metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m389-m390

Tetra­aqua­bis­(2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ato-κO4)nickel(II)

aInstitute of Functional Materials Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: zmsu@nenu.edu.cn

(Received 13 November 2007; accepted 5 December 2007; online 23 January 2008)

In the title compound, [Ni(C10H6NO3)2(H2O)4], the central NiII atom is located on an inversion center and coordinated in a slightly distorted octa­hedral geometry by two O atoms from two 2-oxo-1,2-dihydro­quinoline-4-carboxyl­ate ligands and four water mol­ecules, all of which act as monodentate ligands. The crystal structure features an extensive network of inter­molecular hydrogen-bonding inter­actions (O—H⋯O and N—H⋯O) and offset face-to-face ππ stacking inter­actions [centroid–centroid distances = 3.525 (3) and 3.281 (5) Å].

Related literature

For related literature, see: Bai et al. (2007[Bai, Y., Shang, W.-L., Zhang, F.-L., Pan, X.-J. & Niu, X.-F. (2007). Acta Cryst. E63, m2628.]); Bu et al. (2005[Bu, X. H., Tong, M. L., Xie, Y. B., Li, J. R., Chang, H. C., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837-9846.]); Liu (2007[Liu, H.-Q. (2007). Acta Cryst. E63, m2470.]); Pang et al. (2007[Pang, S.-J., Su, J. & Lin, Q. (2007). Acta Cryst. E63, m2369.]); Wu et al. (2007[Wu, H.-H., Lian, F.-Y., Yuan, D.-Q. & Hong, M.-C. (2007). Acta Cryst. E63, m67-m69.]); Xiong et al. (2000[Xiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj, S. S. S. (2000). Organometallics, 19, 4183-4186.]); Zhang et al. (2007[Zhang, X., Yang, Q.-F., Yi, Z.-H. & Xu, J.-Q. (2007). Acta Cryst. E63, m1034-m1036.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H6NO3)2(H2O)4]

  • Mr = 507.07

  • Triclinic, [P \overline 1]

  • a = 7.105 (5) Å

  • b = 8.507 (5) Å

  • c = 9.216 (5) Å

  • α = 108.723 (5)°

  • β = 108.396 (5)°

  • γ = 90.840 (5)°

  • V = 496.4 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 (2) K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.601, Tmax = 0.721

  • 3041 measured reflections

  • 2250 independent reflections

  • 2064 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.121

  • S = 1.02

  • 2250 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.007 (2)
Ni1—O1W 2.083 (2)
Ni1—O2W 2.117 (2)
O1—Ni1—O1W 89.31 (10)
O1—Ni1—O1Wi 90.69 (10)
O1—Ni1—O2W 88.35 (8)
O1W—Ni1—O2W 89.05 (9)
O1Wi—Ni1—O2W 90.95 (9)
O1—Ni1—O2Wi 91.65 (8)
Symmetry code: (i) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2Wii 0.86 2.18 3.031 (3) 173
O1W—H1⋯O2iii 0.85 1.94 2.783 (3) 169
O1W—H2⋯O3iv 0.85 1.89 2.722 (3) 164
O2W—H3⋯O2i 0.85 1.90 2.709 (3) 158
O2W—H4⋯O3v 0.85 1.98 2.767 (3) 154
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z; (iii) x-1, y, z; (iv) -x+1, -y+2, -z; (v) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus (Siemens, 1990[Siemens (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

Recently, the complexes based on quinoline-4-carboxylic acid have been reported (Bu et al., 2005; Xiong et al., 2000). However, the compounds built from 2-oxo-1,2-dihydroquinoline-4-carboxylic acid (dhqc) and transition metals have not been reported. When 2-hydroquinoline-4-carboxylic acid (hqc) and NiCl2 were employed as starting materials, the title compound, as shown in Fig. 1, was obtained. X-ray diffraction analysis has revealed that hqc exists mainly in the form of its tautomer dhqc, because the proton transfers from hydroxyl O atom to N atom under alkaline condition. Similar to the most mononuclear Ni complexes reported previously (Bai et al., 2007; Liu, 2007; Pang et al., 2007; Wu et al., 2007; Zhang et al., 2007), the NiII atom in the title compound, lying on an inversion center, is six-coordinated by four water molecules and two O atoms from two dhqc ligands (Table 1), forming a slightly distorted octahedral geometry. The molecules are linked into a three-dimensional network by a combination of intermolecular hydrogen bonds (O–H···O and N–H···O) (Table 2) and offset face-to-face ππ stacking interactions [centroid-to-centroid distances 3.525 (3) and 3.281 (5) Å].

Related literature top

For related literature, see: Bai et al. (2007); Bu et al. (2005); Liu (2007); Pang et al. (2007); Wu et al. (2007); Xiong et al. (2000); Zhang et al. (2007).

Experimental top

A mixture of 2-hydroxyquinoline-4-carboxylic acid (0.945 g, 5 mmol), NaOH(0.4 g, 10 mmol) and NiCl2.6H2O (2.3 g,10 mmol) in water (50 ml) was boiled for 20 min with stirring. Then the mixture was cooled to room temperature. The resulting solution was filtered and allowed to stand. After a week, green crystals of the title compound were obtained.

Refinement top

H atoms on C atoms and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å, N—H = 0.86Å and Uiso(H)=1.2Ueq(C,N). Water H atoms were located in a difference Fourier map and refined with a restraint of O—H = 0.85 (1) Å, and Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Siemens, 1990); software used to prepare material for publication: SHELXTL-Plus (Siemens, 1990).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1 - x, 2 - y, 1 - z.]
Tetraaquabis(2-oxo-1,2-dihydroquinoline-4-carboxylato-κO4)nickel(II) top
Crystal data top
[Ni(C10H6NO3)2(H2O)4]Z = 1
Mr = 507.07F(000) = 262
Triclinic, P1Dx = 1.696 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.105 (5) ÅCell parameters from 2250 reflections
b = 8.507 (5) Åθ = 1.3–26.0°
c = 9.216 (5) ŵ = 1.04 mm1
α = 108.723 (5)°T = 293 K
β = 108.396 (5)°Block, green
γ = 90.840 (5)°0.5 × 0.4 × 0.3 mm
V = 496.4 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2250 independent reflections
Radiation source: fine-focus sealed tube2064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.601, Tmax = 0.721k = 811
3041 measured reflectionsl = 127
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.4272P]
where P = (Fo2 + 2Fc2)/3
2250 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Ni(C10H6NO3)2(H2O)4]γ = 90.840 (5)°
Mr = 507.07V = 496.4 (5) Å3
Triclinic, P1Z = 1
a = 7.105 (5) ÅMo Kα radiation
b = 8.507 (5) ŵ = 1.04 mm1
c = 9.216 (5) ÅT = 293 K
α = 108.723 (5)°0.5 × 0.4 × 0.3 mm
β = 108.396 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2250 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2064 reflections with I > 2σ(I)
Tmin = 0.601, Tmax = 0.721Rint = 0.015
3041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
2250 reflectionsΔρmin = 0.57 e Å3
151 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00000.50000.02024 (16)
C10.6765 (4)0.6477 (3)0.1760 (3)0.0260 (5)
C20.6843 (4)0.7807 (3)0.0285 (3)0.0276 (6)
H2A0.66090.88680.03220.033*
C30.7249 (4)0.7538 (3)0.1145 (3)0.0234 (5)
C40.7688 (4)0.5932 (3)0.1253 (3)0.0241 (5)
C50.8169 (4)0.5563 (4)0.2709 (3)0.0316 (6)
H5A0.81860.63860.36660.038*
C60.8610 (5)0.4004 (4)0.2722 (4)0.0363 (7)
H6A0.89360.37790.36890.044*
C70.8573 (4)0.2754 (4)0.1295 (4)0.0342 (6)
H7A0.88820.17020.13200.041*
C80.8084 (4)0.3057 (3)0.0152 (3)0.0289 (6)
H8A0.80520.22140.11020.035*
C90.7636 (4)0.4648 (3)0.0176 (3)0.0233 (5)
C100.7168 (4)0.8914 (3)0.2641 (3)0.0244 (5)
N10.7143 (3)0.4972 (3)0.1615 (3)0.0250 (5)
H1A0.70720.41580.24830.030*
O10.5726 (3)0.8651 (3)0.3072 (2)0.0319 (5)
O20.8452 (3)1.0169 (3)0.3306 (3)0.0337 (5)
O30.6381 (3)0.6659 (3)0.3117 (2)0.0342 (5)
O1W0.2409 (3)1.0448 (3)0.3421 (3)0.0331 (5)
H10.12491.02960.34710.050*
H20.25481.13690.32650.050*
O2W0.3413 (3)0.7783 (2)0.4826 (2)0.0274 (4)
H30.26010.82000.53080.041*
H40.40100.72170.54030.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0210 (3)0.0197 (2)0.0201 (2)0.00347 (17)0.01005 (17)0.00379 (17)
C10.0249 (13)0.0306 (14)0.0230 (12)0.0038 (10)0.0085 (10)0.0095 (11)
C20.0327 (14)0.0266 (13)0.0272 (13)0.0085 (11)0.0138 (11)0.0103 (11)
C30.0207 (12)0.0268 (13)0.0229 (12)0.0038 (10)0.0106 (10)0.0056 (10)
C40.0230 (12)0.0274 (13)0.0232 (12)0.0039 (10)0.0097 (10)0.0085 (10)
C50.0353 (15)0.0379 (16)0.0218 (12)0.0064 (12)0.0103 (11)0.0100 (11)
C60.0383 (16)0.0423 (17)0.0331 (15)0.0042 (13)0.0087 (12)0.0226 (13)
C70.0323 (15)0.0287 (14)0.0425 (16)0.0034 (11)0.0071 (12)0.0189 (13)
C80.0274 (13)0.0241 (13)0.0306 (13)0.0029 (10)0.0074 (11)0.0059 (11)
C90.0196 (12)0.0261 (13)0.0237 (11)0.0026 (10)0.0070 (9)0.0081 (10)
C100.0254 (13)0.0264 (13)0.0230 (12)0.0083 (10)0.0117 (10)0.0070 (10)
N10.0294 (12)0.0237 (11)0.0191 (10)0.0037 (9)0.0089 (9)0.0031 (8)
O10.0308 (10)0.0314 (11)0.0293 (10)0.0013 (8)0.0176 (8)0.0020 (8)
O20.0316 (11)0.0295 (11)0.0388 (11)0.0002 (8)0.0197 (9)0.0026 (9)
O30.0412 (12)0.0395 (12)0.0251 (9)0.0082 (9)0.0111 (9)0.0154 (9)
O1W0.0257 (10)0.0366 (11)0.0390 (11)0.0058 (8)0.0100 (8)0.0165 (9)
O2W0.0304 (10)0.0278 (10)0.0263 (9)0.0055 (8)0.0127 (8)0.0094 (8)
Geometric parameters (Å, º) top
Ni1—O1i2.007 (2)C5—H5A0.9300
Ni1—O12.007 (2)C6—C71.393 (5)
Ni1—O1W2.083 (2)C6—H6A0.9300
Ni1—O1Wi2.083 (2)C7—C81.377 (4)
Ni1—O2W2.117 (2)C7—H7A0.9300
Ni1—O2Wi2.117 (2)C8—C91.401 (4)
C1—O31.254 (3)C8—H8A0.9300
C1—N11.351 (4)C9—N11.379 (3)
C1—C21.447 (4)C10—O21.244 (3)
C2—C31.352 (4)C10—O11.250 (3)
C2—H2A0.9300N1—H1A0.8600
C3—C41.433 (4)O1W—H10.8501
C3—C101.514 (3)O1W—H20.8500
C4—C91.405 (4)O2W—H30.8500
C4—C51.414 (4)O2W—H40.8499
C5—C61.371 (4)
O1i—Ni1—O1180.0C6—C5—H5A119.7
O1i—Ni1—O1W90.69 (10)C4—C5—H5A119.7
O1—Ni1—O1W89.31 (10)C5—C6—C7120.4 (3)
O1i—Ni1—O1Wi89.31 (9)C5—C6—H6A119.8
O1—Ni1—O1Wi90.69 (10)C7—C6—H6A119.8
O1W—Ni1—O1Wi180.000 (1)C8—C7—C6120.8 (3)
O1i—Ni1—O2W91.65 (8)C8—C7—H7A119.6
O1—Ni1—O2W88.35 (8)C6—C7—H7A119.6
O1W—Ni1—O2W89.05 (9)C7—C8—C9119.2 (3)
O1Wi—Ni1—O2W90.95 (9)C7—C8—H8A120.4
O1i—Ni1—O2Wi88.35 (8)C9—C8—H8A120.4
O1—Ni1—O2Wi91.65 (8)N1—C9—C8120.0 (2)
O1W—Ni1—O2Wi90.95 (9)N1—C9—C4119.1 (2)
O1Wi—Ni1—O2Wi89.05 (9)C8—C9—C4120.9 (2)
O2W—Ni1—O2Wi180.00 (10)O2—C10—O1126.3 (2)
O3—C1—N1120.0 (2)O2—C10—C3119.9 (2)
O3—C1—C2123.8 (3)O1—C10—C3113.8 (2)
N1—C1—C2116.2 (2)C1—N1—C9124.7 (2)
C3—C2—C1121.4 (3)C1—N1—H1A117.6
C3—C2—H2A119.3C9—N1—H1A117.6
C1—C2—H2A119.3C10—O1—Ni1129.97 (18)
C2—C3—C4120.6 (2)Ni1—O1W—H1123.7
C2—C3—C10120.3 (2)Ni1—O1W—H2113.0
C4—C3—C10119.0 (2)H1—O1W—H2109.1
C9—C4—C5118.1 (3)Ni1—O2W—H3100.1
C9—C4—C3117.9 (2)Ni1—O2W—H4118.4
C5—C4—C3124.0 (2)H3—O2W—H4101.2
C6—C5—C4120.6 (3)
O3—C1—C2—C3179.5 (3)C5—C4—C9—C81.2 (4)
N1—C1—C2—C30.8 (4)C3—C4—C9—C8178.9 (2)
C1—C2—C3—C42.3 (4)C2—C3—C10—O269.5 (4)
C1—C2—C3—C10175.4 (2)C4—C3—C10—O2112.8 (3)
C2—C3—C4—C91.4 (4)C2—C3—C10—O1109.5 (3)
C10—C3—C4—C9176.2 (2)C4—C3—C10—O168.2 (3)
C2—C3—C4—C5178.6 (3)O3—C1—N1—C9178.1 (2)
C10—C3—C4—C53.7 (4)C2—C1—N1—C91.7 (4)
C9—C4—C5—C61.3 (4)C8—C9—N1—C1177.2 (3)
C3—C4—C5—C6178.7 (3)C4—C9—N1—C12.5 (4)
C4—C5—C6—C70.6 (5)O2—C10—O1—Ni14.1 (4)
C5—C6—C7—C80.3 (5)C3—C10—O1—Ni1176.92 (17)
C6—C7—C8—C90.5 (4)O1W—Ni1—O1—C10115.2 (3)
C7—C8—C9—N1180.0 (2)O1Wi—Ni1—O1—C1064.8 (3)
C7—C8—C9—C40.3 (4)O2W—Ni1—O1—C10155.7 (3)
C5—C4—C9—N1179.1 (2)O2Wi—Ni1—O1—C1024.3 (3)
C3—C4—C9—N10.9 (4)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2Wii0.862.183.031 (3)173
O1W—H1···O2iii0.851.942.783 (3)169
O1W—H2···O3iv0.851.892.722 (3)164
O2W—H3···O2i0.851.902.709 (3)158
O2W—H4···O3v0.851.982.767 (3)154
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y+2, z; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C10H6NO3)2(H2O)4]
Mr507.07
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.105 (5), 8.507 (5), 9.216 (5)
α, β, γ (°)108.723 (5), 108.396 (5), 90.840 (5)
V3)496.4 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.601, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
3041, 2250, 2064
Rint0.015
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.121, 1.02
No. of reflections2250
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.57

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Siemens, 1990).

Selected geometric parameters (Å, º) top
Ni1—O12.007 (2)Ni1—O2W2.117 (2)
Ni1—O1W2.083 (2)
O1—Ni1—O1W89.31 (10)O1W—Ni1—O2W89.05 (9)
O1—Ni1—O1Wi90.69 (10)O1Wi—Ni1—O2W90.95 (9)
O1—Ni1—O2W88.35 (8)O1—Ni1—O2Wi91.65 (8)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2Wii0.862.183.031 (3)173.2
O1W—H1···O2iii0.851.942.783 (3)169.4
O1W—H2···O3iv0.851.892.722 (3)164.0
O2W—H3···O2i0.851.902.709 (3)158.3
O2W—H4···O3v0.851.982.767 (3)153.9
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y+2, z; (v) x, y, z+1.
 

Acknowledgements

We thank the Changjiang Scholars and Innovative Research Team in Universities Program, the National Natural Science Foundation of China (grant No. 20573016) and the Science Foundation for Young Teachers of Northeast Normal University (grant No. 20070310) for financial support.

References

First citationBai, Y., Shang, W.-L., Zhang, F.-L., Pan, X.-J. & Niu, X.-F. (2007). Acta Cryst. E63, m2628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, X. H., Tong, M. L., Xie, Y. B., Li, J. R., Chang, H. C., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837–9846.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, H.-Q. (2007). Acta Cryst. E63, m2470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPang, S.-J., Su, J. & Lin, Q. (2007). Acta Cryst. E63, m2369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWu, H.-H., Lian, F.-Y., Yuan, D.-Q. & Hong, M.-C. (2007). Acta Cryst. E63, m67–m69.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj, S. S. S. (2000). Organometallics, 19, 4183–4186.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Yang, Q.-F., Yi, Z.-H. & Xu, J.-Q. (2007). Acta Cryst. E63, m1034–m1036.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m389-m390
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds