metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m291-m292

Di-μ2-acetato-1:2κ2O:O′;2:3κ2O:O′-bis­­(N,N′-di­methyl­formamide)-1κO,3κO-bis­­{μ2-2,2′-[propane-1,3-diylbis(imino­methyl­ene)]diphenolato-1κ4O,N,N′,O′:2κ2O,O′;2κ2O,O′:3κ4O,N,N′,O′-1,3-dinickel(II)-2-cadmium(II)

aDepartment of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and bDepartment of Chemistry, Ankara University, Ankara, Turkey
*Correspondence e-mail: tatar@hacettepe.edu.tr

(Received 4 December 2007; accepted 19 December 2007; online 4 January 2008)

The crystal structure of the title compound, [Ni2Cd(C17H16N2O2)2(C2H3O2)2(C3H7NO)2], contains discrete centrosymmetric hetero-trinuclear mol­ecules in which Ni/Cd atom pairs are triply bridged via O atoms from the SALPD2− [N,N′-bis­(salicyl­idene)-1,3-propane­diaminate] and acetate ligands. The central CdII ion is in a distorted octa­hedral coordination environment formed by four O atoms from two SALPD2− ligands in the equatorial plane and two O atoms of two symmetry-related acetate ligands in the axial positions. The symmetry-related NiII ions are in slightly distorted octa­hedral environments, coordinated by two O and two N atoms from tetra­dendate SALPD2− ligands in the equatorial plane, while the axial positions are occupied by O atoms from a dimethyl­formamide and an acetate ligand. This results in the formation of three edge-shared octa­hedra in which the Ni⋯Cd distance is 3.1482 (15) Å. The crystal structure is stabilized by weak C—H⋯O hydrogen bonds.

Related literature

For general background, see: Aneetha et al. (1999); Reglinski et al. (2006[Reglinski, J., Taylor, M. K. & Kennedy, A. R. (2006). Inorg. Chem. Commun. 9, 736-739.]); Fukuhara et al. (1990[Fukuhara, C., Tsuneyoshi, K., Matsumato, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3437-3479.]); Barandika et al. (1999[Barandika, M. G., Cortes, R., Lezama, L., Urtiaga, M. K., Ariortua, M. I. & Rojo, T. (1999). J. Chem. Soc. Dalton Trans. pp. 2971-2976.]). For related literature, see: Aneetha et al. (1999[Aneetha, H., Pannerselvam, K., Liao, T. F., Lu, T. H. & Chung, C. S. (1999). J. Chem. Soc. Dalton Trans. pp. 2689-2694.]); Atakol et al. (1999[Atakol, O., Tatar, L., Akay, M. A. & Ülkü, D. (1999). Anal. Sci. 15, 101-102.]);Ülkü et al. (1999[Ülkü, D., Tatar, L., Atakol, O. & Durmuş, S. (1999). Acta Cryst. C55, 1652-1654.]); Ülkü et al. (2001[Ülkü, D., Tatar, L., Atakol, O. & Aksu, M. (2001). Acta Cryst. C57, 273-274.]); Tatar & Atakol (2002[Tatar, Y. L. & Atakol, O. (2002). Cryst. Res. Technol. 37, 1352-1359.]); Tatar Yıldırım et al. (2007[Tatar Yıldırım, L., Atakol, O. & Kavak, G. (2007). Acta Cryst. E63, m2403-m2404.]); Tatar Yıldırım & Ergün (2007[Tatar Yıldırım, L. & Ergun, Ü. (2007). Acta Cryst. E63, m2424-m2425.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2Cd(C17H16N2O2)2(C2H3O2)2(C3H7NO)2]

  • Mr = 1062.77

  • Monoclinic, P 21 /n

  • a = 10.285 (3) Å

  • b = 18.040 (5) Å

  • c = 12.590 (3) Å

  • β = 92.12 (2)°

  • V = 2334.4 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 295 (2) K

  • 0.4 × 0.1 × 0.1 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.854, Tmax = 0.877

  • 3960 measured reflections

  • 3612 independent reflections

  • 1997 reflections with I > 2σ(I)

  • Rint = 0.076

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.239

  • S = 1.02

  • 3612 reflections

  • 287 parameters

  • H-atom parameters not refined

  • Δρmax = 0.88 e Å−3

  • Δρmin = −1.51 e Å−3

Table 1
Selected bond lengths (Å)

Cd—O1 2.157 (7)
Cd—O2 2.151 (7)
Cd—O3 2.212 (7)
Ni—N1 2.094 (9)
Ni—N2 2.101 (9)
Ni—O1 2.031 (8)
Ni—O2 2.060 (7)
Ni—O4 2.045 (7)
Ni—O5 2.180 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.56 3.308 (16) 138
C20—H20⋯O3i 0.93 2.59 3.409 (14) 147
Symmetry code: (i) -x, -y, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, ONNO phenol amines have been reported by the reduction of ONNO type Schiff bases (Aneetha et al., 1999, Reglinski et al., 2006). Bis-N,N'(2-salicylidene)-1,3-propanediamine is a ligand which tends to give polynuclear complexes. Reduction of this Schiff base results in the formation of bis-N,N'(2-hydroxybenzyl)-1, 3-propanediamine. The ONNO type ligand stereochemistry around metal ions and the structure of the O-atom bridges influence the magnetic exchange interactions (Barandika et al., 1999; Fukuhara et al., 1990).

This study deals with the investigation of the production of hetero-trinuclear complexes with the use of bis-N,N'(2-hydroxybenzyl)-1,3-propanediamine and it was observed that Ni(II)—Cd(II)—Ni(II) type complexes were formed. The crystal structure of the title compound (I), contains a linear Ni—Cd—Ni trinuclear complex with a central CdII ion located on an inversion centre and terminal NiII ions related by this inversion centre (Fig. 1). The CdII ion has a distorted octahedral coordination environment, formed by four O atoms from two SALPD2- ligands in the equatorial plane and two O atoms from two acetate ligands at the axial positions. The coordination bond lengths and angles around the CdII ion range between 2.151 (7) - 2.212 (7)Å and 78.4 (3) - 101.6 (3)°, respectively.

The terminal NiII ions have slightly distorted octahedral coordination environments formed by two O atoms and two N atoms from SALPD2- ligands in the equatorial plane and two O atoms from acetate ligand and dimethylformamide ligand at the axial positions. In the Ni coordination sphere bond lengths and angles range between 2.031 (8) - 2.180 (7)Å and 83.3 (3) - 93.8 (3)°, respectively.

The overall result is three edge-shared octahedral in which the closest Ni···Cd distance is 3.1482 (15) Å. The crystal structure is stabilized by weak C—H···O hydrogen bonds.

The coordination geometry of the metal ions is very similar to those found for the corresponding complexes reported previously (Tatar & Ergün, 2007; Tatar & Atakol et al., 2007; Tatar & Atakol 2002; Atakol et al., 1999;Ülkü et al., 1999;Ülkü et al., 2001).

Related literature top

For general backgroud, see: Aneetha et al. 1(999); Reglinski et al. (2006); Fukuhara et al. (1990); Barandika et al. (1999). For related literature, see: Aneetha et al. (1999); Atakol et al. (1999);Ülkü et al. (1999); Ülkü et al. (2001); Tatar & Atakol (2002); Tatar Yıldırım et al. (2007); Tatar Yıldırım & Ergün (2007).

Experimental top

The related Schiff Base, bis-N,N'(salicylidene)-1,3-propanedimine was prepared through the condensation reaction of an 1,3-propanediamine and salicylaldehyde in EtOH and this Schiff bases prepared was reduced with NaBH4 in MeOH until the solution was completely colorless. The Phenolic amine ligand was precipitated with the addition of excess ice.

The complex was prepared with template method since it was very cumbersome to isolate mononuclear bis-N,N'(2-oxybenzyl)-1,3-propanediaminato nickel(II) complex. 0.568 g (0.002 mole) bis-N,N'(2-hydroxybenzyl)-1,3-propanediamine was dissolved in 50 ml hot DMF. 0.475 g(0.002 mole) NiCl2.6H2O solution in 20 ml hot methanol and 0.5 ml Et3N were added to it and the mixture was stirred for ten minutes. Then a solution of 0.312 g (0.001 mol) Cd(CH3COO)2.4H2O in 20 ml hot methanol was added and the resulting mixture was kept on the bench for 3–4 days. The blue crystals were filtered off and dried in air.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms. The fact that only ca 87% of the available data were collected to a maximun 2θ of 50° can lower the precision of the structure.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (symmetry code (i): -x, -y, -z). H atoms bonded to C atoms are not shown.
Di-µ2-acetato-1:2κ2O:O';2:3κ2O:O'-bis(N,N'-dimethylformamide)- 1κO,3κO-bis{µ2-2,2'-[propane-1,3-diylbis(iminomethylene)]diphenolato- 1κ4O,N,N',O':2κ2O,O';2κ2O,O':3κ4O,N,N',O'-1,3-dinickel(II)- 2-cadmium(II) top
Crystal data top
[Ni2Cd(C17H16N2O2)2(C2H3O2)2(C3H7NO)2]F(000) = 1100
Mr = 1062.77Dx = 1.512 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 15 reflections
a = 10.285 (3) Åθ = 10.0–11.1°
b = 18.040 (5) ŵ = 1.31 mm1
c = 12.590 (3) ÅT = 295 K
β = 92.12 (2)°Prism, blue
V = 2334.4 (11) Å30.4 × 0.1 × 0.1 mm
Z = 2
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.076
non–profiled ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 012
Tmin = 0.854, Tmax = 0.877k = 021
3960 measured reflectionsl = 1412
3612 independent reflections3 standard reflections every 120 min
1997 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: geomtr
wR(F2) = 0.239H-atom parameters not refined
S = 1.02 w = 1/[σ2(Fo2) + (0.1184P)2 + 12.1765P]
where P = (Fo2 + 2Fc2)/3
3612 reflections(Δ/σ)max < 0.001
287 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 1.51 e Å3
Crystal data top
[Ni2Cd(C17H16N2O2)2(C2H3O2)2(C3H7NO)2]V = 2334.4 (11) Å3
Mr = 1062.77Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.285 (3) ŵ = 1.31 mm1
b = 18.040 (5) ÅT = 295 K
c = 12.590 (3) Å0.4 × 0.1 × 0.1 mm
β = 92.12 (2)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1997 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.076
Tmin = 0.854, Tmax = 0.8773 standard reflections every 120 min
3960 measured reflections intensity decay: 1%
3612 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.239H-atom parameters not refined
S = 1.02 w = 1/[σ2(Fo2) + (0.1184P)2 + 12.1765P]
where P = (Fo2 + 2Fc2)/3
3612 reflectionsΔρmax = 0.88 e Å3
287 parametersΔρmin = 1.51 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0000.0489 (4)
Ni0.03480 (12)0.14386 (8)0.13762 (11)0.0301 (4)
O50.1184 (7)0.1304 (4)0.2605 (6)0.0409 (19)
O20.0909 (6)0.1061 (4)0.0260 (6)0.0368 (18)
O10.0874 (7)0.0355 (4)0.1446 (6)0.0383 (18)
N20.0396 (9)0.2521 (5)0.1294 (7)0.038 (2)
H2N0.09670.25760.18580.045*
N10.1589 (9)0.1727 (6)0.2591 (8)0.044 (3)
H1N0.10880.17620.320.053*
C120.2316 (10)0.2091 (7)0.0309 (9)0.041 (3)
C110.1159 (10)0.2610 (6)0.0316 (10)0.041 (3)
H11A0.14630.31180.02720.05*
H11B0.05980.25140.03040.05*
C10.1117 (10)0.0039 (7)0.2371 (10)0.041 (3)
C170.2108 (10)0.1325 (6)0.0246 (8)0.035 (3)
N30.3098 (9)0.0735 (5)0.2942 (8)0.044 (3)
C160.3197 (10)0.0877 (7)0.0137 (10)0.044 (3)
H160.30810.0370.00390.053*
C80.2249 (11)0.2441 (8)0.2442 (11)0.055 (4)
H8A0.28180.25220.30280.065*
H8B0.27860.24220.17930.065*
C60.1915 (11)0.0396 (8)0.3095 (10)0.053 (3)
C200.1877 (10)0.0758 (7)0.2586 (9)0.043 (3)
H200.15190.03260.22980.051*
C100.0577 (11)0.3126 (6)0.1368 (10)0.047 (3)
H10A0.11930.30930.07680.056*
H10B0.01360.360.13260.056*
C50.2079 (15)0.0093 (10)0.4079 (12)0.077 (5)
H50.25620.03550.45630.092*
C20.0636 (12)0.0651 (8)0.2658 (11)0.059 (4)
H20.01650.0920.21720.071*
C90.1305 (11)0.3096 (7)0.2378 (11)0.051 (4)
H9A0.17910.35530.24480.061*
H9B0.06810.30680.29740.061*
C150.4443 (11)0.1161 (8)0.0171 (10)0.054 (3)
H150.51520.08440.01210.064*
C210.3905 (14)0.0079 (8)0.2850 (14)0.085 (6)
H21A0.47610.0180.31460.128*
H21B0.39630.00520.21140.128*
H21C0.35260.03240.32280.128*
C220.3729 (13)0.1390 (8)0.3350 (13)0.072 (5)
H22A0.46130.12760.35610.108*
H22B0.32780.15680.39530.108*
H22C0.3720.17650.28080.108*
C130.3563 (11)0.2387 (8)0.0343 (9)0.049 (3)
H130.3690.28960.04080.058*
O40.1691 (7)0.1684 (4)0.0189 (6)0.0365 (18)
O30.1560 (7)0.0659 (4)0.0804 (6)0.0378 (18)
C180.1911 (9)0.1297 (7)0.0620 (9)0.035 (3)
C140.4637 (12)0.1902 (9)0.0278 (10)0.061 (4)
H140.54790.20910.03080.074*
C30.0837 (15)0.0952 (10)0.3644 (15)0.083 (6)
H30.04830.14120.38210.1*
C40.157 (2)0.0572 (12)0.4381 (14)0.093 (6)
H40.17020.07670.50520.112*
C70.2531 (12)0.1124 (8)0.2753 (11)0.060 (4)
H7A0.30330.10460.20950.071*
H7B0.31290.12790.32880.071*
C190.2689 (12)0.1683 (7)0.1523 (10)0.053 (3)
H19A0.21460.17480.2120.079*
H19B0.2980.21580.12830.079*
H19C0.34280.13840.1730.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0419 (7)0.0521 (8)0.0523 (10)0.0009 (6)0.0042 (6)0.0037 (7)
Ni0.0200 (6)0.0433 (8)0.0269 (8)0.0003 (6)0.0022 (5)0.0011 (6)
O50.034 (4)0.050 (5)0.037 (5)0.005 (4)0.010 (3)0.002 (4)
O20.022 (4)0.047 (5)0.042 (5)0.001 (3)0.002 (3)0.001 (4)
O10.033 (4)0.044 (5)0.038 (5)0.000 (3)0.002 (3)0.005 (4)
N20.039 (5)0.046 (6)0.029 (6)0.002 (4)0.003 (4)0.002 (4)
N10.036 (5)0.060 (7)0.037 (7)0.004 (5)0.003 (4)0.010 (5)
C120.030 (6)0.057 (8)0.036 (8)0.010 (6)0.003 (5)0.002 (6)
C110.036 (6)0.043 (7)0.044 (8)0.013 (5)0.007 (5)0.001 (6)
C10.025 (5)0.052 (7)0.044 (8)0.014 (6)0.001 (5)0.009 (6)
C170.035 (6)0.050 (7)0.020 (6)0.001 (5)0.003 (4)0.006 (5)
N30.037 (5)0.053 (6)0.043 (7)0.011 (5)0.015 (4)0.011 (5)
C160.028 (6)0.057 (8)0.048 (8)0.013 (5)0.005 (5)0.008 (6)
C80.030 (7)0.085 (10)0.048 (9)0.004 (7)0.002 (6)0.012 (7)
C60.037 (7)0.077 (10)0.043 (9)0.016 (7)0.003 (6)0.011 (7)
C200.033 (6)0.052 (8)0.040 (8)0.014 (6)0.023 (5)0.007 (6)
C100.052 (8)0.041 (7)0.046 (9)0.007 (6)0.003 (6)0.004 (6)
C50.080 (11)0.111 (15)0.042 (10)0.042 (10)0.025 (8)0.008 (9)
C20.046 (7)0.070 (10)0.061 (10)0.016 (7)0.014 (6)0.013 (8)
C90.041 (7)0.049 (8)0.061 (9)0.023 (6)0.017 (6)0.029 (7)
C150.030 (6)0.082 (10)0.050 (9)0.011 (7)0.003 (6)0.001 (7)
C210.074 (10)0.069 (10)0.110 (15)0.031 (8)0.045 (10)0.018 (9)
C220.046 (8)0.065 (10)0.103 (13)0.009 (7)0.028 (8)0.036 (9)
C130.039 (7)0.070 (9)0.037 (8)0.019 (6)0.001 (5)0.005 (6)
O40.033 (4)0.049 (5)0.028 (5)0.005 (3)0.010 (3)0.007 (4)
O30.039 (4)0.041 (5)0.033 (5)0.001 (4)0.007 (3)0.006 (3)
C180.020 (5)0.054 (8)0.031 (8)0.009 (5)0.006 (4)0.010 (6)
C140.028 (7)0.113 (14)0.043 (9)0.017 (8)0.003 (5)0.000 (8)
C30.055 (10)0.109 (14)0.084 (14)0.037 (9)0.017 (9)0.055 (11)
C40.111 (15)0.121 (17)0.048 (12)0.057 (13)0.005 (10)0.040 (11)
C70.030 (7)0.092 (11)0.058 (10)0.012 (7)0.016 (6)0.013 (8)
C190.053 (8)0.058 (8)0.044 (9)0.004 (6)0.018 (6)0.004 (6)
Geometric parameters (Å, º) top
Cd—Ni3.1482 (15)C8—H8A0.97
Cd—O12.157 (7)C8—H8B0.97
Cd—O22.151 (7)C6—C51.370 (19)
Cd—O32.212 (7)C6—C71.514 (19)
Ni—N12.094 (9)C20—H200.93
Ni—N22.101 (9)C10—C91.500 (17)
Ni—O12.031 (8)C10—H10A0.97
Ni—O22.060 (7)C10—H10B0.97
Ni—O42.045 (7)C5—C41.36 (2)
Ni—O52.180 (7)C5—H50.93
Cd—O2i2.151 (7)C2—C31.38 (2)
Cd—O1i2.157 (7)C2—H20.93
Cd—O3i2.212 (7)C9—H9A0.97
Cd—Nii3.1482 (15)C9—H9B0.97
O5—C201.217 (13)C15—C141.358 (19)
O2—C171.323 (12)C15—H150.93
O1—C11.328 (13)C21—H21A0.96
N2—C101.486 (14)C21—H21B0.96
N2—C111.493 (14)C21—H21C0.96
N2—H2N0.91C22—H22A0.96
N1—C81.465 (15)C22—H22B0.96
N1—C71.474 (15)C22—H22C0.96
N1—H1N0.91C13—C141.415 (18)
C12—C131.389 (15)C13—H130.93
C12—C171.400 (16)O4—C181.248 (13)
C12—C111.514 (16)O3—C181.231 (13)
C11—H11A0.97C18—C191.532 (15)
C11—H11B0.97C14—H140.93
C1—C21.384 (17)C3—C41.40 (3)
C1—C61.405 (17)C3—H30.93
C17—C161.392 (14)C4—H40.93
N3—C201.319 (13)C7—H7A0.97
N3—C221.435 (15)C7—H7B0.97
N3—C211.452 (15)C19—H19A0.96
C16—C151.379 (16)C19—H19B0.96
C16—H160.93C19—H19C0.96
C8—C91.534 (17)
O1—Cd—O278.4 (3)C16—C17—C12117.2 (10)
O1—Cd—O2i101.6 (3)C20—N3—C22120.5 (10)
O1—Cd—O384.8 (3)C20—N3—C21122.6 (11)
O2—Cd—O383.9 (3)C22—N3—C21116.6 (10)
O1—Ni—O283.5 (3)C15—C16—C17122.1 (12)
O1—Ni—O493.8 (3)C15—C16—H16118.9
O1—Ni—N192.1 (3)C17—C16—H16118.9
O1—Ni—O592.8 (3)N1—C8—C9113.2 (9)
O2—Ni—N292.0 (3)N1—C8—H8A108.9
O2—Ni—O589.6 (3)C9—C8—H8A108.9
O4—Ni—O289.8 (3)N1—C8—H8B108.9
O4—Ni—N193.8 (3)C9—C8—H8B108.9
O4—Ni—N290.0 (3)H8A—C8—H8B107.8
N1—Ni—N292.2 (4)C5—C6—C1119.9 (14)
N1—Ni—O587.3 (3)C5—C6—C7122.7 (14)
N2—Ni—O583.3 (3)C1—C6—C7117.4 (11)
Ni—O1—Cd97.4 (3)O5—C20—N3124.8 (11)
Ni—O2—Cd96.8 (3)O5—C20—H20117.6
O2—Cd—O2i180.0 (4)N3—C20—H20117.6
O1i—Cd—O2101.6 (3)N2—C10—C9112.6 (9)
O2i—Cd—O1i78.4 (3)N2—C10—H10A109.1
O1i—Cd—O1180.0 (5)C9—C10—H10A109.1
O2—Cd—O3i96.1 (3)N2—C10—H10B109.1
O2i—Cd—O3i83.9 (3)C9—C10—H10B109.1
O1i—Cd—O3i84.8 (3)H10A—C10—H10B107.8
O1—Cd—O3i95.2 (3)C4—C5—C6123.2 (17)
O2i—Cd—O396.1 (3)C4—C5—H5118.4
O1i—Cd—O395.2 (3)C6—C5—H5118.4
O3i—Cd—O3180.0 (6)C3—C2—C1121.7 (15)
O2—Cd—Ni40.53 (19)C3—C2—H2119.2
O2i—Cd—Ni139.47 (19)C1—C2—H2119.2
O1i—Cd—Ni140.2 (2)C10—C9—C8114.1 (10)
O1—Cd—Ni39.8 (2)C10—C9—H9A108.7
O3i—Cd—Ni106.67 (19)C8—C9—H9A108.7
O3—Cd—Ni73.33 (19)C10—C9—H9B108.7
O2—Cd—Nii139.47 (19)C8—C9—H9B108.7
O2i—Cd—Nii40.53 (19)H9A—C9—H9B107.6
O1i—Cd—Nii39.8 (2)C14—C15—C16120.1 (12)
O1—Cd—Nii140.2 (2)C14—C15—H15120
O3i—Cd—Nii73.33 (19)C16—C15—H15120
O3—Cd—Nii106.67 (19)N3—C21—H21A109.5
Ni—Cd—Nii180N3—C21—H21B109.5
O2—Ni—N1174.5 (4)H21A—C21—H21B109.5
O1—Ni—N2174.1 (3)N3—C21—H21C109.5
O4—Ni—O5173.3 (3)H21A—C21—H21C109.5
O1—Ni—Cd42.8 (2)H21B—C21—H21C109.5
O4—Ni—Cd82.2 (2)N3—C22—H22A109.5
O2—Ni—Cd42.7 (2)N3—C22—H22B109.5
N1—Ni—Cd133.7 (3)H22A—C22—H22B109.5
N2—Ni—Cd133.6 (3)N3—C22—H22C109.5
O5—Ni—Cd101.8 (2)H22A—C22—H22C109.5
C20—O5—Ni118.9 (7)H22B—C22—H22C109.5
C17—O2—Ni119.9 (7)C12—C13—C14118.8 (13)
C17—O2—Cd136.0 (7)C12—C13—H13120.6
C1—O1—Ni120.7 (7)C14—C13—H13120.6
C1—O1—Cd135.3 (7)C18—O4—Ni125.0 (7)
C10—N2—C11110.4 (9)C18—O3—Cd129.0 (7)
C10—N2—Ni115.6 (7)O3—C18—O4129.0 (10)
C11—N2—Ni110.1 (7)O3—C18—C19115.7 (10)
C10—N2—H2N106.7O4—C18—C19115.2 (10)
C11—N2—H2N106.7C15—C14—C13120.2 (11)
Ni—N2—H2N106.7C15—C14—H14119.9
C8—N1—C7111.3 (9)C13—C14—H14119.9
C8—N1—Ni114.6 (7)C2—C3—C4120.6 (17)
C7—N1—Ni109.8 (7)C2—C3—H3119.7
C8—N1—H1N106.9C4—C3—H3119.7
C7—N1—H1N106.9C5—C4—C3117.3 (15)
Ni—N1—H1N106.9C5—C4—H4121.3
C13—C12—C17121.3 (11)C3—C4—H4121.3
C13—C12—C11119.2 (11)N1—C7—C6114.1 (10)
C17—C12—C11119.5 (9)N1—C7—H7A108.7
N2—C11—C12112.1 (9)C6—C7—H7A108.7
N2—C11—H11A109.2N1—C7—H7B108.7
C12—C11—H11A109.2C6—C7—H7B108.7
N2—C11—H11B109.2H7A—C7—H7B107.6
C12—C11—H11B109.2C18—C19—H19A109.5
H11A—C11—H11B107.9C18—C19—H19B109.5
O1—C1—C2122.5 (11)H19A—C19—H19B109.5
O1—C1—C6120.4 (11)C18—C19—H19C109.5
C2—C1—C6117.1 (12)H19A—C19—H19C109.5
O2—C17—C16123.1 (10)H19B—C19—H19C109.5
O2—C17—C12119.7 (10)
O2—Cd—Ni—O1157.4 (4)N1—Ni—N2—C1041.5 (8)
O2i—Cd—Ni—O122.6 (4)O5—Ni—N2—C10128.5 (8)
O1i—Cd—Ni—O1180Cd—Ni—N2—C10131.5 (7)
O3i—Cd—Ni—O177.8 (4)O4—Ni—N2—C1173.7 (7)
O3—Cd—Ni—O1102.2 (4)O2—Ni—N2—C1116.2 (7)
O2—Cd—Ni—O498.3 (4)N1—Ni—N2—C11167.5 (7)
O2i—Cd—Ni—O481.7 (4)O5—Ni—N2—C11105.5 (7)
O1i—Cd—Ni—O475.7 (4)Cd—Ni—N2—C115.5 (8)
O1—Cd—Ni—O4104.3 (4)O1—Ni—N1—C8141.8 (7)
O3i—Cd—Ni—O4177.9 (3)O4—Ni—N1—C847.9 (8)
O3—Cd—Ni—O42.1 (3)N2—Ni—N1—C842.3 (8)
O2i—Cd—Ni—O2180O5—Ni—N1—C8125.5 (8)
O1i—Cd—Ni—O222.6 (4)Cd—Ni—N1—C8130.7 (7)
O1—Cd—Ni—O2157.4 (4)O1—Ni—N1—C715.7 (8)
O3i—Cd—Ni—O279.6 (4)O4—Ni—N1—C778.2 (8)
O3—Cd—Ni—O2100.4 (4)N2—Ni—N1—C7168.4 (8)
O2—Cd—Ni—N1173.9 (5)O5—Ni—N1—C7108.4 (8)
O2i—Cd—Ni—N16.1 (5)Cd—Ni—N1—C74.6 (10)
O1i—Cd—Ni—N1163.5 (5)C10—N2—C11—C12169.7 (9)
O1—Cd—Ni—N116.5 (5)Ni—N2—C11—C1261.4 (10)
O3i—Cd—Ni—N194.3 (4)C13—C12—C11—N2115.3 (11)
O3—Cd—Ni—N185.7 (4)C17—C12—C11—N266.0 (13)
O2—Cd—Ni—N215.8 (4)Ni—O1—C1—C2134.8 (10)
O2i—Cd—Ni—N2164.2 (4)Cd—O1—C1—C29.5 (16)
O1i—Cd—Ni—N26.8 (5)Ni—O1—C1—C646.8 (12)
O1—Cd—Ni—N2173.2 (5)Cd—O1—C1—C6168.9 (8)
O3i—Cd—Ni—N295.4 (4)Ni—O2—C17—C16135.0 (9)
O3—Cd—Ni—N284.6 (4)Cd—O2—C17—C167.2 (16)
O2—Cd—Ni—O576.2 (4)Ni—O2—C17—C1247.0 (12)
O2i—Cd—Ni—O5103.8 (4)Cd—O2—C17—C12170.7 (8)
O1i—Cd—Ni—O598.8 (4)C13—C12—C17—O2177.2 (10)
O1—Cd—Ni—O581.2 (4)C11—C12—C17—O24.2 (16)
O3i—Cd—Ni—O53.4 (3)C13—C12—C17—C164.8 (16)
O3—Cd—Ni—O5176.6 (3)C11—C12—C17—C16173.9 (10)
O1—Ni—O5—C2042.4 (9)O2—C17—C16—C15177.1 (11)
O2—Ni—O5—C2041.0 (8)C12—C17—C16—C154.9 (17)
N1—Ni—O5—C20134.4 (9)C7—N1—C8—C9174.4 (10)
N2—Ni—O5—C20133.1 (9)Ni—N1—C8—C960.2 (11)
Cd—Ni—O5—C200.2 (9)O1—C1—C6—C5175.0 (11)
O1—Ni—O2—C17139.4 (8)C2—C1—C6—C56.5 (17)
O4—Ni—O2—C17126.8 (7)O1—C1—C6—C73.1 (16)
N2—Ni—O2—C1736.8 (8)C2—C1—C6—C7175.3 (11)
O5—Ni—O2—C1746.5 (7)Ni—O5—C20—N3150.1 (10)
Cd—Ni—O2—C17154.6 (9)C22—N3—C20—O53 (2)
O1—Ni—O2—Cd15.2 (3)C21—N3—C20—O5176.7 (13)
O4—Ni—O2—Cd78.6 (3)C11—N2—C10—C9175.7 (9)
N2—Ni—O2—Cd168.6 (3)Ni—N2—C10—C958.4 (11)
O5—Ni—O2—Cd108.1 (3)C1—C6—C5—C44 (2)
O1i—Cd—O2—C1746.8 (10)C7—C6—C5—C4177.6 (14)
O1—Cd—O2—C17133.2 (10)O1—C1—C2—C3176.3 (11)
O3i—Cd—O2—C1739.1 (10)C6—C1—C2—C35.3 (18)
O3—Cd—O2—C17140.9 (10)N2—C10—C9—C869.7 (13)
Ni—Cd—O2—C17147.7 (11)N1—C8—C9—C1071.7 (13)
Nii—Cd—O2—C1732.3 (11)C17—C16—C15—C142.2 (19)
O1i—Cd—O2—Ni165.5 (3)C17—C12—C13—C142.1 (17)
O1—Cd—O2—Ni14.5 (3)C11—C12—C13—C14176.6 (11)
O3i—Cd—O2—Ni108.7 (3)O1—Ni—O4—C1844.8 (8)
O3—Cd—O2—Ni71.3 (3)O2—Ni—O4—C1838.6 (8)
Nii—Cd—O2—Ni180N1—Ni—O4—C18137.2 (9)
O4—Ni—O1—C1130.3 (8)N2—Ni—O4—C18130.6 (9)
O2—Ni—O1—C1140.3 (8)Cd—Ni—O4—C183.5 (8)
N1—Ni—O1—C136.3 (8)O2—Cd—O3—C1830.5 (9)
O5—Ni—O1—C151.1 (8)O2i—Cd—O3—C18149.5 (9)
Cd—Ni—O1—C1155.5 (9)O1i—Cd—O3—C18131.6 (9)
O4—Ni—O1—Cd74.2 (3)O1—Cd—O3—C1848.4 (9)
O2—Ni—O1—Cd15.2 (3)Ni—Cd—O3—C189.5 (8)
N1—Ni—O1—Cd168.1 (3)Nii—Cd—O3—C18170.5 (8)
O5—Ni—O1—Cd104.4 (3)Cd—O3—C18—O417.1 (17)
O2—Cd—O1—C1134.8 (9)Cd—O3—C18—C19160.6 (7)
O2i—Cd—O1—C145.2 (9)Ni—O4—C18—O312.9 (16)
O3i—Cd—O1—C139.7 (9)Ni—O4—C18—C19164.9 (7)
O3—Cd—O1—C1140.3 (9)C16—C15—C14—C131 (2)
Ni—Cd—O1—C1149.6 (10)C12—C13—C14—C150.8 (18)
Nii—Cd—O1—C130.4 (10)C1—C2—C3—C42 (2)
O2—Cd—O1—Ni14.8 (3)C6—C5—C4—C31 (2)
O2i—Cd—O1—Ni165.2 (3)C2—C3—C4—C51 (2)
O3i—Cd—O1—Ni109.9 (3)C8—N1—C7—C6170.3 (11)
O3—Cd—O1—Ni70.1 (3)Ni—N1—C7—C661.8 (12)
Nii—Cd—O1—Ni180C5—C6—C7—N1113.1 (14)
O4—Ni—N2—C1052.3 (8)C1—C6—C7—N164.9 (15)
O2—Ni—N2—C10142.1 (8)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.563.308 (16)138
C20—H20···O3i0.932.593.409 (14)147
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Ni2Cd(C17H16N2O2)2(C2H3O2)2(C3H7NO)2]
Mr1062.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.285 (3), 18.040 (5), 12.590 (3)
β (°) 92.12 (2)
V3)2334.4 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.4 × 0.1 × 0.1
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.854, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
3960, 3612, 1997
Rint0.076
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.239, 1.02
No. of reflections3612
No. of parameters287
H-atom treatmentH-atom parameters not refined
w = 1/[σ2(Fo2) + (0.1184P)2 + 12.1765P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.88, 1.51

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cd—O12.157 (7)Ni—O12.031 (8)
Cd—O22.151 (7)Ni—O22.060 (7)
Cd—O32.212 (7)Ni—O42.045 (7)
Ni—N12.094 (9)Ni—O52.180 (7)
Ni—N22.101 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.563.308 (16)138
C20—H20···O3i0.932.593.409 (14)147
Symmetry code: (i) x, y, z.
 

Acknowledgements

We are grateful to Hacettepe University Scientific Research Unit (grant No. 04 A602004) for financial support.

References

First citationAneetha, H., Pannerselvam, K., Liao, T. F., Lu, T. H. & Chung, C. S. (1999). J. Chem. Soc. Dalton Trans. pp. 2689–2694.  Web of Science CSD CrossRef Google Scholar
First citationAtakol, O., Tatar, L., Akay, M. A. & Ülkü, D. (1999). Anal. Sci. 15, 101–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarandika, M. G., Cortes, R., Lezama, L., Urtiaga, M. K., Ariortua, M. I. & Rojo, T. (1999). J. Chem. Soc. Dalton Trans. pp. 2971–2976.  Web of Science CSD CrossRef Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFukuhara, C., Tsuneyoshi, K., Matsumato, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3437–3479.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationReglinski, J., Taylor, M. K. & Kennedy, A. R. (2006). Inorg. Chem. Commun. 9, 736–739.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTatar, Y. L. & Atakol, O. (2002). Cryst. Res. Technol. 37, 1352–1359.  CSD CrossRef Google Scholar
First citationTatar Yıldırım, L., Atakol, O. & Kavak, G. (2007). Acta Cryst. E63, m2403–m2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTatar Yıldırım, L. & Ergun, Ü. (2007). Acta Cryst. E63, m2424–m2425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÜlkü, D., Tatar, L., Atakol, O. & Aksu, M. (2001). Acta Cryst. C57, 273–274.  CSD CrossRef IUCr Journals Google Scholar
First citationÜlkü, D., Tatar, L., Atakol, O. & Durmuş, S. (1999). Acta Cryst. C55, 1652–1654.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m291-m292
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds