metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m267-m268

Poly[propane-1,3-di­ammonium [cuprate(II)-bis­­(μ2-pyridine-2,3-di­carboxyl­ato)] trihydrate]

aFaculty of Chemistry, Teacher Training University, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, and dDepartment of Chemistry, Ilam University, Ilam, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 29 October 2007; accepted 16 December 2007; online 4 January 2008)

The title polymeric compound {(C3H12N2)[Cu(C7H3NO4)2]·3H2O}n or {(pnH2)[Cu(py-2,3-dc)2]·3H2O}n (pn is propane-1,3-diamine and py-2,3-dcH2 is pyridine-2,3-dicarboxylic acid), was synthesized by reaction of copper(II) chloride dihydrate with a proton-transfer compound, propane-1,3-diammonium pyridine-2,3-dicarboxyl­ate or (pnH2)(py-2,3-dc), in aqueous solution. The anion is a six-coordinate complex (site symmetry [\overline{1}]), with a distorted octa­hedral geometry around CuII, consisting of two bidentate pyridine-2,3-dicarboxyl­ate groups and two O atoms of bridging ligands from (py-2,3-dc)2− fragments, which are located in trans positions. The (pnH2)2+ cation is disordered over two sites by the center of inversion. Inter­molecular hydrogen bonds, ππ [centroid–centroid distances of 3.539 (3) Å] and C—O⋯π stacking inter­actions [O⋯Cg = 3.240 (5) Å; Cg is the center of the pyridine ring], connect the various components into a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007[Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803-m1804.]); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007[Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710-m1711.]); Aghabozorg, Daneshvar et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H12N2)[Cu(C7H3NO4)2]·3H2O

  • Mr = 523.94

  • Triclinic, [P \overline 1]

  • a = 6.6857 (12) Å

  • b = 7.8251 (18) Å

  • c = 9.9188 (9) Å

  • α = 82.6561 (10)°

  • β = 84.0079 (13)°

  • γ = 71.9520 (17)°

  • V = 488.20 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 100 (2) K

  • 0.21 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.775, Tmax = 0.836

  • 10997 measured reflections

  • 2348 independent reflections

  • 2310 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.176

  • S = 1.01

  • 2348 reflections

  • 189 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.960 (4)
Cu1—N1 1.970 (4)
Cu1—O4i 2.549 (4)
O1ii—Cu1—N1ii 83.39 (16)
O1—Cu1—N1ii 96.61 (16)
O4i—Cu1—O4iii 180
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+2, -z+2; (iii) -x+1, -y+2, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.91 1.96 2.854 (1) 167
N2—H2B⋯O2iv 0.91 2.01 2.830 (1) 150
N3—H3B⋯N2v 0.91 1.56 2.283 (1) 134
N3—H3B⋯O2Wvi 0.91 1.95 2.852 (13) 174
N3—H3C⋯O3iv 0.91 2.42 3.041 (10) 126
N3—H3C⋯O4iv 0.91 2.08 2.991 (1) 174
N3—H3D⋯O1WAvii 0.91 2.03 2.934 (1) 170
N3—H3D⋯O1WBvii 0.91 2.51 3.407 (15) 170
O1WA—H3W⋯O1viii 0.89 2.11 2.764 (1) 130
O1WA—H4W⋯O3i 0.97 1.74 2.696 (1) 168
O2W—H1W⋯O1WA 0.87 2.00 2.779 (15) 148
O2W—H1W⋯O1WB 0.87 1.59 2.350 (1) 145
O2W—H2W⋯O3ix 0.85 1.92 2.768 (1) 179
C5—H5⋯O1WAx 0.95 2.60 3.534 (13) 169
C8—H8A⋯O2 0.99 2.37 2.891 (11) 112
C8—H8B⋯O4i 0.99 2.49 3.396 (11) 153
Symmetry codes: (i) x-1, y, z; (iv) -x+1, -y+2, -z+1; (v) -x, -y+2, -z+1; (vi) x-1, y+1, z; (vii) x, y+1, z; (viii) x, y-1, z; (ix) -x+1, -y+1, -z+1; (x) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 1998[Sheldrick, G. M. (1998). SHELXTL. Version. 5.10. Bruker AXS Inc, Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Intermolecular intractions, such as hydrogen bonding, π-π stacking, ion pairing and donor-acceptor interactions, are famous for making aggregates of molecules. One or more of these interactions may result in the formation of specific and spontaneous self-associations or self-associated compounds. Research has shown that hydrogen bonding plays the key role in preparation of self-assembled compounds.There is a very close relationship between hydrogen bonding and formation of proton transfer compounds (Aghabozorg, Attar Gharamaleki, Ghadermazi et al., 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah et al., 2007; Aghabozorg, Daneshvar et al., 2007).

Here, we report on the synthesis and X-ray crystal structure of the title compound. Selected bond lengths, bond angles are given in Table 1. The CuIIcompound is composed of an anionic complex, [Cu(py-2,3-dc)2]2–, propane-1,3-diammonium as a counter-ion, (pnH2)2+, and three uncoordinated water molecules (Fig. 1). The CuII atom resides on a center of symmetry and is six-coordinated by two pyridine-2,3-dicarboxylate, (py-2,3-dc)2–, groups which act as a bidentate ligand through one O atom and one N atom and two O atoms of bridging (py-2,3-dc)2– ligands that occupy trans positions with [O4ii—Cu1—O4iii = 180°; ii: x - 1, y, z and iii: -x + 1, -y + 2, -z + 2] which create the title polymeric structure. On the other hand, O1—Cu1—N1—C1 and N1—Cu1—O1—C6 torsion angles are 175.1 (3)° and -176.7 (4)°, respectively indicate that two (py-2,3-dc)2– units are in the plane. In the crystal structure, the spaces between two layers of [Cu(py-2,3-dc)2]2– are filled with a layers of (pnH2)2+ cations and water molecules (Fig 2). Solvate water molecules are disordered over two sites: O1WA and O1WB with equal occupancies and O2W by the center of inversion.

A notable feature of this compound is the presence of π-π and C—O···π stacking interactions. The π-π stacking between two aromatic rings of (py-2,3-dc)2– fragments with distances of 3.539 (3) Å (1 - x, 1 - y, 2 - z) are observed (Fig. 3). The C—O···π distances are 3.240 (5) Å (C6–O2···Cg1(1 - x, 2 - y, 2 - z); Cg1 is the centroid for the N1/C1–C5 ring] (Fig. 4). Intermolecular O—H···O, O—H···N, N—H···O, C—H···O and C—H···N hydrogen bonds with D···A ranging from 2.283 (1) Å to 3.534 (13) Å (Table 2) seem to be effective in the stabilization of the crystal structure, resulting in the formation of an interesting supramolecular structure.

Related literature top

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007); Aghabozorg, Daneshvar et al. (2007).

Experimental top

A solution of CuCl2.2H2O (85 mg, 0.5 mmol) in water (5 ml) was added to an aqueous solution of (pnH2)(py-2,3-dc) (242 mg, 1 mmol) in water (10 ml) in a 1:2 molar ratio. Blue crystals of title compound were obtained after allowing the mixture to stand for four weeks at room temperature.

Refinement top

The H(C) atom positions were calculated. H(N) and H(O) atom positions were found in difference Fourier synthesis. All hydrogen atoms were refined with use of a riding model with the Uiso(H) parameters equal to 1.2 Ueq(C) and to 1.5 Ueq(N), 1.5 Ueq(O), where U(C), Ueq(O) and U(N) are equivalent isotropic thermal parameters of the atoms to which corresponding H atoms are bonded.

The cation is disordered over two sites by a center of inversion.

Water molecules are disordered over two sites: O1WA and O1WB with equal occupancies and O2W by the center of inversion.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. [The labels a, b,c and d denote atoms generated by the symmetry operators (-1 + x, y, z), (1 + x, y, z), (-x, 2 - y, 2 - z) and (1 - x, 2 - y, 2 - z), respectively].
[Figure 2] Fig. 2. A layered packing diagram viewed down the b axis. The space between the two layers of [Cu(py-2,3-dc)2]2– fragments is filled with a layer of (pnH2)2+cations and water molecules.
[Figure 3] Fig. 3. π-π Stacking interactions between two aromatic rings. The average distance between the planes is 3.539 (3) Å (1 - x, 1 - y, 2 - z).
[Figure 4] Fig. 4. The stacking interactions of the carbonyl groups of (py-2,3-dc)2– fragments. The C—O···π distances (measured to the center of ring (N1/C1—C5) are 3.239 (5) Å (1 - x, 2 - y, 2 - z).
Poly[propane-1,3-diammonium [cuprate(II)-bis(µ2-pyridine-2,3-dicarboxylato] tetrahydrate] top
Crystal data top
(C3H12N2)[Cu(C7H3NO4)2]·3H2OZ = 1
Mr = 523.94F(000) = 271
Triclinic, P1Dx = 1.782 Mg m3
a = 6.6857 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8251 (18) ÅCell parameters from 1234 reflections
c = 9.9188 (9) Åθ = 3–20°
α = 82.6561 (10)°µ = 1.19 mm1
β = 84.0079 (13)°T = 100 K
γ = 71.9520 (17)°Prism, blue
V = 488.20 (15) Å30.21 × 0.16 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2348 independent reflections
Radiation source: fine-focus sealed tube2310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.775, Tmax = 0.836k = 1010
10997 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: mixed
wR(F2) = 0.176H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.010P)2 + 9.P]
where P = (Fo2 + 2Fc2)/3
2348 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
(C3H12N2)[Cu(C7H3NO4)2]·3H2Oγ = 71.9520 (17)°
Mr = 523.94V = 488.20 (15) Å3
Triclinic, P1Z = 1
a = 6.6857 (12) ÅMo Kα radiation
b = 7.8251 (18) ŵ = 1.19 mm1
c = 9.9188 (9) ÅT = 100 K
α = 82.6561 (10)°0.21 × 0.16 × 0.15 mm
β = 84.0079 (13)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2348 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2310 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.836Rint = 0.026
10997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.01Δρmax = 0.69 e Å3
2348 reflectionsΔρmin = 0.93 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00001.00001.00000.0083 (2)
O10.1529 (5)1.0909 (5)0.8418 (4)0.0137 (7)
O20.4743 (6)1.0337 (6)0.7330 (4)0.0233 (9)
O30.7857 (6)0.6603 (5)0.7152 (4)0.0189 (8)
O40.9507 (6)0.7923 (5)0.8365 (4)0.0184 (8)
N10.2805 (6)0.8300 (5)1.0351 (4)0.0099 (8)
C10.4291 (7)0.8457 (6)0.9349 (5)0.0098 (9)
C20.6352 (8)0.7332 (6)0.9342 (5)0.0108 (9)
C30.6889 (8)0.6039 (6)1.0472 (5)0.0119 (9)
H30.82920.52601.05250.014*
C40.5387 (8)0.5903 (6)1.1494 (5)0.0113 (9)
H40.57430.50311.22590.014*
C50.3353 (8)0.7039 (6)1.1406 (5)0.0111 (9)
H50.23140.69241.21120.013*
C60.3515 (8)1.0015 (7)0.8261 (5)0.0135 (9)
C70.8024 (7)0.7337 (7)0.8180 (5)0.0135 (10)
N20.4757 (13)0.7636 (12)0.5189 (9)0.0129 (16)0.50
H2A0.55740.73190.59130.019*0.50
H2B0.53690.82360.45040.019*0.50
H2C0.46270.66240.48920.019*0.50
C80.2618 (16)0.8836 (14)0.5611 (10)0.0139 (19)0.50
H8A0.26731.00860.56100.017*0.50
H8B0.21880.84150.65490.017*0.50
C90.1014 (16)0.8816 (14)0.4648 (11)0.014 (2)0.50
H9A0.08840.75820.47040.017*0.50
H9B0.15060.91400.37020.017*0.50
C100.1138 (17)1.0139 (15)0.4993 (11)0.017 (2)0.50
H10A0.22260.98320.45500.020*0.50
H10B0.14671.00080.59900.020*0.50
N30.1232 (14)1.2052 (12)0.4541 (9)0.0135 (16)0.50
H3B0.25961.27640.46030.020*0.50
H3C0.06961.21380.36620.020*0.50
H3D0.04611.24220.50830.020*0.50
O1WA0.0811 (17)0.3649 (16)0.6306 (12)0.015 (2)0.50
O1WB0.1490 (17)0.3949 (16)0.6312 (13)0.018 (2)0.50
H3W0.12760.33210.71410.027*
H4W0.01080.47940.65690.027*
O2W0.4409 (12)0.4057 (11)0.4800 (8)0.0171 (15)0.50
H1W0.36640.35850.54220.026*0.50
H2W0.37010.38700.42010.026*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0047 (4)0.0081 (4)0.0105 (4)0.0008 (3)0.0010 (3)0.0011 (3)
O10.0095 (16)0.0141 (17)0.0131 (17)0.0005 (13)0.0002 (13)0.0039 (13)
O20.0120 (18)0.029 (2)0.019 (2)0.0007 (16)0.0054 (15)0.0113 (16)
O30.0152 (18)0.024 (2)0.0127 (18)0.0001 (15)0.0009 (14)0.0029 (15)
O40.0134 (17)0.0167 (18)0.023 (2)0.0041 (14)0.0063 (15)0.0012 (15)
N10.0093 (18)0.0090 (18)0.0103 (19)0.0011 (15)0.0015 (15)0.0022 (14)
C10.008 (2)0.012 (2)0.010 (2)0.0044 (17)0.0004 (16)0.0005 (17)
C20.011 (2)0.011 (2)0.011 (2)0.0048 (17)0.0024 (17)0.0010 (17)
C30.013 (2)0.010 (2)0.013 (2)0.0022 (17)0.0039 (18)0.0027 (17)
C40.014 (2)0.009 (2)0.012 (2)0.0034 (17)0.0036 (17)0.0005 (17)
C50.016 (2)0.010 (2)0.010 (2)0.0061 (18)0.0015 (17)0.0026 (17)
C60.006 (2)0.017 (2)0.013 (2)0.0005 (18)0.0021 (17)0.0030 (18)
C70.007 (2)0.015 (2)0.012 (2)0.0036 (17)0.0006 (17)0.0041 (18)
N20.011 (4)0.016 (4)0.010 (4)0.003 (3)0.002 (3)0.000 (3)
C80.014 (5)0.014 (5)0.012 (4)0.002 (4)0.004 (4)0.004 (4)
C90.012 (5)0.012 (5)0.017 (5)0.003 (4)0.002 (4)0.000 (4)
C100.018 (5)0.013 (5)0.016 (5)0.004 (4)0.004 (4)0.000 (4)
N30.015 (4)0.012 (4)0.012 (4)0.002 (3)0.000 (3)0.001 (3)
O1WA0.014 (6)0.018 (5)0.010 (4)0.002 (4)0.005 (4)0.000 (3)
O1WB0.016 (6)0.016 (5)0.016 (4)0.001 (4)0.006 (4)0.001 (3)
O2W0.014 (3)0.020 (4)0.017 (4)0.007 (3)0.002 (3)0.002 (3)
Geometric parameters (Å, º) top
Cu1—O1i1.960 (4)C5—H50.9500
Cu1—O11.960 (4)N2—C81.499 (12)
Cu1—N1i1.970 (4)N2—H2A0.9100
Cu1—N11.970 (4)N2—H2B0.9100
Cu1—O4ii2.549 (4)N2—H2C0.9100
Cu1—O4iii2.549 (4)C8—C91.513 (14)
O1—C61.298 (6)C8—H8A0.9900
O2—C61.225 (6)C8—H8B0.9900
O3—C71.263 (7)C9—C101.524 (14)
O4—C71.252 (7)C9—H9A0.9900
O4—Cu1iv2.549 (4)C9—H9B0.9900
N1—C51.340 (6)C10—N31.491 (13)
N1—C11.352 (6)C10—H10A0.9900
C1—C21.386 (7)C10—H10B0.9900
C1—C61.520 (7)N3—H3B0.9100
C2—C31.406 (7)N3—H3C0.9100
C2—C71.520 (7)N3—H3D0.9100
C3—C41.369 (7)O1WA—H3W0.8934
C3—H30.9500O1WA—H4W0.9660
C4—C51.379 (7)O2W—H1W0.8700
C4—H40.9500O2W—H2W0.8498
O1i—Cu1—O1180.000 (1)N1—C5—C4121.7 (5)
O1i—Cu1—N1i83.39 (16)C4—C5—Cu1152.8 (4)
O1—Cu1—N1i96.61 (16)N1—C5—H5119.1
O1i—Cu1—N196.61 (16)C4—C5—H5119.1
O1—Cu1—N183.39 (16)Cu1—C5—H588.0
N1i—Cu1—N1180.000 (1)O2—C6—O1125.3 (5)
O1i—Cu1—O4ii96.02 (14)O2—C6—C1119.8 (4)
O1—Cu1—O4ii83.98 (14)O1—C6—C1114.9 (4)
N1i—Cu1—O4ii90.52 (15)O2—C6—Cu1165.3 (4)
N1—Cu1—O4ii89.48 (15)C1—C6—Cu174.8 (3)
O1i—Cu1—O4iii83.98 (14)O4—C7—O3126.2 (5)
O1—Cu1—O4iii96.02 (14)O4—C7—C2118.0 (5)
N1i—Cu1—O4iii89.48 (15)O3—C7—C2115.5 (4)
N1—Cu1—O4iii90.52 (15)N2—C8—C9110.5 (8)
O4ii—Cu1—O4iii180.000 (1)N2—C8—H8A109.5
C6—O1—Cu1114.8 (3)C9—C8—H8A109.5
C7—O4—Cu1iv134.2 (3)N2—C8—H8B109.5
C5—N1—C1118.9 (4)C9—C8—H8B109.5
C5—N1—Cu1128.3 (3)H8A—C8—H8B108.1
C1—N1—Cu1112.8 (3)C8—C9—C10111.4 (9)
N1—C1—C2122.9 (4)C8—C9—H9A109.3
N1—C1—C6113.9 (4)C10—C9—H9A109.3
C2—C1—C6123.2 (4)C8—C9—H9B109.3
C2—C1—Cu1163.3 (4)C10—C9—H9B109.3
C6—C1—Cu173.4 (3)H9A—C9—H9B108.0
C1—C2—C3116.9 (4)N3—C10—C9112.5 (8)
C1—C2—C7124.9 (4)N3—C10—H10A109.1
C3—C2—C7118.1 (4)C9—C10—H10A109.1
C4—C3—C2119.9 (5)N3—C10—H10B109.1
C4—C3—H3120.0C9—C10—H10B109.1
C2—C3—H3120.0H10A—C10—H10B107.8
C3—C4—C5119.6 (5)H3W—O1WA—H4W91.9
C3—C4—H4120.2H1W—O2W—H2W88.7
C5—C4—H4120.2
N1i—Cu1—O1—C6176.6 (4)C3—C4—C5—Cu11.2 (10)
N1—Cu1—O1—C63.4 (4)O1i—Cu1—C5—N1176.7 (4)
O4ii—Cu1—O1—C686.8 (4)O1—Cu1—C5—N13.3 (4)
O4iii—Cu1—O1—C693.2 (4)N1i—Cu1—C5—N1180.000 (3)
O1i—Cu1—N1—C53.2 (4)O4ii—Cu1—C5—N181.2 (4)
O1—Cu1—N1—C5176.8 (4)O4iii—Cu1—C5—N198.8 (4)
O4ii—Cu1—N1—C599.2 (4)O1i—Cu1—C5—C4173.2 (8)
O4iii—Cu1—N1—C580.8 (4)O1—Cu1—C5—C46.8 (8)
O1i—Cu1—N1—C1175.0 (3)N1i—Cu1—C5—C4176.5 (7)
O1—Cu1—N1—C15.0 (3)N1—Cu1—C5—C43.5 (7)
O4ii—Cu1—N1—C179.0 (3)O4ii—Cu1—C5—C477.6 (7)
O4iii—Cu1—N1—C1101.0 (3)O4iii—Cu1—C5—C4102.4 (7)
C5—N1—C1—C22.0 (7)Cu1—O1—C6—O2178.7 (5)
Cu1—N1—C1—C2176.4 (4)Cu1—O1—C6—C11.2 (6)
C5—N1—C1—C6176.0 (4)N1—C1—C6—O2177.1 (5)
Cu1—N1—C1—C65.6 (5)C2—C1—C6—O21.0 (8)
C5—N1—C1—Cu1178.4 (6)Cu1—C1—C6—O2179.1 (6)
O1i—Cu1—C1—N15.9 (4)N1—C1—C6—O13.0 (7)
O1—Cu1—C1—N1174.1 (4)C2—C1—C6—O1179.0 (5)
N1i—Cu1—C1—N1180.000 (3)Cu1—C1—C6—O10.8 (4)
O4ii—Cu1—C1—N199.6 (3)N1—C1—C6—Cu13.8 (4)
O4iii—Cu1—C1—N180.4 (3)C2—C1—C6—Cu1178.2 (5)
O1i—Cu1—C1—C24.7 (13)O1i—Cu1—C6—O2176.0 (15)
O1—Cu1—C1—C2175.3 (13)O1—Cu1—C6—O24.0 (15)
N1i—Cu1—C1—C2169.4 (11)N1i—Cu1—C6—O20.1 (18)
N1—Cu1—C1—C210.6 (11)N1—Cu1—C6—O2179.9 (18)
O4ii—Cu1—C1—C289.0 (12)O4ii—Cu1—C6—O286.3 (17)
O4iii—Cu1—C1—C291.0 (12)O4iii—Cu1—C6—O293.7 (17)
O1i—Cu1—C1—C6179.4 (3)O1i—Cu1—C6—O1180.000 (2)
O1—Cu1—C1—C60.6 (3)N1i—Cu1—C6—O13.9 (4)
N1i—Cu1—C1—C65.3 (5)N1—Cu1—C6—O1176.1 (4)
N1—Cu1—C1—C6174.7 (5)O4ii—Cu1—C6—O190.3 (4)
O4ii—Cu1—C1—C685.7 (3)O4iii—Cu1—C6—O189.7 (4)
O4iii—Cu1—C1—C694.3 (3)O1i—Cu1—C6—C11.1 (5)
N1—C1—C2—C32.9 (7)O1—Cu1—C6—C1178.9 (5)
C6—C1—C2—C3175.0 (4)N1i—Cu1—C6—C1177.2 (3)
Cu1—C1—C2—C311.1 (15)N1—Cu1—C6—C12.8 (3)
N1—C1—C2—C7174.0 (5)O4ii—Cu1—C6—C190.8 (3)
C6—C1—C2—C78.2 (8)O4iii—Cu1—C6—C189.2 (3)
Cu1—C1—C2—C7165.8 (10)Cu1iv—O4—C7—O3164.8 (4)
C1—C2—C3—C41.8 (7)Cu1iv—O4—C7—C221.4 (7)
C7—C2—C3—C4175.3 (4)C1—C2—C7—O4109.8 (6)
C2—C3—C4—C50.0 (7)C3—C2—C7—O473.4 (6)
C1—N1—C5—C40.0 (7)C1—C2—C7—O375.7 (6)
Cu1—N1—C5—C4178.1 (4)C3—C2—C7—O3101.1 (5)
C1—N1—C5—Cu1178.1 (7)N2—C8—C9—C10175.6 (8)
C3—C4—C5—N11.0 (7)C8—C9—C10—N376.1 (11)
Symmetry codes: (i) x, y+2, z+2; (ii) x1, y, z; (iii) x+1, y+2, z+2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.911.962.854 (1)167
N2—H2B···O2v0.912.012.830 (1)150
N3—H3B···N2vi0.911.562.283 (1)134
N3—H3B···O2Wvii0.911.952.852 (13)174
N3—H3C···O3v0.912.423.041 (10)126
N3—H3C···O4v0.912.082.991 (1)174
N3—H3D···O1WAviii0.912.032.934 (1)170
N3—H3D···O1WBviii0.912.513.407 (15)170
O1WA—H3W···O1ix0.892.112.764 (1)130
O1WA—H4W···O3ii0.971.742.696 (1)168
O2W—H1W···O1WA0.872.002.779 (15)148
O2W—H1W···O1WB0.871.592.350 (1)145
O2W—H2W···O3x0.851.922.768 (1)179
C5—H5···O1WAxi0.952.603.534 (13)169
C8—H8A···O20.992.372.891 (11)112
C8—H8B···O4ii0.992.493.396 (11)153
Symmetry codes: (ii) x1, y, z; (v) x+1, y+2, z+1; (vi) x, y+2, z+1; (vii) x1, y+1, z; (viii) x, y+1, z; (ix) x, y1, z; (x) x+1, y+1, z+1; (xi) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula(C3H12N2)[Cu(C7H3NO4)2]·3H2O
Mr523.94
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.6857 (12), 7.8251 (18), 9.9188 (9)
α, β, γ (°)82.6561 (10), 84.0079 (13), 71.9520 (17)
V3)488.20 (15)
Z1
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.21 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.775, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
10997, 2348, 2310
Rint0.026
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.176, 1.01
No. of reflections2348
No. of parameters189
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.93

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 1998) and Mercury (Macrae et al., 2006).

Selected geometric parameters (Å, º) top
Cu1—O11.960 (4)Cu1—O4i2.549 (4)
Cu1—N11.970 (4)
O1ii—Cu1—N1ii83.39 (16)O4i—Cu1—O4iii180.000 (1)
O1—Cu1—N1ii96.61 (16)
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+2; (iii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.9101.9602.854 (1)167
N2—H2B···O2iv0.9102.0052.830 (1)150
N3—H3B···N2v0.9101.5592.283 (1)134
N3—H3B···O2Wvi0.911.952.852 (13)174
N3—H3C···O3iv0.912.423.041 (10)126
N3—H3C···O4iv0.9102.0842.991 (1)174
N3—H3D···O1WAvii0.9102.0342.934 (1)170
N3—H3D···O1WBvii0.912.513.407 (15)170
O1WA—H3W···O1viii0.8932.1052.764 (1)130
O1WA—H4W···O3i0.9661.7442.696 (1)168
O2W—H1W···O1WA0.872.002.779 (15)148
O2W—H1W···O1WB0.8701.5852.350 (1)145
O2W—H2W···O3ix0.8501.9192.768 (1)179
C5—H5···O1WAx0.952.603.534 (13)169
C8—H8A···O20.992.372.891 (11)112
C8—H8B···O4i0.992.493.396 (11)153
Symmetry codes: (i) x1, y, z; (iv) x+1, y+2, z+1; (v) x, y+2, z+1; (vi) x1, y+1, z; (vii) x, y+1, z; (viii) x, y1, z; (ix) x+1, y+1, z+1; (x) x, y+1, z+2.
 

Acknowledgements

Financial support from Ilam University and the Teacher Training University is gratefully acknowledged.

References

First citationAghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SHELXTL. Version. 5.10. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m267-m268
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds