |
H8A | 0.8052 | 0.2214 | −0.1102 | 0.035* | |
C9 | 0.7636 (4) | 0.4648 (3) | −0.0176 (3) | 0.0233 (5) | |
C10 | 0.7168 (4) | 0.8914 (3) | 0.2641 (3) | 0.0244 (5) | |
N1 | 0.7143 (3) | 0.4972 (3) | −0.1615 (3) | 0.0250 (5) | |
H1A | 0.7072 | 0.4158 | −0.2483 | 0.030* | |
O1 | 0.5726 (3) | 0.8651 (3) | 0.3072 (2) | 0.0319 (5) | |
O2 | 0.8452 (3) | 1.0169 (3) | 0.3306 (3) | 0.0337 (5) | |
O3 | 0.6381 (3) | 0.6659 (3) | −0.3117 (2) | 0.0342 (5) | |
O1W | 0.2409 (3) | 1.0448 (3) | 0.3421 (3) | 0.0331 (5) | |
H1 | 0.1249 | 1.0296 | 0.3471 | 0.050* | |
H2 | 0.2548 | 1.1369 | 0.3265 | 0.050* | |
O2W | 0.3413 (3) | 0.7783 (2) | 0.4826 (2) | 0.0274 (4) | |
H3 | 0.2601 | 0.8200 | 0.5308 | 0.041* | |
H4 | 0.4010 | 0.7217 | 0.5403 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0210 (3) | 0.0197 (2) | 0.0201 (2) | 0.00347 (17) | 0.01005 (17) | 0.00379 (17) |
C1 | 0.0249 (13) | 0.0306 (14) | 0.0230 (12) | 0.0038 (10) | 0.0085 (10) | 0.0095 (11) |
C2 | 0.0327 (14) | 0.0266 (13) | 0.0272 (13) | 0.0085 (11) | 0.0138 (11) | 0.0103 (11) |
C3 | 0.0207 (12) | 0.0268 (13) | 0.0229 (12) | 0.0038 (10) | 0.0106 (10) | 0.0056 (10) |
C4 | 0.0230 (12) | 0.0274 (13) | 0.0232 (12) | 0.0039 (10) | 0.0097 (10) | 0.0085 (10) |
C5 | 0.0353 (15) | 0.0379 (16) | 0.0218 (12) | 0.0064 (12) | 0.0103 (11) | 0.0100 (11) |
C6 | 0.0383 (16) | 0.0423 (17) | 0.0331 (15) | 0.0042 (13) | 0.0087 (12) | 0.0226 (13) |
C7 | 0.0323 (15) | 0.0287 (14) | 0.0425 (16) | 0.0034 (11) | 0.0071 (12) | 0.0189 (13) |
C8 | 0.0274 (13) | 0.0241 (13) | 0.0306 (13) | 0.0029 (10) | 0.0074 (11) | 0.0059 (11) |
C9 | 0.0196 (12) | 0.0261 (13) | 0.0237 (11) | 0.0026 (10) | 0.0070 (9) | 0.0081 (10) |
C10 | 0.0254 (13) | 0.0264 (13) | 0.0230 (12) | 0.0083 (10) | 0.0117 (10) | 0.0070 (10) |
N1 | 0.0294 (12) | 0.0237 (11) | 0.0191 (10) | 0.0037 (9) | 0.0089 (9) | 0.0031 (8) |
O1 | 0.0308 (10) | 0.0314 (11) | 0.0293 (10) | −0.0013 (8) | 0.0176 (8) | −0.0020 (8) |
O2 | 0.0316 (11) | 0.0295 (11) | 0.0388 (11) | −0.0002 (8) | 0.0197 (9) | 0.0026 (9) |
O3 | 0.0412 (12) | 0.0395 (12) | 0.0251 (9) | 0.0082 (9) | 0.0111 (9) | 0.0154 (9) |
O1W | 0.0257 (10) | 0.0366 (11) | 0.0390 (11) | 0.0058 (8) | 0.0100 (8) | 0.0165 (9) |
O2W | 0.0304 (10) | 0.0278 (10) | 0.0263 (9) | 0.0055 (8) | 0.0127 (8) | 0.0094 (8) |
Ni1—O1i | 2.007 (2) | C5—H5A | 0.9300 |
Ni1—O1 | 2.007 (2) | C6—C7 | 1.393 (5) |
Ni1—O1W | 2.083 (2) | C6—H6A | 0.9300 |
Ni1—O1Wi | 2.083 (2) | C7—C8 | 1.377 (4) |
Ni1—O2W | 2.117 (2) | C7—H7A | 0.9300 |
Ni1—O2Wi | 2.117 (2) | C8—C9 | 1.401 (4) |
C1—O3 | 1.254 (3) | C8—H8A | 0.9300 |
C1—N1 | 1.351 (4) | C9—N1 | 1.379 (3) |
C1—C2 | 1.447 (4) | C10—O2 | 1.244 (3) |
C2—C3 | 1.352 (4) | C10—O1 | 1.250 (3) |
C2—H2A | 0.9300 | N1—H1A | 0.8600 |
C3—C4 | 1.433 (4) | O1W—H1 | 0.8501 |
C3—C10 | 1.514 (3) | O1W—H2 | 0.8500 |
C4—C9 | 1.405 (4) | O2W—H3 | 0.8500 |
C4—C5 | 1.414 (4) | O2W—H4 | 0.8499 |
C5—C6 | 1.371 (4) | ||
O1i—Ni1—O1 | 180.0 | C6—C5—H5A | 119.7 |
O1i—Ni1—O1W | 90.69 (10) | C4—C5—H5A | 119.7 |
O1—Ni1—O1W | 89.31 (10) | C5—C6—C7 | 120.4 (3) |
O1i—Ni1—O1Wi | 89.31 (9) | C5—C6—H6A | 119.8 |
O1—Ni1—O1Wi | 90.69 (10) | C7—C6—H6A | 119.8 |
O1W—Ni1—O1Wi | 180.000 (1) | C8—C7—C6 | 120.8 (3) |
O1i—Ni1—O2W | 91.65 (8) | C8—C7—H7A | 119.6 |
O1—Ni1—O2W | 88.35 (8) | C6—C7—H7A | 119.6 |
O1W—Ni1—O2W | 89.05 (9) | C7—C8—C9 | 119.2 (3) |
O1Wi—Ni1—O2W | 90.95 (9) | C7—C8—H8A | 120.4 |
O1i—Ni1—O2Wi | 88.35 (8) | C9—C8—H8A | 120.4 |
O1—Ni1—O2Wi | 91.65 (8) | N1—C9—C8 | 120.0 (2) |
O1W—Ni1—O2Wi | 90.95 (9) | N1—C9—C4 | 119.1 (2) |
O1Wi—Ni1—O2Wi | 89.05 (9) | C8—C9—C4 | 120.9 (2) |
O2W—Ni1—O2Wi | 180.00 (10) | O2—C10—O1 | 126.3 (2) |
O3—C1—N1 | 120.0 (2) | O2—C10—C3 | 119.9 (2) |
O3—C1—C2 | 123.8 (3) | O1—C10—C3 | 113.8 (2) |
N1—C1—C2 | 116.2 (2) | C1—N1—C9 | 124.7 (2) |
C3—C2—C1 | 121.4 (3) | C1—N1—H1A | 117.6 |
C3—C2—H2A | 119.3 | C9—N1—H1A | 117.6 |
C1—C2—H2A | 119.3 | C10—O1—Ni1 | 129.97 (18) |
C2—C3—C4 | 120.6 (2) | Ni1—O1W—H1 | 123.7 |
C2—C3—C10 | 120.3 (2) | Ni1—O1W—H2 | 113.0 |
C4—C3—C10 | 119.0 (2) | H1—O1W—H2 | 109.1 |
C9—C4—C5 | 118.1 (3) | Ni1—O2W—H3 | 100.1 |
C9—C4—C3 | 117.9 (2) | Ni1—O2W—H4 | 118.4 |
C5—C4—C3 | 124.0 (2) | H3—O2W—H4 | 101.2 |
C6—C5—C4 | 120.6 (3) | ||
O3—C1—C2—C3 | 179.5 (3) | C5—C4—C9—C8 | −1.2 (4) |
N1—C1—C2—C3 | −0.8 (4) | C3—C4—C9—C8 | 178.9 (2) |
C1—C2—C3—C4 | 2.3 (4) | C2—C3—C10—O2 | −69.5 (4) |
C1—C2—C3—C10 | −175.4 (2) | C4—C3—C10—O2 | 112.8 (3) |
C2—C3—C4—C9 | −1.4 (4) | C2—C3—C10—O1 | 109.5 (3) |
C10—C3—C4—C9 | 176.2 (2) | C4—C3—C10—O1 | −68.2 (3) |
C2—C3—C4—C5 | 178.6 (3) | O3—C1—N1—C9 | 178.1 (2) |
C10—C3—C4—C5 | −3.7 (4) | C2—C1—N1—C9 | −1.7 (4) |
C9—C4—C5—C6 | 1.3 (4) | C8—C9—N1—C1 | −177.2 (3) |
C3—C4—C5—C6 | −178.7 (3) | C4—C9—N1—C1 | 2.5 (4) |
C4—C5—C6—C7 | −0.6 (5) | O2—C10—O1—Ni1 | −4.1 (4) |
C5—C6—C7—C8 | −0.3 (5) | C3—C10—O1—Ni1 | 176.92 (17) |
C6—C7—C8—C9 | 0.5 (4) | O1W—Ni1—O1—C10 | 115.2 (3) |
C7—C8—C9—N1 | −180.0 (2) | O1Wi—Ni1—O1—C10 | −64.8 (3) |
C7—C8—C9—C4 | 0.3 (4) | O2W—Ni1—O1—C10 | −155.7 (3) |
C5—C4—C9—N1 | 179.1 (2) | O2Wi—Ni1—O1—C10 | 24.3 (3) |
C3—C4—C9—N1 | −0.9 (4) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2Wii | 0.86 | 2.18 | 3.031 (3) | 173 |
O1W—H1···O2iii | 0.85 | 1.94 | 2.783 (3) | 169 |
O1W—H2···O3iv | 0.85 | 1.89 | 2.722 (3) | 164 |
O2W—H3···O2i | 0.85 | 1.90 | 2.709 (3) | 158 |
O2W—H4···O3v | 0.85 | 1.98 | 2.767 (3) | 154 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z; (iii) x−1, y, z; (iv) −x+1, −y+2, −z; (v) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C10H6NO3)2(H2O)4] |
Mr | 507.07 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.105 (5), 8.507 (5), 9.216 (5) |
α, β, γ (°) | 108.723 (5), 108.396 (5), 90.840 (5) |
V (Å3) | 496.4 (5) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.04 |
Crystal size (mm) | 0.5 × 0.4 × 0.3 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.601, 0.721 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3041, 2250, 2064 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.121, 1.02 |
No. of reflections | 2250 |
No. of parameters | 151 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.57 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Siemens, 1990).
Ni1—O1 | 2.007 (2) | Ni1—O2W | 2.117 (2) |
Ni1—O1W | 2.083 (2) | ||
O1—Ni1—O1W | 89.31 (10) | O1W—Ni1—O2W | 89.05 (9) |
O1—Ni1—O1Wi | 90.69 (10) | O1Wi—Ni1—O2W | 90.95 (9) |
O1—Ni1—O2W | 88.35 (8) | O1—Ni1—O2Wi | 91.65 (8) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2Wii | 0.86 | 2.18 | 3.031 (3) | 173.2 |
O1W—H1···O2iii | 0.85 | 1.94 | 2.783 (3) | 169.4 |
O1W—H2···O3iv | 0.85 | 1.89 | 2.722 (3) | 164.0 |
O2W—H3···O2i | 0.85 | 1.90 | 2.709 (3) | 158.3 |
O2W—H4···O3v | 0.85 | 1.98 | 2.767 (3) | 153.9 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z; (iii) x−1, y, z; (iv) −x+1, −y+2, −z; (v) x, y, z+1. |
Acknowledgements
We thank the Changjiang Scholars and Innovative Research Team in Universities Program, the National Natural Science Foundation of China (grant No. 20573016) and the Science Foundation for Young Teachers of Northeast Normal University (grant No. 20070310) for financial support.
References
Bai, Y., Shang, W.-L., Zhang, F.-L., Pan, X.-J. & Niu, X.-F. (2007). Acta Cryst. E63, m2628. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bu, X. H., Tong, M. L., Xie, Y. B., Li, J. R., Chang, H. C., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837–9846. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liu, H.-Q. (2007). Acta Cryst. E63, m2470. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pang, S.-J., Su, J. & Lin, Q. (2007). Acta Cryst. E63, m2369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Siemens (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Wu, H.-H., Lian, F.-Y., Yuan, D.-Q. & Hong, M.-C. (2007). Acta Cryst. E63, m67–m69. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj, S. S. S. (2000). Organometallics, 19, 4183–4186. Web of Science CSD CrossRef CAS Google Scholar
Zhang, X., Yang, Q.-F., Yi, Z.-H. & Xu, J.-Q. (2007). Acta Cryst. E63, m1034–m1036. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, the complexes based on quinoline-4-carboxylic acid have been reported (Bu et al., 2005; Xiong et al., 2000). However, the compounds built from 2-oxo-1,2-dihydroquinoline-4-carboxylic acid (dhqc) and transition metals have not been reported. When 2-hydroquinoline-4-carboxylic acid (hqc) and NiCl2 were employed as starting materials, the title compound, as shown in Fig. 1, was obtained. X-ray diffraction analysis has revealed that hqc exists mainly in the form of its tautomer dhqc, because the proton transfers from hydroxyl O atom to N atom under alkaline condition. Similar to the most mononuclear Ni complexes reported previously (Bai et al., 2007; Liu, 2007; Pang et al., 2007; Wu et al., 2007; Zhang et al., 2007), the NiII atom in the title compound, lying on an inversion center, is six-coordinated by four water molecules and two O atoms from two dhqc ligands (Table 1), forming a slightly distorted octahedral geometry. The molecules are linked into a three-dimensional network by a combination of intermolecular hydrogen bonds (O–H···O and N–H···O) (Table 2) and offset face-to-face π–π stacking interactions [centroid-to-centroid distances 3.525 (3) and 3.281 (5) Å].