organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,16-Di­iodo­hexa­deca­ne

aDepartment of Applied Chemistry, College of Science and Engineering, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga 525-8577, Japan
*Correspondence e-mail: nakamura@se.ritsumei.ac.jp

(Received 21 December 2007; accepted 7 January 2008; online 11 January 2008)

The mol­ecular structure of the title compound, C16H32I2, is centrosymmetric and the mol­ecular skeleton, including both terminal I atoms, has an all-trans conformation. The mol­ecules form layers of thickness a. These features are similar to those of the smectic C phase of liquid crystals.

Related literature

For related literature, see: Kobayashi et al. (1995[Kobayashi, H., Yamamoto, T. & Nakamura, N. (1995). Cryst. Res. Technol. 30, 375-380.]); Nakamura & Shimizu (2004[Nakamura, N. & Shimizu, H. (2004). Acta Cryst. E60, o131-o133.]); Nakamura et al. (2001[Nakamura, N., Uno, K. & Ogawa, Y. (2001). Acta Cryst. E57, o1091-o1093.]); Ogawa & Nakamura (1999[Ogawa, Y. & Nakamura, N. (1999). Bull. Chem. Soc. Jpn, 72, 943-946.]); Uno & Nakamura (2003[Uno, K. & Nakamura, N. (2003). Acta Cryst. E59, o708-o710.]).

[Scheme 1]

Experimental

Crystal data
  • C16H32I2

  • Mr = 478.22

  • Monoclinic, P 21 /c

  • a = 22.0407 (11) Å

  • b = 7.4596 (13) Å

  • c = 5.7981 (18) Å

  • β = 96.872 (12)°

  • V = 946.5 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 25.96 mm−1

  • T = 296 (2) K

  • 0.55 × 0.50 × 0.05 mm

Data collection
  • Rigaku AFC-5R diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.022, Tmax = 0.336

  • 2681 measured reflections

  • 1781 independent reflections

  • 1560 reflections with I > 2σ(I)

  • Rint = 0.044

  • 1 standard reflection every 150 reflections intensity decay: 7.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.137

  • S = 1.13

  • 1781 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −2.40 e Å−3

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992[Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalStructure. Version 3.10. MSC, The Woodlands, Texas, USA & Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Normal long-chain aliphatic compounds, such are n-alkanes have been studied to elucidate the principles of a crystallization for long-chain organic compounds, because the molecular skeleton consists of a simple trans zigzag straight hydrocarbon chain. The molecular shape of these compounds can be regarded as a rod-like one, and the molecules in the crystalline state form a layered structure similar to those of the smectic liquid crystalline phase. Moreover, some of these long-chain compounds exhibited a high-temperature rotator phase just below their melting points, in which molecules have some degree of motional freedom, comparable with that in liquid crystals. Thus, these long-chain compounds have been studied as model compounds for smectic liquid crystals.

In order to perform the investigations of mechanism of phase transition, it is important to obtain detailed crystallographic data. Many researchers have been analyzed the crystal structure of many different kinds of normal long-chain aliphatic compounds. Recently we have systematically analyzed the crystal structures of the alkane-α,ω-diols containing 10–24 C atoms using single-crystal X-ray diffraction (Nakamura et al., 2001; Uno & Nakamura, 2003), and one of the present authors has studied the phase transition phenomena of the series of the alkane-α,ω-diols containing 13–24 C atoms (Ogawa & Nakamura, 1999). In the present paper, we report a result of the crystal structure analysis of the title compound, (I), in order to clarify an effect of the terminal groups in the normal long-chain compounds on a construction of the layered structure. The molecular structure of (I) is shown in Fig. 1. The molecule is centrosymmetric and all torsion angles are close to ±180°, that is, the molecular structure including both terminal I atoms has an all-trans conformation. Figure 2 shows the projection of the crystal structure of (I) along the b axis. The molecules form layers with a thickness of a. In the layers, the long axes of all molecules are inclined to the bc plane. The layers are arranged in parallel manner between the neighboring layers, forming a bookshelf motif, as shown in Fig. 3. The molecular arrangement of (I) is similar to that of the smectic C phase of liquid crystals. In the crystal structure, the shortest I···I distance is 3.9095 (14) Å. In addition, it is attributed to the fact that the van der Waals radius of I atoms are longer than those of Cl and Br atoms, and I atoms cause strongest steric hindrance.

The results of structure analysis of 1,16-dichlorohexadecane (Nakamura & Shimizu, 2004) and 1,16-dibromohexadecane (Kobayashi et al., 1995) have been reported. These compounds are arranged in a zigzag manner between adjacent layers, forming a herring-bone motif. These molecular arrangement are similar to that of the tilt smectic C phase of liquid crystals. Therefore, it is elucidated that features of the structure of (I) is differ from those of 1,16-dichlorohexadecane and 1,16-dibromohexadecane. It is considered that this difference in the crystal structure are caused by the difference of the steric hindrance of atoms located in both ends.

Related literature top

For related literature, see: Kobayashi et al. (1995); Nakamura & Shimizu (2004); Nakamura et al. (2001); Ogawa & Nakamura (1999); Uno & Nakamura (2003).

Experimental top

The single-crystal used for analysis was obtained by slow evaporation of a solution in a mixture of heptane and 2-propanol (1:1).

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H = 0.97 Å and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: RTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) 1 - x, 1 - y, 2 - z].
[Figure 2] Fig. 2. The projection of the crystal structure of (I) along the b axis.
[Figure 3] Fig. 3. The projection of the crystal structure of (I) along the c axis.
(I) top
Crystal data top
C16H32I2F(000) = 468
Mr = 478.22Dx = 1.678 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 23 reflections
a = 22.0407 (11) Åθ = 9.8–16.6°
b = 7.4596 (13) ŵ = 25.96 mm1
c = 5.7981 (18) ÅT = 296 K
β = 96.872 (12)°Plate, colorless
V = 946.5 (3) Å30.55 × 0.50 × 0.05 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.044
ω–2θ scansθmax = 70.1°, θmin = 4.0°
Absorption correction: gaussian
(Coppens et al., 1965)
h = 2626
Tmin = 0.022, Tmax = 0.336k = 91
2681 measured reflectionsl = 16
1781 independent reflections1 standard reflections every 150 reflections
1560 reflections with I > 2σ(I) intensity decay: 7.5%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.07P)2 + 3.339P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.043(Δ/σ)max < 0.001
wR(F2) = 0.137Δρmax = 0.74 e Å3
S = 1.13Δρmin = 2.40 e Å3
1781 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
83 parametersExtinction coefficient: 0.0096 (7)
0 restraints
Crystal data top
C16H32I2V = 946.5 (3) Å3
Mr = 478.22Z = 2
Monoclinic, P21/cCu Kα radiation
a = 22.0407 (11) ŵ = 25.96 mm1
b = 7.4596 (13) ÅT = 296 K
c = 5.7981 (18) Å0.55 × 0.50 × 0.05 mm
β = 96.872 (12)°
Data collection top
Rigaku AFC-5R
diffractometer
1560 reflections with I > 2σ(I)
Absorption correction: gaussian
(Coppens et al., 1965)
Rint = 0.044
Tmin = 0.022, Tmax = 0.3361 standard reflections every 150 reflections
2681 measured reflections intensity decay: 7.5%
1781 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.13Δρmax = 0.74 e Å3
1781 reflectionsΔρmin = 2.40 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.063509 (19)0.44809 (7)0.24363 (7)0.0532 (3)
C10.1149 (3)0.5458 (9)0.0698 (13)0.0473 (16)
H1A0.11740.67540.06280.057*
H1B0.09370.51460.20150.057*
C20.1785 (3)0.4687 (9)0.1054 (12)0.0428 (14)
H2A0.19950.49790.02740.051*
H2B0.1760.33920.1160.051*
C30.2148 (3)0.5417 (10)0.3254 (13)0.0480 (16)
H3A0.1930.51560.45710.058*
H3B0.21790.6710.31260.058*
C40.2789 (3)0.4625 (10)0.3699 (14)0.0475 (16)
H4A0.27580.33350.38670.057*
H4B0.30040.48590.23660.057*
C50.3156 (3)0.5386 (10)0.5854 (14)0.0492 (17)
H5A0.2940.51480.71850.059*
H5B0.31830.66760.56870.059*
C60.3800 (3)0.4614 (10)0.6324 (14)0.0509 (17)
H6A0.37720.33250.65060.061*
H6B0.40140.4840.49850.061*
C70.4170 (3)0.5383 (10)0.8458 (14)0.0497 (17)
H7A0.39570.51560.97970.06*
H7B0.41990.66720.82760.06*
C80.4813 (3)0.4614 (10)0.8924 (14)0.0505 (17)
H8A0.50270.48430.75850.061*
H8B0.47850.33250.91030.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0459 (4)0.0673 (4)0.0437 (4)0.00104 (19)0.0057 (2)0.00042 (19)
C10.036 (3)0.055 (4)0.049 (4)0.003 (3)0.004 (3)0.010 (3)
C20.036 (3)0.053 (4)0.037 (3)0.005 (3)0.003 (3)0.004 (3)
C30.038 (3)0.057 (4)0.046 (4)0.001 (3)0.006 (3)0.006 (3)
C40.035 (3)0.057 (4)0.049 (4)0.002 (3)0.002 (3)0.002 (3)
C50.036 (3)0.063 (4)0.047 (4)0.004 (3)0.002 (3)0.000 (3)
C60.037 (3)0.061 (4)0.052 (4)0.000 (3)0.005 (3)0.003 (3)
C70.035 (3)0.064 (4)0.048 (4)0.001 (3)0.003 (3)0.002 (3)
C80.037 (3)0.061 (4)0.051 (4)0.003 (3)0.006 (3)0.002 (3)
Geometric parameters (Å, º) top
I1—C12.150 (7)C5—C61.527 (9)
C1—C21.506 (9)C5—H5A0.97
C1—H1A0.97C5—H5B0.97
C1—H1B0.97C6—C71.512 (10)
C2—C31.523 (9)C6—H6A0.97
C2—H2A0.97C6—H6B0.97
C2—H2B0.97C7—C81.522 (10)
C3—C41.524 (9)C7—H7A0.97
C3—H3A0.97C7—H7B0.97
C3—H3B0.97C8—C8i1.523 (15)
C4—C51.515 (10)C8—H8A0.97
C4—H4A0.97C8—H8B0.97
C4—H4B0.97
I1···I1ii3.9095 (14)
C2—C1—I1112.0 (4)C4—C5—C6113.5 (6)
C2—C1—H1A109.2C4—C5—H5A108.9
I1—C1—H1A109.2C6—C5—H5A108.9
C2—C1—H1B109.2C4—C5—H5B108.9
I1—C1—H1B109.2C6—C5—H5B108.9
H1A—C1—H1B107.9H5A—C5—H5B107.7
C1—C2—C3111.5 (6)C7—C6—C5113.7 (6)
C1—C2—H2A109.3C7—C6—H6A108.8
C3—C2—H2A109.3C5—C6—H6A108.8
C1—C2—H2B109.3C7—C6—H6B108.8
C3—C2—H2B109.3C5—C6—H6B108.8
H2A—C2—H2B108H6A—C6—H6B107.7
C2—C3—C4112.8 (6)C6—C7—C8113.7 (6)
C2—C3—H3A109C6—C7—H7A108.8
C4—C3—H3A109C8—C7—H7A108.8
C2—C3—H3B109C6—C7—H7B108.8
C4—C3—H3B109C8—C7—H7B108.8
H3A—C3—H3B107.8H7A—C7—H7B107.7
C5—C4—C3112.7 (6)C7—C8—C8i113.8 (8)
C5—C4—H4A109C7—C8—H8A108.8
C3—C4—H4A109C8i—C8—H8A108.8
C5—C4—H4B109C7—C8—H8B108.8
C3—C4—H4B109C8i—C8—H8B108.8
H4A—C4—H4B107.8H8A—C8—H8B107.7
I1—C1—C2—C3178.9 (5)C4—C5—C6—C7179.4 (7)
C1—C2—C3—C4178.5 (6)C5—C6—C7—C8180.0 (7)
C2—C3—C4—C5178.6 (6)C6—C7—C8—C8i179.9 (8)
C3—C4—C5—C6179.7 (7)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC16H32I2
Mr478.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)22.0407 (11), 7.4596 (13), 5.7981 (18)
β (°) 96.872 (12)
V3)946.5 (3)
Z2
Radiation typeCu Kα
µ (mm1)25.96
Crystal size (mm)0.55 × 0.50 × 0.05
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.022, 0.336
No. of measured, independent and
observed [I > 2σ(I)] reflections
2681, 1781, 1560
Rint0.044
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.137, 1.13
No. of reflections1781
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 2.40

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), CrystalStructure (Molecular Structure Corporation & Rigaku, 2001), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), RTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors express their gratitude to Mr K. Uno and Mr A. Ohishi for their support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKobayashi, H., Yamamoto, T. & Nakamura, N. (1995). Cryst. Res. Technol. 30, 375–380.  CrossRef CAS Web of Science Google Scholar
First citationMolecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalStructure. Version 3.10. MSC, The Woodlands, Texas, USA & Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNakamura, N. & Shimizu, H. (2004). Acta Cryst. E60, o131–o133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakamura, N., Uno, K. & Ogawa, Y. (2001). Acta Cryst. E57, o1091–o1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOgawa, Y. & Nakamura, N. (1999). Bull. Chem. Soc. Jpn, 72, 943–946.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUno, K. & Nakamura, N. (2003). Acta Cryst. E59, o708–o710.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds