metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m401-m402

Bis(μ-3-hy­droxy­benzoato)-κ2O1:O3;κ2O3:O1-bis­­[bis­­(1H-benzimidazole-κN3)(3-hy­droxy­benzoato-κO)nickel(II)] bis­­(1H-benzimidazole-κN3)bis­­(3-hy­dr­oxy­benzoato-κO1)nickel(II) hexa­hydrate

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 17 January 2008; accepted 21 January 2008; online 23 January 2008)

The title compound, [Ni2(C7H5O3)4(C7H6N2)4][Ni(C7H5O3)2(C7H6N2)2]·6H2O, is a mononuclear/dinuclear nickel(II) cocrystal, the two mol­ecular species inter­acting through hydrogen bonds that involve the uncoordinated water mol­ecules. In the mononuclear species, the NiII ion, located on an inversion center, is coordinated by two 1H-benzimidazole (bzim) ligands and two 3-hydroxy­benzoate (hba) anions in a square-planar geometry. In the centrosymmetric dinuclear species, the NiII ion is coordinated by two bzim ligands and three hba anions in a square-pyramidal geometry; of the two independent hba anions, one bridges two NiII ions with both carboxylate and hydroxyl groups whereas the other coordin­ates in a unidentate manner to the NiII ion. The apical Ni—Ohydrox­yl bond is 0.39 Å longer than the basal Ni—Ocarbox­yl bonds. The face-to-face separation of 3.326 (9) Å indicates the existence of ππ stacking between parallel bzim ligands of adjacent dinuclear entities. Extensive N—H⋯O and O—H⋯O hydrogen bonds help to stabilize the crystal structure.

Related literature

For general background, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]); Wu et al. (2003[Wu, Z.-Y., Xu, D.-J., Luo, Y., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, m307-m309.]); Luo et al. (2004[Luo, Y., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2004). J. Coord. Chem. 57, 1125-1130.]). For a related structure, see: Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C7H5O3)4(C7H6N2)4][Ni(C7H5O3)2(C7H6N2)2]·6H2O

  • Mr = 1815.65

  • Triclinic, [P \overline 1]

  • a = 9.9926 (12) Å

  • b = 12.9504 (15) Å

  • c = 17.069 (2) Å

  • α = 100.05 (2)°

  • β = 104.88 (3)°

  • γ = 101.75 (2)°

  • V = 2029.1 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 291 (2) K

  • 0.36 × 0.30 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.728, Tmax = 0.840

  • 17583 measured reflections

  • 7894 independent reflections

  • 5818 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.151

  • S = 1.10

  • 7894 reflections

  • 556 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 1.914 (2)
Ni1—N13 1.994 (3)
Ni2—O4 1.960 (2)
Ni2—O7 1.961 (2)
Ni2—N23 1.980 (3)
Ni2—N33 1.983 (3)
Ni2—O9i 2.349 (3)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O3W 0.86 2.07 2.906 (6) 163
N21—H21⋯O1W 0.86 2.02 2.867 (5) 168
N31—H31⋯O2W 0.86 2.02 2.866 (5) 167
O3—H3O⋯O8 0.86 1.75 2.609 (4) 174
O6—H6O⋯O2ii 0.99 1.80 2.783 (5) 175
O9—H9O⋯O5i 0.95 1.68 2.610 (4) 166
O1W—H1A⋯O3iii 0.96 2.06 2.936 (4) 152
O1W—H1B⋯O8iv 0.91 2.06 2.907 (4) 156
O2W—H2A⋯O5v 0.92 1.88 2.780 (5) 165
O3W—H3B⋯O2ii 0.85 2.00 2.836 (5) 168
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z; (v) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The π-π stacking is an important non-covalent interaction correlated with electron transfer in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigation on the nature of π-π stacking in metal complexes (Wu et al., 2003; Luo et al., 2004), we have recently prepared the title NiII complex with benzimidazole (bzim) ligands and determined its crystal structure.

The crystal of the title compound consists of monomeric NiII complexes, dimeric NiII complexes and lattice water molecules (Fig. 1). In the monomeric complex, the NiII ion is located on an inversion center and coordinated by two bzim ligands and two 3-hydroxybenzoate (hba) anions with a square-planar geometry (Table 1).

In the dimeric complex, each NiII ion assumes a square-pyramidal geometry formed by two bzim ligands and three hba anions, among which a pair of hba anion bridges the neighboring two NiII ions to form the centro-symmetric dimeric complex. The Ni2 ion is 0.0721 (14) Å deviated from the O4/O7/N23/N33 coordination plane towards to the O9ii atom [symmetry code: (ii) 1 - x,-y,1 - z]. The Ni2—O9 bond in the axial direction is longer than Ni2—O4 and Ni2—O7 bonds by about 0.39 Å (Table 1), similar to that found in a complex with 2-hydroxybenzoate ligands (Li et al., 2005).

The partially overlapped arrangement is observed between parallel bzim ligands of adjacent dimeric complexes (Fig. 2). The face-to-face separation of 3.326 (9) Å between N23-bzim and N23iii-bzim planes [symmetry code: (iii) 1 - x,1 - y,1 - z] indicates the existence of π-π stacking between them. The extensive N—H···O and O—H···O hydrogen bonding network helps to stabilize the crystal structure.

Related literature top

For general background, see: Deisenhofer & Michel (1989); Wu et al. (2003); Luo et al. (2004). For a related structure, see: Li et al. (2005).

Experimental top

An ethanol solution (5 ml) of bzim (0.24 g, 2 mmol) was mixed with an aqueous solution (10 ml) containing sodium 3-hydroxybenzoate (0.32 g, 2 mmol) and Ni(NO3)2.6H2O (0.29 g, 1 mmol). The mixture was refluxed for 6 h and filtered after cooling to room temperature. The single crystals of the title compound were obtained from the filtrate after 6 d.

Refinement top

H atoms bonded to O atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate the hydrogen bonding [symmetry codes: (i) 2 - x,1 - y,-z; (ii) 1 - x,-y,1 - z].
[Figure 2] Fig. 2. A diagram showing π-π stacking between bzim ligands [symmetry code: (iii) 1 - x,1 - y,1 - z].
Bis(µ-3-hydroxybenzoato)- κ2O1:O3;κ2O3:O1-bis[bis(1H- benzimidazole-κN3)(3-hydroxybenzoato-κO)nickel(II)] bis(1H-benzimidazole-κN3)bis(3-hydroxybenzoato- κO1)nickel(II) hexahydrate top
Crystal data top
[Ni2(C7H5O3)4(C7H6N2)4][Ni(C7H5O3)2(C7H6N2)2]·6H2OZ = 1
Mr = 1815.65F(000) = 942
Triclinic, P1Dx = 1.486 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9926 (12) ÅCell parameters from 8706 reflections
b = 12.9504 (15) Åθ = 3.2–25.5°
c = 17.069 (2) ŵ = 0.78 mm1
α = 100.05 (2)°T = 291 K
β = 104.88 (3)°Prism, green
γ = 101.75 (2)°0.36 × 0.30 × 0.22 mm
V = 2029.1 (6) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
7894 independent reflections
Radiation source: fine-focus sealed tube5818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.00 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 1210
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.728, Tmax = 0.840l = 2020
17583 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.2523P]
where P = (Fo2 + 2Fc2)/3
7894 reflections(Δ/σ)max = 0.001
556 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ni2(C7H5O3)4(C7H6N2)4][Ni(C7H5O3)2(C7H6N2)2]·6H2Oγ = 101.75 (2)°
Mr = 1815.65V = 2029.1 (6) Å3
Triclinic, P1Z = 1
a = 9.9926 (12) ÅMo Kα radiation
b = 12.9504 (15) ŵ = 0.78 mm1
c = 17.069 (2) ÅT = 291 K
α = 100.05 (2)°0.36 × 0.30 × 0.22 mm
β = 104.88 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
7894 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5818 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.840Rint = 0.043
17583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.10Δρmax = 0.77 e Å3
7894 reflectionsΔρmin = 0.49 e Å3
556 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.00000.03773 (18)
Ni20.56466 (4)0.17869 (3)0.34773 (2)0.03137 (14)
N110.5837 (4)0.3399 (3)0.1408 (2)0.0653 (10)
H110.50460.34130.17500.078*
N130.8089 (3)0.3954 (3)0.05883 (17)0.0467 (8)
N210.3270 (4)0.3388 (3)0.4636 (2)0.0572 (9)
H210.27380.33970.49600.069*
N230.4653 (3)0.2811 (2)0.39320 (17)0.0412 (7)
N310.8151 (4)0.0406 (3)0.2271 (2)0.0600 (9)
H310.85580.03700.18830.072*
N330.6783 (3)0.0884 (2)0.30243 (18)0.0417 (7)
O11.0141 (3)0.4464 (2)0.09861 (15)0.0502 (7)
O20.8657 (3)0.5328 (2)0.14279 (15)0.0513 (7)
O30.8177 (3)0.3899 (2)0.39189 (16)0.0544 (7)
H3O0.82980.35900.43280.082*
O40.5044 (3)0.2087 (2)0.23718 (13)0.0414 (6)
O50.2715 (3)0.1264 (2)0.18550 (16)0.0552 (7)
O60.1196 (3)0.3096 (3)0.0511 (2)0.0861 (12)
H6O0.12980.36440.08410.129*
O70.6324 (3)0.1567 (2)0.46053 (14)0.0464 (6)
O80.8407 (3)0.2847 (2)0.50983 (16)0.0505 (7)
O90.6492 (3)0.0408 (2)0.68827 (16)0.0584 (8)
H9O0.68820.06090.73820.088*
O1W0.1500 (3)0.3747 (2)0.5685 (2)0.0683 (8)
H1A0.13550.44440.56410.102*
H1B0.05640.35500.56630.102*
O2W0.9835 (4)0.0153 (4)0.1156 (2)0.0996 (12)
H2A1.08170.04340.13170.149*
H2B0.97340.04460.08000.149*
O3W0.3024 (4)0.3628 (4)0.2241 (3)0.1175 (15)
H3A0.24050.33510.27130.176*
H3B0.26190.39580.19320.176*
C120.7043 (4)0.4195 (4)0.1113 (2)0.0549 (10)
H120.71400.48570.12630.066*
C140.8112 (5)0.2222 (3)0.0099 (3)0.0597 (11)
H140.90560.24390.02460.072*
C150.7215 (7)0.1191 (4)0.0204 (3)0.0834 (16)
H150.75720.07090.00830.100*
C160.5819 (6)0.0870 (5)0.0721 (4)0.0939 (19)
H160.52670.01750.07760.113*
C170.5222 (6)0.1540 (5)0.1155 (3)0.0863 (17)
H170.42750.13230.14950.104*
C180.6092 (4)0.2549 (4)0.1061 (3)0.0593 (11)
C190.7499 (4)0.2898 (3)0.0543 (2)0.0510 (10)
C220.3921 (4)0.2620 (3)0.4456 (2)0.0506 (9)
H220.38650.20100.46770.061*
C240.5023 (4)0.4399 (3)0.3268 (2)0.0511 (9)
H240.56060.41640.29680.061*
C250.4651 (6)0.5373 (4)0.3246 (3)0.0720 (13)
H250.50030.58070.29250.086*
C260.3773 (6)0.5716 (4)0.3687 (4)0.0809 (15)
H260.35480.63710.36470.097*
C270.3222 (5)0.5128 (4)0.4182 (3)0.0701 (13)
H270.26320.53630.44770.084*
C280.3603 (4)0.4164 (3)0.4210 (2)0.0493 (9)
C290.4475 (4)0.3799 (3)0.3763 (2)0.0407 (8)
C320.7295 (4)0.1028 (3)0.2400 (2)0.0457 (8)
H320.70750.15200.20830.055*
C340.7195 (7)0.0391 (5)0.3972 (4)0.103 (2)
H340.65490.02450.42560.124*
C350.8018 (8)0.1100 (6)0.4176 (6)0.142 (3)
H350.79350.14270.46110.171*
C360.8963 (8)0.1337 (6)0.3744 (6)0.146 (4)
H360.95260.17980.39080.175*
C370.9083 (7)0.0899 (5)0.3076 (5)0.116 (3)
H370.96830.10790.27690.140*
C380.8265 (5)0.0178 (4)0.2884 (4)0.0749 (15)
C390.7371 (5)0.0096 (4)0.3329 (3)0.0616 (12)
C410.9422 (4)0.4681 (3)0.1481 (2)0.0423 (8)
C420.9567 (4)0.4094 (3)0.21743 (19)0.0380 (8)
C430.8825 (4)0.4256 (3)0.2744 (2)0.0395 (8)
H430.82380.47290.27030.047*
C440.8957 (4)0.3709 (3)0.3382 (2)0.0391 (8)
C450.9817 (4)0.3006 (3)0.3451 (2)0.0399 (8)
H450.99010.26420.38790.048*
C461.0561 (4)0.2843 (3)0.2872 (2)0.0464 (9)
H461.11410.23650.29130.056*
C471.0445 (4)0.3386 (3)0.2237 (2)0.0436 (8)
H471.09510.32790.18550.052*
C510.3826 (4)0.1894 (3)0.1838 (2)0.0374 (8)
C520.3786 (3)0.2490 (3)0.11543 (19)0.0357 (7)
C530.2499 (4)0.2489 (3)0.0608 (2)0.0479 (9)
H530.16400.20930.06450.058*
C540.2486 (4)0.3080 (3)0.0001 (2)0.0494 (10)
C550.3752 (4)0.3648 (3)0.0060 (2)0.0529 (10)
H550.37460.40290.04750.064*
C560.5029 (4)0.3659 (3)0.0484 (2)0.0522 (10)
H560.58860.40560.04430.063*
C570.5053 (4)0.3083 (3)0.1096 (2)0.0455 (9)
H570.59230.30960.14670.055*
C610.7452 (4)0.2114 (3)0.5177 (2)0.0374 (8)
C620.7627 (3)0.1868 (3)0.6019 (2)0.0342 (7)
C630.6919 (4)0.0856 (3)0.6079 (2)0.0391 (8)
H630.63240.03390.56010.047*
C640.7111 (4)0.0623 (3)0.6861 (2)0.0399 (8)
C650.7907 (4)0.1410 (3)0.7573 (2)0.0434 (8)
H650.79840.12630.80950.052*
C660.8591 (4)0.2421 (3)0.7513 (2)0.0468 (9)
H660.91210.29550.79950.056*
C670.8492 (4)0.2641 (3)0.6740 (2)0.0405 (8)
H670.90030.33060.67020.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0354 (3)0.0542 (4)0.0231 (3)0.0028 (3)0.0126 (2)0.0128 (3)
Ni20.0360 (2)0.0384 (2)0.0247 (2)0.01420 (18)0.00910 (17)0.01509 (18)
N110.048 (2)0.087 (3)0.0465 (19)0.0023 (19)0.0037 (16)0.0199 (19)
N130.0425 (17)0.062 (2)0.0317 (15)0.0035 (15)0.0123 (13)0.0121 (15)
N210.048 (2)0.074 (2)0.0505 (19)0.0172 (18)0.0222 (16)0.0049 (18)
N230.0461 (17)0.0462 (17)0.0391 (15)0.0189 (14)0.0174 (13)0.0158 (14)
N310.055 (2)0.060 (2)0.078 (2)0.0166 (17)0.0405 (19)0.018 (2)
N330.0388 (16)0.0455 (17)0.0457 (16)0.0165 (13)0.0135 (14)0.0159 (14)
O10.0484 (15)0.0724 (18)0.0347 (12)0.0080 (13)0.0205 (12)0.0223 (13)
O20.0550 (16)0.0641 (17)0.0412 (13)0.0153 (14)0.0145 (12)0.0296 (13)
O30.0700 (18)0.0728 (19)0.0500 (15)0.0362 (15)0.0388 (14)0.0387 (15)
O40.0441 (14)0.0541 (15)0.0317 (11)0.0168 (11)0.0113 (11)0.0206 (11)
O50.0471 (15)0.0693 (18)0.0507 (15)0.0053 (13)0.0101 (12)0.0373 (14)
O60.0464 (17)0.154 (3)0.075 (2)0.0245 (19)0.0118 (16)0.082 (2)
O70.0498 (15)0.0560 (16)0.0345 (12)0.0127 (12)0.0074 (12)0.0226 (12)
O80.0555 (16)0.0570 (16)0.0480 (14)0.0102 (13)0.0212 (13)0.0320 (13)
O90.0612 (17)0.0551 (17)0.0469 (15)0.0095 (13)0.0011 (13)0.0334 (14)
O1W0.0643 (19)0.0645 (19)0.086 (2)0.0204 (15)0.0396 (17)0.0140 (17)
O2W0.057 (2)0.135 (4)0.092 (3)0.016 (2)0.023 (2)0.000 (2)
O3W0.086 (3)0.174 (5)0.090 (3)0.054 (3)0.011 (2)0.027 (3)
C120.048 (2)0.073 (3)0.0360 (19)0.003 (2)0.0079 (17)0.017 (2)
C140.069 (3)0.057 (3)0.056 (2)0.013 (2)0.027 (2)0.015 (2)
C150.114 (5)0.068 (3)0.078 (3)0.021 (3)0.042 (3)0.029 (3)
C160.086 (4)0.075 (4)0.088 (4)0.027 (3)0.015 (3)0.009 (3)
C170.077 (4)0.087 (4)0.069 (3)0.019 (3)0.014 (3)0.011 (3)
C180.049 (2)0.069 (3)0.048 (2)0.005 (2)0.0139 (19)0.006 (2)
C190.056 (2)0.055 (2)0.042 (2)0.0028 (19)0.0238 (18)0.0131 (19)
C220.053 (2)0.062 (3)0.042 (2)0.016 (2)0.0216 (18)0.0132 (19)
C240.054 (2)0.050 (2)0.050 (2)0.0159 (18)0.0106 (19)0.0198 (19)
C250.079 (3)0.057 (3)0.079 (3)0.024 (2)0.006 (3)0.031 (3)
C260.075 (3)0.056 (3)0.101 (4)0.037 (3)0.003 (3)0.004 (3)
C270.056 (3)0.062 (3)0.083 (3)0.026 (2)0.012 (2)0.006 (3)
C280.036 (2)0.053 (2)0.047 (2)0.0132 (17)0.0039 (17)0.0057 (18)
C290.0387 (19)0.0411 (19)0.0385 (18)0.0133 (15)0.0055 (15)0.0053 (16)
C320.043 (2)0.047 (2)0.045 (2)0.0112 (17)0.0123 (17)0.0086 (17)
C340.127 (5)0.109 (5)0.155 (6)0.087 (4)0.099 (5)0.093 (5)
C350.162 (7)0.153 (7)0.230 (9)0.121 (6)0.134 (7)0.145 (7)
C360.140 (6)0.141 (6)0.267 (10)0.106 (5)0.136 (7)0.139 (7)
C370.115 (5)0.110 (5)0.206 (8)0.079 (4)0.116 (5)0.090 (5)
C380.063 (3)0.067 (3)0.125 (4)0.034 (2)0.054 (3)0.044 (3)
C390.058 (3)0.062 (3)0.094 (3)0.034 (2)0.044 (3)0.041 (3)
C410.0377 (19)0.052 (2)0.0285 (16)0.0037 (16)0.0040 (15)0.0133 (16)
C420.0417 (19)0.0433 (19)0.0261 (15)0.0002 (15)0.0109 (14)0.0125 (15)
C430.045 (2)0.046 (2)0.0326 (17)0.0125 (16)0.0151 (15)0.0185 (16)
C440.0402 (19)0.047 (2)0.0324 (17)0.0070 (16)0.0135 (15)0.0163 (16)
C450.044 (2)0.0407 (19)0.0369 (17)0.0079 (15)0.0117 (15)0.0177 (16)
C460.046 (2)0.048 (2)0.047 (2)0.0162 (17)0.0143 (17)0.0150 (18)
C470.043 (2)0.055 (2)0.0328 (17)0.0098 (17)0.0157 (16)0.0096 (17)
C510.042 (2)0.044 (2)0.0322 (16)0.0172 (16)0.0134 (15)0.0152 (15)
C520.0392 (18)0.0443 (19)0.0274 (15)0.0121 (15)0.0122 (14)0.0140 (15)
C530.043 (2)0.069 (3)0.0393 (19)0.0121 (18)0.0160 (16)0.0290 (19)
C540.042 (2)0.075 (3)0.0387 (19)0.0176 (19)0.0114 (16)0.032 (2)
C550.058 (2)0.070 (3)0.046 (2)0.020 (2)0.0233 (19)0.038 (2)
C560.046 (2)0.064 (3)0.048 (2)0.0034 (18)0.0153 (18)0.030 (2)
C570.041 (2)0.059 (2)0.0414 (19)0.0148 (17)0.0109 (16)0.0235 (18)
C610.0410 (19)0.046 (2)0.0369 (18)0.0182 (16)0.0167 (16)0.0230 (16)
C620.0337 (17)0.0386 (18)0.0365 (17)0.0126 (14)0.0123 (14)0.0191 (15)
C630.0396 (19)0.0419 (19)0.0280 (16)0.0005 (15)0.0010 (14)0.0141 (15)
C640.0353 (18)0.048 (2)0.0390 (18)0.0066 (15)0.0094 (15)0.0242 (17)
C650.053 (2)0.052 (2)0.0296 (16)0.0156 (18)0.0120 (16)0.0180 (17)
C660.057 (2)0.045 (2)0.0319 (17)0.0113 (18)0.0063 (17)0.0070 (16)
C670.042 (2)0.0381 (19)0.0420 (19)0.0092 (15)0.0109 (16)0.0163 (16)
Geometric parameters (Å, º) top
Ni1—O1i1.914 (2)C24—C291.382 (5)
Ni1—O11.914 (2)C24—C251.390 (6)
Ni1—N13i1.994 (3)C24—H240.9300
Ni1—N131.994 (3)C25—C261.384 (7)
Ni2—O41.960 (2)C25—H250.9300
Ni2—O71.961 (2)C26—C271.374 (7)
Ni2—N231.980 (3)C26—H260.9300
Ni2—N331.983 (3)C27—C281.382 (6)
Ni2—O9ii2.349 (3)C27—H270.9300
N11—C121.330 (5)C28—C291.396 (5)
N11—C181.375 (6)C32—H320.9300
N11—H110.8600C34—C351.383 (7)
N13—C121.320 (5)C34—C391.388 (6)
N13—C191.398 (5)C34—H340.9300
N21—C221.329 (5)C35—C361.388 (9)
N21—C281.376 (5)C35—H350.9300
N21—H210.8600C36—C371.379 (8)
N23—C221.318 (4)C36—H360.9300
N23—C291.395 (4)C37—C381.388 (7)
N31—C321.321 (5)C37—H370.9300
N31—C381.390 (6)C38—C391.373 (6)
N31—H310.8600C41—C421.507 (4)
N33—C321.320 (4)C42—C431.379 (5)
N33—C391.389 (5)C42—C471.391 (5)
O1—C411.273 (4)C43—C441.392 (4)
O2—C411.244 (4)C43—H430.9300
O3—C441.369 (4)C44—C451.373 (5)
O3—H3O0.8583C45—C461.394 (5)
O4—C511.265 (4)C45—H450.9300
O5—C511.247 (4)C46—C471.385 (5)
O6—C541.365 (4)C46—H460.9300
O6—H6O0.9838C47—H470.9300
O7—C611.262 (4)C51—C521.504 (4)
O8—C611.254 (4)C52—C571.378 (5)
O9—C641.364 (4)C52—C531.381 (5)
O9—H9O0.9450C53—C541.390 (4)
O1W—H1A0.9556C53—H530.9300
O1W—H1B0.9067C54—C551.367 (5)
O2W—H2A0.9226C55—C561.368 (5)
O2W—H2B0.8684C55—H550.9300
O3W—H3A0.8443C56—C571.382 (4)
O3W—H3B0.8519C56—H560.9300
C12—H120.9300C57—H570.9300
C14—C191.388 (6)C61—C621.501 (4)
C14—C151.402 (6)C62—C631.391 (4)
C14—H140.9300C62—C671.391 (5)
C15—C161.378 (8)C63—C641.394 (4)
C15—H150.9300C63—H630.9300
C16—C171.365 (8)C64—C651.374 (5)
C16—H160.9300C65—C661.382 (5)
C17—C181.373 (6)C65—H650.9300
C17—H170.9300C66—C671.380 (5)
C18—C191.388 (6)C66—H660.9300
C22—H220.9300C67—H670.9300
O1i—Ni1—O1180.0N23—C29—C28108.3 (3)
O1i—Ni1—N13i91.67 (11)N33—C32—N31113.5 (3)
O1—Ni1—N13i88.33 (11)N33—C32—H32123.3
O1i—Ni1—N1388.33 (11)N31—C32—H32123.3
O1—Ni1—N1391.67 (11)C35—C34—C39117.5 (5)
N13i—Ni1—N13180.0C35—C34—H34121.2
O4—Ni2—O7176.81 (10)C39—C34—H34121.2
O4—Ni2—N2391.29 (11)C34—C35—C36121.4 (6)
O7—Ni2—N2387.74 (11)C34—C35—H35119.3
O4—Ni2—N3387.26 (11)C36—C35—H35119.3
O7—Ni2—N3393.42 (11)C37—C36—C35121.1 (5)
N23—Ni2—N33174.55 (12)C37—C36—H36119.4
O4—Ni2—O9ii89.67 (9)C35—C36—H36119.4
O7—Ni2—O9ii93.33 (10)C36—C37—C38116.8 (5)
N23—Ni2—O9ii88.21 (12)C36—C37—H37121.6
N33—Ni2—O9ii97.04 (12)C38—C37—H37121.6
C12—N11—C18107.1 (3)C39—C38—C37122.4 (5)
C12—N11—H11126.4C39—C38—N31106.2 (4)
C18—N11—H11126.4C37—C38—N31131.3 (5)
C12—N13—C19104.6 (3)C38—C39—C34120.5 (4)
C12—N13—Ni1123.2 (3)C38—C39—N33108.7 (4)
C19—N13—Ni1132.1 (3)C34—C39—N33130.8 (4)
C22—N21—C28107.6 (3)O2—C41—O1124.9 (3)
C22—N21—H21126.2O2—C41—C42120.4 (3)
C28—N21—H21126.2O1—C41—C42114.7 (3)
C22—N23—C29105.4 (3)C43—C42—C47120.1 (3)
C22—N23—Ni2123.5 (3)C43—C42—C41120.0 (3)
C29—N23—Ni2131.0 (2)C47—C42—C41119.9 (3)
C32—N31—C38106.5 (3)C42—C43—C44119.8 (3)
C32—N31—H31126.8C42—C43—H43120.1
C38—N31—H31126.8C44—C43—H43120.1
C32—N33—C39105.0 (3)O3—C44—C45122.6 (3)
C32—N33—Ni2124.6 (2)O3—C44—C43116.6 (3)
C39—N33—Ni2129.9 (3)C45—C44—C43120.8 (3)
C41—O1—Ni1122.7 (2)C44—C45—C46119.1 (3)
C44—O3—H3O116.4C44—C45—H45120.4
C51—O4—Ni2132.3 (2)C46—C45—H45120.4
C54—O6—H6O112.3C47—C46—C45120.7 (3)
C61—O7—Ni2127.1 (2)C47—C46—H46119.6
C64—O9—Ni2ii146.4 (2)C45—C46—H46119.6
C64—O9—H9O114.9C46—C47—C42119.4 (3)
Ni2ii—O9—H9O92.5C46—C47—H47120.3
H1A—O1W—H1B86.3C42—C47—H47120.3
H2A—O2W—H2B100.9O5—C51—O4124.4 (3)
H3A—O3W—H3B107.0O5—C51—C52120.6 (3)
N13—C12—N11113.5 (4)O4—C51—C52115.1 (3)
N13—C12—H12123.3C57—C52—C53119.5 (3)
N11—C12—H12123.3C57—C52—C51119.3 (3)
C19—C14—C15115.6 (5)C53—C52—C51121.1 (3)
C19—C14—H14122.2C52—C53—C54120.1 (3)
C15—C14—H14122.2C52—C53—H53120.0
C16—C15—C14121.9 (5)C54—C53—H53120.0
C16—C15—H15119.0O6—C54—C55121.5 (3)
C14—C15—H15119.0O6—C54—C53118.8 (3)
C17—C16—C15122.1 (5)C55—C54—C53119.7 (3)
C17—C16—H16118.9C54—C55—C56120.4 (3)
C15—C16—H16118.9C54—C55—H55119.8
C16—C17—C18116.5 (5)C56—C55—H55119.8
C16—C17—H17121.8C55—C56—C57120.3 (3)
C18—C17—H17121.8C55—C56—H56119.9
C17—C18—N11131.2 (4)C57—C56—H56119.9
C17—C18—C19122.8 (5)C52—C57—C56119.9 (3)
N11—C18—C19106.1 (3)C52—C57—H57120.0
C18—C19—C14121.0 (4)C56—C57—H57120.0
C18—C19—N13108.7 (4)O8—C61—O7125.4 (3)
C14—C19—N13130.3 (4)O8—C61—C62118.3 (3)
N23—C22—N21113.0 (3)O7—C61—C62116.3 (3)
N23—C22—H22123.5C63—C62—C67119.7 (3)
N21—C22—H22123.5C63—C62—C61119.6 (3)
C29—C24—C25116.0 (4)C67—C62—C61120.7 (3)
C29—C24—H24122.0C62—C63—C64119.4 (3)
C25—C24—H24122.0C62—C63—H63120.3
C26—C25—C24121.9 (5)C64—C63—H63120.3
C26—C25—H25119.0O9—C64—C65122.3 (3)
C24—C25—H25119.0O9—C64—C63117.3 (3)
C27—C26—C25122.7 (4)C65—C64—C63120.4 (3)
C27—C26—H26118.7C64—C65—C66119.9 (3)
C25—C26—H26118.7C64—C65—H65120.0
C26—C27—C28115.4 (4)C66—C65—H65120.0
C26—C27—H27122.3C67—C66—C65120.3 (3)
C28—C27—H27122.3C67—C66—H66119.8
N21—C28—C27131.4 (4)C65—C66—H66119.8
N21—C28—C29105.8 (3)C66—C67—C62120.0 (3)
C27—C28—C29122.8 (4)C66—C67—H67120.0
C24—C29—N23130.5 (3)C62—C67—H67120.0
C24—C29—C28121.2 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O3W0.862.072.906 (6)163
N21—H21···O1W0.862.022.867 (5)168
N31—H31···O2W0.862.022.866 (5)167
O3—H3O···O80.861.752.609 (4)174
O6—H6O···O2iii0.991.802.783 (5)175
O9—H9O···O5ii0.951.682.610 (4)166
O1W—H1A···O3iv0.962.062.936 (4)152
O1W—H1B···O8v0.912.062.907 (4)156
O2W—H2A···O5vi0.921.882.780 (5)165
O3W—H3B···O2iii0.852.002.836 (5)168
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni2(C7H5O3)4(C7H6N2)4][Ni(C7H5O3)2(C7H6N2)2]·6H2O
Mr1815.65
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.9926 (12), 12.9504 (15), 17.069 (2)
α, β, γ (°)100.05 (2), 104.88 (3), 101.75 (2)
V3)2029.1 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.36 × 0.30 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.728, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
17583, 7894, 5818
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.151, 1.10
No. of reflections7894
No. of parameters556
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.49

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ni1—O11.914 (2)Ni2—N231.980 (3)
Ni1—N131.994 (3)Ni2—N331.983 (3)
Ni2—O41.960 (2)Ni2—O9i2.349 (3)
Ni2—O71.961 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O3W0.862.072.906 (6)163
N21—H21···O1W0.862.022.867 (5)168
N31—H31···O2W0.862.022.866 (5)167
O3—H3O···O80.861.752.609 (4)174
O6—H6O···O2ii0.991.802.783 (5)175
O9—H9O···O5i0.951.682.610 (4)166
O1W—H1A···O3iii0.962.062.936 (4)152
O1W—H1B···O8iv0.912.062.907 (4)156
O2W—H2A···O5v0.921.882.780 (5)165
O3W—H3B···O2ii0.852.002.836 (5)168
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLuo, Y., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2004). J. Coord. Chem. 57, 1125–1130.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Z.-Y., Xu, D.-J., Luo, Y., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, m307–m309.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m401-m402
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds