metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(2-quinol­yl)methane­diol-κ2N,O](sulfato-κO)copper(II) dihydrate

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, and bChemistry Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: manuela@pollux.fis.uc.pt

(Received 19 December 2007; accepted 18 January 2008; online 23 January 2008)

In the title compound, [Cu(SO4)(C10H9NO2)2]·2H2O, the CuII ion is chelated by two (2-quinol­yl)methane­diol ligands and coordinated by a monodentate sulfate ligand in a distorted trigonal–bipyramidal environment, with O atoms occupying the equatorial sites and N atoms in the axial sites. The dihedral angle between the two essentially planar quinoline ring systems is 45.02 (9)°. In the crystal structure, an extensive O—H⋯O hydrogen-bonding network forms layers parallel to the ab plane.

Related literature

For related literature, see: Zurowska et al. (2007[Zurowska, B., Mrozinski, J. & Ciunik, Z. (2007). Polyhedron, 26, 3085-3091.]); Dobrzynska et al. (2005[Dobrzynska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945-1951.]); Kumar & Gandotra (1980[Kumar, N. & Gandotra, A. K. (1980). Transition Met. Chem. 5, 365-367.]); Catterick et al. (1974[Catterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). Chem. Commun. pp. 843-844.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C10H9NO2)2]·2H2O

  • Mr = 546.00

  • Triclinic, [P \overline 1]

  • a = 7.6065 (3) Å

  • b = 8.8747 (4) Å

  • c = 17.5035 (9) Å

  • α = 98.561 (3)°

  • β = 94.324 (3)°

  • γ = 111.305 (2)°

  • V = 1077.76 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 (2) K

  • 0.24 × 0.15 × 0.12 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.810, Tmax = 0.864

  • 18073 measured reflections

  • 5289 independent reflections

  • 3972 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.090

  • S = 1.00

  • 5289 reflections

  • 331 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O5 1.9589 (16)
Cu1—N1 1.9938 (19)
Cu1—N2 1.9969 (19)
Cu1—O3 2.0258 (17)
Cu1—O1 2.1080 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O6i 0.79 (3) 1.77 (3) 2.554 (2) 174 (4)
O3—H3A⋯O10 0.83 (3) 1.69 (3) 2.510 (3) 169 (3)
O4—H4A⋯O6ii 0.83 (3) 2.46 (4) 2.992 (3) 123 (3)
O4—H4A⋯O7ii 0.83 (3) 2.06 (4) 2.874 (3) 169 (5)
O9—H91⋯O2iii 0.86 (4) 2.00 (4) 2.810 (4) 157 (3)
O9—H92⋯O4 0.89 (4) 2.00 (4) 2.879 (5) 178 (6)
O10—H101⋯O9i 0.86 (4) 1.91 (4) 2.746 (4) 164 (4)
O10—H102⋯O8i 0.84 (3) 2.04 (3) 2.883 (3) 174 (4)
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Seeking new compounds with low dimensional elements (such as dimers or chains) that may exhibit interesting magnetic properties, we have obtained the title compound, [Cu(C10H9NO2)(SO4)].2H2O, Fig. 1. There are some examples in literature, where quinoline derivatives ligands were successfully used in the synthesis of compounds with magnetic interactions (Zurowska et al., 2007; Dobrzynska et al., 2005; Kumar & Gandotra, 1980; Catterick et al., 1974). In the title compound, the CuII ion is surrounded by 5 atoms, 3 oxygen atoms in equatorial positions and two nitrogen atoms in the axial positions delineating a distorted bipyramidal coordination geometry. In the equatorial plane, two of the oxygen atoms are supplied by the hydroxy groups of two symmetry independent quinoline derivatives. The remaining equatorial O atom belongs to a sulfato dinegative ion. The two quinoline derivatives are similar, with the chelating hydroxy groups approximmately sharing the ring plane [O1—C1—C2—N1 - 12.5 (3), O2—C1—C2—N1 109.7 (2)°, and O3—C11—C12—N2 - 1.9 (3), O4—C11—C12—N2 119.0 (2)°]. There is an extensive network of hydrogen bonds forming layers parallel to the ab plane (Fig.2 & Fig. 3). The two solvent water molecules are essential in the network formation since they exhaust their capacity of donating and accepting protons. Each pair of water molecules aggregates 3 metal complexes.

.

Related literature top

For related literature, see: Zurowska et al. (2007); Dobrzynska et al. (2005); Kumar & Gandotra (1980); Catterick et al. (1974).

Experimental top

Approximately 0.13 mmol of 2-quinolinecarboxaldehyde (Sigma, 97%) were dissolved in 2 ml of dichloromethane and then 0.13 mmol of copper sulfate were added to the solution. After one month, single crystals of suitable quality were grown from the solution.

Refinement top

All H-atoms could be located in a Fourier difference map. Aromatic H atoms were positioned geometrically and refined using a riding- model with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C). Hydroxy and water hydrogen atoms were refined with a distance restraint to their parent O atoms (0.82 and 0.85 Å, respectively), starting from the difference map coordinates and with Uiso(H) = 1.5Ueq(O). There is a short intermolecular contact (H3A ···H101 2.01 Å).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% level.
[Figure 2] Fig. 2. A portion of the H-bond network viewed along the c axis. The hydrohen bonds are depicted as dashed lines.
[Figure 3] Fig. 3. Packing of the title compound, viewed along the a axis. The hydrogen bonds are depicted as dashed lines.
Bis[(2-quinolyl)methanediol-κ2N,O](sulfato-κO)copper(II) dihydrate top
Crystal data top
[Cu(SO4)(C10H9NO2)2]·2H2OZ = 2
Mr = 546.00F(000) = 562
Triclinic, P1Dx = 1.682 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6065 (3) ÅCell parameters from 4898 reflections
b = 8.8747 (4) Åθ = 2.4–27.5°
c = 17.5035 (9) ŵ = 1.17 mm1
α = 98.561 (3)°T = 293 K
β = 94.324 (3)°Block, green
γ = 111.305 (2)°0.24 × 0.15 × 0.12 mm
V = 1077.76 (9) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
5289 independent reflections
Radiation source: fine-focus sealed tube3972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1010
Tmin = 0.810, Tmax = 0.864k = 1111
18073 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.5543P]
where P = (Fo2 + 2Fc2)/3
5289 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 0.36 e Å3
8 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(SO4)(C10H9NO2)2]·2H2Oγ = 111.305 (2)°
Mr = 546.00V = 1077.76 (9) Å3
Triclinic, P1Z = 2
a = 7.6065 (3) ÅMo Kα radiation
b = 8.8747 (4) ŵ = 1.17 mm1
c = 17.5035 (9) ÅT = 293 K
α = 98.561 (3)°0.24 × 0.15 × 0.12 mm
β = 94.324 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5289 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3972 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.864Rint = 0.037
18073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0388 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.36 e Å3
5289 reflectionsΔρmin = 0.34 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.34983 (4)0.15697 (4)0.247112 (17)0.02622 (9)
S10.62616 (8)0.03258 (7)0.26884 (3)0.02588 (14)
O10.0893 (2)0.0211 (3)0.26309 (11)0.0385 (4)
H1A0.017 (3)0.040 (4)0.2454 (19)0.058*
O20.1228 (3)0.2200 (3)0.32675 (13)0.0452 (5)
H2A0.233 (3)0.201 (4)0.315 (2)0.068*
O30.3080 (3)0.3702 (2)0.24886 (10)0.0349 (4)
H3A0.198 (3)0.362 (4)0.2561 (18)0.052*
O40.4924 (4)0.5501 (3)0.17828 (14)0.0576 (6)
H4A0.499 (6)0.631 (4)0.2102 (19)0.086*
O50.5547 (3)0.0768 (2)0.22997 (10)0.0365 (4)
O60.7384 (2)0.0907 (2)0.21500 (10)0.0350 (4)
O70.4641 (3)0.1762 (2)0.27989 (12)0.0427 (5)
O80.7444 (3)0.0593 (2)0.34206 (10)0.0378 (4)
N10.3830 (3)0.1802 (3)0.36291 (11)0.0264 (4)
N20.2914 (3)0.1435 (2)0.13256 (11)0.0262 (4)
C10.0981 (4)0.0705 (3)0.33518 (15)0.0336 (6)
H10.02200.08460.35580.040*
C20.2594 (3)0.0620 (3)0.39163 (14)0.0297 (5)
C30.2741 (4)0.0530 (4)0.47104 (16)0.0374 (6)
H30.18600.03360.48880.045*
C40.4189 (4)0.1726 (4)0.52174 (15)0.0389 (6)
H40.43060.16840.57460.047*
C50.5511 (4)0.3028 (3)0.49378 (14)0.0316 (6)
C60.5303 (3)0.3033 (3)0.41296 (14)0.0272 (5)
C70.6616 (4)0.4320 (3)0.38398 (15)0.0338 (6)
H70.65010.43270.33080.041*
C80.8053 (4)0.5555 (4)0.43358 (17)0.0399 (6)
H80.89110.64010.41380.048*
C90.8259 (4)0.5572 (4)0.51402 (17)0.0424 (7)
H90.92420.64280.54720.051*
C100.7021 (4)0.4336 (4)0.54333 (16)0.0399 (7)
H100.71680.43500.59670.048*
C110.3207 (4)0.4235 (3)0.17647 (15)0.0356 (6)
H110.21680.46090.16510.043*
C120.3067 (3)0.2843 (3)0.11182 (14)0.0292 (5)
C130.3066 (4)0.3061 (3)0.03416 (15)0.0380 (6)
H130.32090.40790.02190.046*
C140.2855 (4)0.1769 (4)0.02309 (15)0.0403 (7)
H140.28840.19050.07470.048*
C150.2594 (4)0.0225 (3)0.00399 (15)0.0333 (6)
C160.2611 (3)0.0077 (3)0.07554 (14)0.0275 (5)
C170.2298 (4)0.1460 (3)0.09590 (16)0.0365 (6)
H170.23200.15660.14800.044*
C180.1964 (4)0.2788 (4)0.03934 (18)0.0449 (7)
H180.17180.38090.05320.054*
C190.1977 (4)0.2669 (4)0.03936 (18)0.0472 (7)
H190.17770.35950.07690.057*
C200.2283 (4)0.1192 (4)0.06075 (16)0.0432 (7)
H200.22880.11130.11310.052*
O90.8632 (4)0.5358 (4)0.20715 (17)0.0759 (8)
H910.935 (6)0.628 (4)0.236 (2)0.114*
H920.750 (4)0.541 (6)0.197 (3)0.114*
O100.0100 (3)0.3450 (3)0.28886 (17)0.0614 (6)
H1010.053 (6)0.390 (5)0.256 (2)0.092*
H1020.088 (5)0.264 (4)0.304 (2)0.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03079 (17)0.03437 (18)0.01980 (15)0.01816 (14)0.00474 (12)0.00847 (12)
S10.0268 (3)0.0326 (3)0.0227 (3)0.0163 (3)0.0031 (2)0.0060 (2)
O10.0246 (9)0.0599 (13)0.0313 (10)0.0131 (9)0.0024 (8)0.0180 (9)
O20.0360 (11)0.0419 (11)0.0577 (13)0.0124 (9)0.0078 (10)0.0147 (10)
O30.0468 (11)0.0420 (11)0.0265 (9)0.0280 (10)0.0062 (8)0.0085 (8)
O40.0752 (16)0.0319 (12)0.0560 (15)0.0091 (12)0.0173 (13)0.0046 (10)
O50.0427 (10)0.0520 (12)0.0331 (10)0.0338 (9)0.0136 (8)0.0185 (9)
O60.0350 (10)0.0490 (11)0.0279 (9)0.0267 (9)0.0036 (8)0.0009 (8)
O70.0376 (10)0.0382 (11)0.0514 (12)0.0114 (9)0.0109 (9)0.0109 (9)
O80.0420 (10)0.0446 (11)0.0263 (10)0.0200 (9)0.0020 (8)0.0007 (8)
N10.0295 (10)0.0361 (12)0.0212 (10)0.0189 (9)0.0077 (8)0.0098 (9)
N20.0284 (10)0.0299 (11)0.0232 (10)0.0138 (9)0.0033 (8)0.0073 (9)
C10.0284 (13)0.0435 (16)0.0345 (14)0.0155 (12)0.0105 (11)0.0164 (12)
C20.0320 (13)0.0385 (14)0.0273 (13)0.0203 (12)0.0089 (11)0.0118 (11)
C30.0447 (16)0.0439 (16)0.0328 (15)0.0210 (13)0.0145 (13)0.0204 (13)
C40.0539 (17)0.0504 (17)0.0229 (13)0.0291 (15)0.0084 (12)0.0133 (13)
C50.0387 (14)0.0424 (15)0.0229 (12)0.0255 (13)0.0052 (11)0.0071 (11)
C60.0290 (12)0.0372 (14)0.0220 (12)0.0201 (11)0.0063 (10)0.0052 (11)
C70.0369 (14)0.0427 (15)0.0261 (13)0.0182 (12)0.0105 (11)0.0085 (12)
C80.0355 (14)0.0413 (16)0.0426 (16)0.0140 (13)0.0085 (13)0.0078 (13)
C90.0399 (16)0.0475 (17)0.0391 (16)0.0216 (14)0.0015 (13)0.0037 (14)
C100.0467 (16)0.0537 (18)0.0256 (14)0.0299 (15)0.0012 (12)0.0018 (13)
C110.0486 (16)0.0365 (15)0.0318 (14)0.0248 (13)0.0079 (12)0.0135 (12)
C120.0319 (13)0.0347 (14)0.0264 (13)0.0176 (11)0.0042 (10)0.0088 (11)
C130.0501 (16)0.0392 (15)0.0312 (14)0.0204 (13)0.0085 (12)0.0160 (12)
C140.0501 (17)0.0518 (18)0.0219 (13)0.0197 (14)0.0080 (12)0.0135 (13)
C150.0326 (13)0.0415 (15)0.0243 (13)0.0133 (12)0.0022 (10)0.0045 (11)
C160.0272 (12)0.0334 (13)0.0225 (12)0.0135 (11)0.0013 (10)0.0034 (10)
C170.0467 (16)0.0333 (14)0.0299 (14)0.0162 (13)0.0008 (12)0.0066 (12)
C180.0548 (18)0.0315 (15)0.0453 (18)0.0158 (14)0.0011 (14)0.0028 (13)
C190.0548 (19)0.0419 (17)0.0369 (16)0.0170 (15)0.0004 (14)0.0092 (14)
C200.0490 (17)0.0507 (18)0.0245 (14)0.0165 (15)0.0019 (12)0.0013 (13)
O90.080 (2)0.0642 (17)0.0698 (19)0.0223 (16)0.0045 (16)0.0083 (14)
O100.0448 (13)0.0588 (16)0.0801 (19)0.0174 (12)0.0190 (13)0.0126 (14)
Geometric parameters (Å, º) top
Cu1—O51.9589 (16)C6—C71.407 (3)
Cu1—N11.9938 (19)C7—C81.361 (4)
Cu1—N21.9969 (19)C7—H70.9300
Cu1—O32.0258 (17)C8—C91.402 (4)
Cu1—O12.1080 (19)C8—H80.9300
S1—O81.4486 (19)C9—C101.357 (4)
S1—O71.4664 (19)C9—H90.9300
S1—O61.4766 (17)C10—H100.9300
S1—O51.4914 (17)C11—C121.512 (4)
O1—C11.401 (3)C11—H110.9800
O1—H1A0.79 (2)C12—C131.401 (3)
O2—C11.394 (3)C13—C141.358 (4)
O2—H2A0.84 (2)C13—H130.9300
O3—C111.415 (3)C14—C151.407 (4)
O3—H3A0.83 (2)C14—H140.9300
O4—C111.373 (3)C15—C201.414 (4)
O4—H4A0.83 (2)C15—C161.417 (3)
N1—C21.322 (3)C16—C171.402 (3)
N1—C61.376 (3)C17—C181.353 (4)
N2—C121.320 (3)C17—H170.9300
N2—C161.381 (3)C18—C191.398 (4)
C1—C21.512 (4)C18—H180.9300
C1—H10.9800C19—C201.360 (4)
C2—C31.402 (3)C19—H190.9300
C3—C41.360 (4)C20—H200.9300
C3—H30.9300O9—H910.86 (2)
C4—C51.409 (4)O9—H920.89 (2)
C4—H40.9300O10—H1010.86 (2)
C5—C61.412 (3)O10—H1020.84 (2)
C5—C101.414 (4)
O5—Cu1—N196.19 (7)N1—C6—C5120.6 (2)
O5—Cu1—N290.66 (7)C7—C6—C5119.2 (2)
N1—Cu1—N2173.14 (8)C8—C7—C6120.2 (2)
O5—Cu1—O3137.56 (8)C8—C7—H7119.9
N1—Cu1—O394.29 (7)C6—C7—H7119.9
N2—Cu1—O380.56 (7)C7—C8—C9121.0 (3)
O5—Cu1—O1115.59 (8)C7—C8—H8119.5
N1—Cu1—O179.02 (8)C9—C8—H8119.5
N2—Cu1—O198.05 (8)C10—C9—C8119.9 (3)
O3—Cu1—O1106.76 (8)C10—C9—H9120.1
O8—S1—O7111.92 (12)C8—C9—H9120.1
O8—S1—O6110.54 (10)C9—C10—C5120.9 (3)
O7—S1—O6108.23 (11)C9—C10—H10119.6
O8—S1—O5109.74 (11)C5—C10—H10119.6
O7—S1—O5109.44 (11)O4—C11—O3110.7 (2)
O6—S1—O5106.82 (10)O4—C11—C12107.5 (2)
C1—O1—Cu1112.67 (15)O3—C11—C12110.4 (2)
C1—O1—H1A111 (2)O4—C11—H11109.4
Cu1—O1—H1A131 (2)O3—C11—H11109.4
C1—O2—H2A106 (3)C12—C11—H11109.4
C11—O3—Cu1113.40 (14)N2—C12—C13122.8 (2)
C11—O3—H3A101 (2)N2—C12—C11116.6 (2)
Cu1—O3—H3A113 (2)C13—C12—C11120.6 (2)
C11—O4—H4A110 (3)C14—C13—C12119.4 (2)
S1—O5—Cu1132.80 (11)C14—C13—H13120.3
C2—N1—C6119.1 (2)C12—C13—H13120.3
C2—N1—Cu1116.29 (17)C13—C14—C15119.7 (2)
C6—N1—Cu1124.51 (16)C13—C14—H14120.1
C12—N2—C16119.3 (2)C15—C14—H14120.1
C12—N2—Cu1114.79 (16)C14—C15—C20122.9 (2)
C16—N2—Cu1125.41 (15)C14—C15—C16118.5 (2)
O2—C1—O1110.8 (2)C20—C15—C16118.6 (2)
O2—C1—C2110.6 (2)N2—C16—C17120.2 (2)
O1—C1—C2109.4 (2)N2—C16—C15120.2 (2)
O2—C1—H1108.7C17—C16—C15119.6 (2)
O1—C1—H1108.7C18—C17—C16119.6 (3)
C2—C1—H1108.7C18—C17—H17120.2
N1—C2—C3123.0 (2)C16—C17—H17120.2
N1—C2—C1117.7 (2)C17—C18—C19121.9 (3)
C3—C2—C1119.2 (2)C17—C18—H18119.1
C4—C3—C2119.2 (3)C19—C18—H18119.1
C4—C3—H3120.4C20—C19—C18119.7 (3)
C2—C3—H3120.4C20—C19—H19120.1
C3—C4—C5119.6 (2)C18—C19—H19120.1
C3—C4—H4120.2C19—C20—C15120.5 (3)
C5—C4—H4120.2C19—C20—H20119.7
C4—C5—C6118.5 (2)C15—C20—H20119.7
C4—C5—C10122.7 (2)H91—O9—H92107 (4)
C6—C5—C10118.8 (2)H101—O10—H102118 (4)
N1—C6—C7120.1 (2)
O5—Cu1—O1—C171.43 (18)C2—N1—C6—C50.8 (3)
N1—Cu1—O1—C120.23 (17)Cu1—N1—C6—C5174.93 (16)
N2—Cu1—O1—C1166.06 (17)C4—C5—C6—N10.7 (3)
O3—Cu1—O1—C1111.44 (17)C10—C5—C6—N1178.7 (2)
O5—Cu1—O3—C1162.2 (2)C4—C5—C6—C7179.7 (2)
N1—Cu1—O3—C11166.21 (18)C10—C5—C6—C70.9 (3)
N2—Cu1—O3—C1118.35 (18)N1—C6—C7—C8178.8 (2)
O1—Cu1—O3—C11113.98 (18)C5—C6—C7—C80.8 (3)
O8—S1—O5—Cu178.16 (18)C6—C7—C8—C90.1 (4)
O7—S1—O5—Cu145.01 (19)C7—C8—C9—C100.5 (4)
O6—S1—O5—Cu1161.97 (15)C8—C9—C10—C50.4 (4)
N1—Cu1—O5—S135.82 (18)C4—C5—C10—C9179.7 (2)
N2—Cu1—O5—S1144.19 (17)C6—C5—C10—C90.4 (4)
O3—Cu1—O5—S1139.14 (15)Cu1—O3—C11—O4103.0 (2)
O1—Cu1—O5—S144.94 (19)Cu1—O3—C11—C1216.0 (3)
O5—Cu1—N1—C2101.70 (17)C16—N2—C12—C134.5 (4)
O3—Cu1—N1—C2119.48 (17)Cu1—N2—C12—C13167.7 (2)
O1—Cu1—N1—C213.22 (16)C16—N2—C12—C11174.3 (2)
O5—Cu1—N1—C674.10 (18)Cu1—N2—C12—C1113.5 (3)
O3—Cu1—N1—C664.71 (18)O4—C11—C12—N2119.0 (2)
O1—Cu1—N1—C6170.97 (18)O3—C11—C12—N21.9 (3)
O5—Cu1—N2—C12120.78 (17)O4—C11—C12—C1362.2 (3)
O3—Cu1—N2—C1217.49 (17)O3—C11—C12—C13176.9 (2)
O1—Cu1—N2—C12123.25 (17)N2—C12—C13—C141.6 (4)
O5—Cu1—N2—C1650.87 (19)C11—C12—C13—C14177.1 (3)
O3—Cu1—N2—C16170.9 (2)C12—C13—C14—C151.6 (4)
O1—Cu1—N2—C1665.10 (19)C13—C14—C15—C20177.2 (3)
Cu1—O1—C1—O299.7 (2)C13—C14—C15—C161.7 (4)
Cu1—O1—C1—C222.5 (2)C12—N2—C16—C17175.1 (2)
C6—N1—C2—C31.9 (3)Cu1—N2—C16—C1713.6 (3)
Cu1—N1—C2—C3174.13 (18)C12—N2—C16—C154.2 (3)
C6—N1—C2—C1179.38 (19)Cu1—N2—C16—C15167.07 (17)
Cu1—N1—C2—C14.6 (3)C14—C15—C16—N21.2 (4)
O2—C1—C2—N1109.7 (2)C20—C15—C16—N2179.9 (2)
O1—C1—C2—N112.5 (3)C14—C15—C16—C17178.1 (2)
O2—C1—C2—C369.0 (3)C20—C15—C16—C170.8 (4)
O1—C1—C2—C3168.7 (2)N2—C16—C17—C18178.6 (2)
N1—C2—C3—C41.6 (4)C15—C16—C17—C180.7 (4)
C1—C2—C3—C4179.8 (2)C16—C17—C18—C192.0 (5)
C2—C3—C4—C50.0 (4)C17—C18—C19—C201.8 (5)
C3—C4—C5—C61.1 (4)C18—C19—C20—C150.2 (5)
C3—C4—C5—C10178.3 (2)C14—C15—C20—C19177.9 (3)
C2—N1—C6—C7178.8 (2)C16—C15—C20—C191.0 (4)
Cu1—N1—C6—C75.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O6i0.79 (3)1.77 (3)2.554 (2)174 (4)
O3—H3A···O100.83 (3)1.69 (3)2.510 (3)169 (3)
O4—H4A···O6ii0.83 (3)2.46 (4)2.992 (3)123 (3)
O4—H4A···O7ii0.83 (3)2.06 (4)2.874 (3)169 (5)
O9—H91···O2iii0.86 (4)2.00 (4)2.810 (4)157 (3)
O9—H92···O40.89 (4)2.00 (4)2.879 (5)178 (6)
O10—H101···O9i0.86 (4)1.91 (4)2.746 (4)164 (4)
O10—H102···O8i0.84 (3)2.04 (3)2.883 (3)174 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(SO4)(C10H9NO2)2]·2H2O
Mr546.00
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6065 (3), 8.8747 (4), 17.5035 (9)
α, β, γ (°)98.561 (3), 94.324 (3), 111.305 (2)
V3)1077.76 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.24 × 0.15 × 0.12
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.810, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
18073, 5289, 3972
Rint0.037
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.00
No. of reflections5289
No. of parameters331
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected bond lengths (Å) top
Cu1—O51.9589 (16)Cu1—O32.0258 (17)
Cu1—N11.9938 (19)Cu1—O12.1080 (19)
Cu1—N21.9969 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O6i0.79 (3)1.77 (3)2.554 (2)174 (4)
O3—H3A···O100.83 (3)1.69 (3)2.510 (3)169 (3)
O4—H4A···O6ii0.83 (3)2.46 (4)2.992 (3)123 (3)
O4—H4A···O7ii0.83 (3)2.06 (4)2.874 (3)169 (5)
O9—H91···O2iii0.86 (4)2.00 (4)2.810 (4)157 (3)
O9—H92···O40.89 (4)2.00 (4)2.879 (5)178 (6)
O10—H101···O9i0.86 (4)1.91 (4)2.746 (4)164 (4)
O10—H102···O8i0.84 (3)2.04 (3)2.883 (3)174 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/57876/2004.

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). Chem. Commun. pp. 843–844.  Google Scholar
First citationDobrzynska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945–1951.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKumar, N. & Gandotra, A. K. (1980). Transition Met. Chem. 5, 365–367.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZurowska, B., Mrozinski, J. & Ciunik, Z. (2007). Polyhedron, 26, 3085–3091.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds