metal-organic compounds
Poly[propane-1,3-diammonium [cuprate(II)-bis(μ2-pyridine-2,3-dicarboxylato)] trihydrate]
aFaculty of Chemistry, Teacher Training University, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, and dDepartment of Chemistry, Ilam University, Ilam, Iran
*Correspondence e-mail: haghabozorg@yahoo.com
The title polymeric compound {(C3H12N2)[Cu(C7H3NO4)2]·3H2O}n or {(pnH2)[Cu(py-2,3-dc)2]·3H2O}n (pn is propane-1,3-diamine and py-2,3-dcH2 is pyridine-2,3-dicarboxylic acid), was synthesized by reaction of copper(II) chloride dihydrate with a proton-transfer compound, propane-1,3-diammonium pyridine-2,3-dicarboxylate or (pnH2)(py-2,3-dc), in aqueous solution. The anion is a six-coordinate complex (site symmetry ), with a distorted octahedral geometry around CuII, consisting of two bidentate pyridine-2,3-dicarboxylate groups and two O atoms of bridging ligands from (py-2,3-dc)2− fragments, which are located in trans positions. The (pnH2)2+ cation is disordered over two sites by the center of inversion. Intermolecular hydrogen bonds, π–π [centroid–centroid distances of 3.539 (3) Å] and C—O⋯π stacking interactions [O⋯Cg = 3.240 (5) Å; Cg is the center of the pyridine ring], connect the various components into a supramolecular structure.
Related literature
For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007); Aghabozorg, Daneshvar et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807067153/om2184sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807067153/om2184Isup2.hkl
A solution of CuCl2.2H2O (85 mg, 0.5 mmol) in water (5 ml) was added to an aqueous solution of (pnH2)(py-2,3-dc) (242 mg, 1 mmol) in water (10 ml) in a 1:2 molar ratio. Blue crystals of title compound were obtained after allowing the mixture to stand for four weeks at room temperature.
The H(C) atom positions were calculated. H(N) and H(O) atom positions were found in difference Fourier synthesis. All hydrogen atoms were refined with use of a riding model with the Uiso(H) parameters equal to 1.2 Ueq(C) and to 1.5 Ueq(N), 1.5 Ueq(O), where U(C), Ueq(O) and U(N) are equivalent isotropic thermal parameters of the atoms to which corresponding H atoms are bonded.
The cation is disordered over two sites by a center of inversion.
Water molecules are disordered over two sites: O1WA and O1WB with equal occupancies and O2W by the center of inversion.
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 1998).Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. [The labels a, b,c and d denote atoms generated by the symmetry operators (-1 + x, y, z), (1 + x, y, z), (-x, 2 - y, 2 - z) and (1 - x, 2 - y, 2 - z), respectively]. | |
Fig. 2. A layered packing diagram viewed down the b axis. The space between the two layers of [Cu(py-2,3-dc)2]2– fragments is filled with a layer of (pnH2)2+cations and water molecules. | |
Fig. 3. π-π Stacking interactions between two aromatic rings. The average distance between the planes is 3.539 (3) Å (1 - x, 1 - y, 2 - z). | |
Fig. 4. The stacking interactions of the carbonyl groups of (py-2,3-dc)2– fragments. The C—O···π distances (measured to the center of ring (N1/C1—C5) are 3.239 (5) Å (1 - x, 2 - y, 2 - z). |
(C3H12N2)[Cu(C7H3NO4)2]·3H2O | Z = 1 |
Mr = 523.94 | F(000) = 271 |
Triclinic, P1 | Dx = 1.782 Mg m−3 |
a = 6.6857 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.8251 (18) Å | Cell parameters from 1234 reflections |
c = 9.9188 (9) Å | θ = 3–20° |
α = 82.6561 (10)° | µ = 1.19 mm−1 |
β = 84.0079 (13)° | T = 100 K |
γ = 71.9520 (17)° | Prism, blue |
V = 488.20 (15) Å3 | 0.21 × 0.16 × 0.15 mm |
Bruker SMART APEXII CCD diffractometer | 2348 independent reflections |
Radiation source: fine-focus sealed tube | 2310 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 28.0°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −8→8 |
Tmin = 0.775, Tmax = 0.836 | k = −10→10 |
10997 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: mixed |
wR(F2) = 0.176 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.010P)2 + 9.P] where P = (Fo2 + 2Fc2)/3 |
2348 reflections | (Δ/σ)max < 0.001 |
189 parameters | Δρmax = 0.69 e Å−3 |
0 restraints | Δρmin = −0.93 e Å−3 |
(C3H12N2)[Cu(C7H3NO4)2]·3H2O | γ = 71.9520 (17)° |
Mr = 523.94 | V = 488.20 (15) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.6857 (12) Å | Mo Kα radiation |
b = 7.8251 (18) Å | µ = 1.19 mm−1 |
c = 9.9188 (9) Å | T = 100 K |
α = 82.6561 (10)° | 0.21 × 0.16 × 0.15 mm |
β = 84.0079 (13)° |
Bruker SMART APEXII CCD diffractometer | 2348 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2310 reflections with I > 2σ(I) |
Tmin = 0.775, Tmax = 0.836 | Rint = 0.026 |
10997 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.176 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.69 e Å−3 |
2348 reflections | Δρmin = −0.93 e Å−3 |
189 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.0000 | 1.0000 | 1.0000 | 0.0083 (2) | |
O1 | 0.1529 (5) | 1.0909 (5) | 0.8418 (4) | 0.0137 (7) | |
O2 | 0.4743 (6) | 1.0337 (6) | 0.7330 (4) | 0.0233 (9) | |
O3 | 0.7857 (6) | 0.6603 (5) | 0.7152 (4) | 0.0189 (8) | |
O4 | 0.9507 (6) | 0.7923 (5) | 0.8365 (4) | 0.0184 (8) | |
N1 | 0.2805 (6) | 0.8300 (5) | 1.0351 (4) | 0.0099 (8) | |
C1 | 0.4291 (7) | 0.8457 (6) | 0.9349 (5) | 0.0098 (9) | |
C2 | 0.6352 (8) | 0.7332 (6) | 0.9342 (5) | 0.0108 (9) | |
C3 | 0.6889 (8) | 0.6039 (6) | 1.0472 (5) | 0.0119 (9) | |
H3 | 0.8292 | 0.5260 | 1.0525 | 0.014* | |
C4 | 0.5387 (8) | 0.5903 (6) | 1.1494 (5) | 0.0113 (9) | |
H4 | 0.5743 | 0.5031 | 1.2259 | 0.014* | |
C5 | 0.3353 (8) | 0.7039 (6) | 1.1406 (5) | 0.0111 (9) | |
H5 | 0.2314 | 0.6924 | 1.2112 | 0.013* | |
C6 | 0.3515 (8) | 1.0015 (7) | 0.8261 (5) | 0.0135 (9) | |
C7 | 0.8024 (7) | 0.7337 (7) | 0.8180 (5) | 0.0135 (10) | |
N2 | 0.4757 (13) | 0.7636 (12) | 0.5189 (9) | 0.0129 (16) | 0.50 |
H2A | 0.5574 | 0.7319 | 0.5913 | 0.019* | 0.50 |
H2B | 0.5369 | 0.8236 | 0.4504 | 0.019* | 0.50 |
H2C | 0.4627 | 0.6624 | 0.4892 | 0.019* | 0.50 |
C8 | 0.2618 (16) | 0.8836 (14) | 0.5611 (10) | 0.0139 (19) | 0.50 |
H8A | 0.2673 | 1.0086 | 0.5610 | 0.017* | 0.50 |
H8B | 0.2188 | 0.8415 | 0.6549 | 0.017* | 0.50 |
C9 | 0.1014 (16) | 0.8816 (14) | 0.4648 (11) | 0.014 (2) | 0.50 |
H9A | 0.0884 | 0.7582 | 0.4704 | 0.017* | 0.50 |
H9B | 0.1506 | 0.9140 | 0.3702 | 0.017* | 0.50 |
C10 | −0.1138 (17) | 1.0139 (15) | 0.4993 (11) | 0.017 (2) | 0.50 |
H10A | −0.2226 | 0.9832 | 0.4550 | 0.020* | 0.50 |
H10B | −0.1467 | 1.0008 | 0.5990 | 0.020* | 0.50 |
N3 | −0.1232 (14) | 1.2052 (12) | 0.4541 (9) | 0.0135 (16) | 0.50 |
H3B | −0.2596 | 1.2764 | 0.4603 | 0.020* | 0.50 |
H3C | −0.0696 | 1.2138 | 0.3662 | 0.020* | 0.50 |
H3D | −0.0461 | 1.2422 | 0.5083 | 0.020* | 0.50 |
O1WA | 0.0811 (17) | 0.3649 (16) | 0.6306 (12) | 0.015 (2) | 0.50 |
O1WB | 0.1490 (17) | 0.3949 (16) | 0.6312 (13) | 0.018 (2) | 0.50 |
H3W | 0.1276 | 0.3321 | 0.7141 | 0.027* | |
H4W | −0.0108 | 0.4794 | 0.6569 | 0.027* | |
O2W | 0.4409 (12) | 0.4057 (11) | 0.4800 (8) | 0.0171 (15) | 0.50 |
H1W | 0.3664 | 0.3585 | 0.5422 | 0.026* | 0.50 |
H2W | 0.3701 | 0.3870 | 0.4201 | 0.026* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0047 (4) | 0.0081 (4) | 0.0105 (4) | −0.0008 (3) | 0.0010 (3) | 0.0011 (3) |
O1 | 0.0095 (16) | 0.0141 (17) | 0.0131 (17) | 0.0005 (13) | 0.0002 (13) | 0.0039 (13) |
O2 | 0.0120 (18) | 0.029 (2) | 0.019 (2) | 0.0007 (16) | 0.0054 (15) | 0.0113 (16) |
O3 | 0.0152 (18) | 0.024 (2) | 0.0127 (18) | −0.0001 (15) | 0.0009 (14) | −0.0029 (15) |
O4 | 0.0134 (17) | 0.0167 (18) | 0.023 (2) | −0.0041 (14) | 0.0063 (15) | −0.0012 (15) |
N1 | 0.0093 (18) | 0.0090 (18) | 0.0103 (19) | −0.0011 (15) | 0.0015 (15) | −0.0022 (14) |
C1 | 0.008 (2) | 0.012 (2) | 0.010 (2) | −0.0044 (17) | −0.0004 (16) | −0.0005 (17) |
C2 | 0.011 (2) | 0.011 (2) | 0.011 (2) | −0.0048 (17) | −0.0024 (17) | 0.0010 (17) |
C3 | 0.013 (2) | 0.010 (2) | 0.013 (2) | −0.0022 (17) | −0.0039 (18) | −0.0027 (17) |
C4 | 0.014 (2) | 0.009 (2) | 0.012 (2) | −0.0034 (17) | −0.0036 (17) | 0.0005 (17) |
C5 | 0.016 (2) | 0.010 (2) | 0.010 (2) | −0.0061 (18) | −0.0015 (17) | −0.0026 (17) |
C6 | 0.006 (2) | 0.017 (2) | 0.013 (2) | −0.0005 (18) | 0.0021 (17) | 0.0030 (18) |
C7 | 0.007 (2) | 0.015 (2) | 0.012 (2) | 0.0036 (17) | −0.0006 (17) | 0.0041 (18) |
N2 | 0.011 (4) | 0.016 (4) | 0.010 (4) | −0.003 (3) | 0.002 (3) | 0.000 (3) |
C8 | 0.014 (5) | 0.014 (5) | 0.012 (4) | −0.002 (4) | 0.004 (4) | −0.004 (4) |
C9 | 0.012 (5) | 0.012 (5) | 0.017 (5) | −0.003 (4) | 0.002 (4) | 0.000 (4) |
C10 | 0.018 (5) | 0.013 (5) | 0.016 (5) | −0.004 (4) | 0.004 (4) | 0.000 (4) |
N3 | 0.015 (4) | 0.012 (4) | 0.012 (4) | −0.002 (3) | 0.000 (3) | 0.001 (3) |
O1WA | 0.014 (6) | 0.018 (5) | 0.010 (4) | −0.002 (4) | 0.005 (4) | 0.000 (3) |
O1WB | 0.016 (6) | 0.016 (5) | 0.016 (4) | 0.001 (4) | 0.006 (4) | 0.001 (3) |
O2W | 0.014 (3) | 0.020 (4) | 0.017 (4) | −0.007 (3) | 0.002 (3) | −0.002 (3) |
Cu1—O1i | 1.960 (4) | C5—H5 | 0.9500 |
Cu1—O1 | 1.960 (4) | N2—C8 | 1.499 (12) |
Cu1—N1i | 1.970 (4) | N2—H2A | 0.9100 |
Cu1—N1 | 1.970 (4) | N2—H2B | 0.9100 |
Cu1—O4ii | 2.549 (4) | N2—H2C | 0.9100 |
Cu1—O4iii | 2.549 (4) | C8—C9 | 1.513 (14) |
O1—C6 | 1.298 (6) | C8—H8A | 0.9900 |
O2—C6 | 1.225 (6) | C8—H8B | 0.9900 |
O3—C7 | 1.263 (7) | C9—C10 | 1.524 (14) |
O4—C7 | 1.252 (7) | C9—H9A | 0.9900 |
O4—Cu1iv | 2.549 (4) | C9—H9B | 0.9900 |
N1—C5 | 1.340 (6) | C10—N3 | 1.491 (13) |
N1—C1 | 1.352 (6) | C10—H10A | 0.9900 |
C1—C2 | 1.386 (7) | C10—H10B | 0.9900 |
C1—C6 | 1.520 (7) | N3—H3B | 0.9100 |
C2—C3 | 1.406 (7) | N3—H3C | 0.9100 |
C2—C7 | 1.520 (7) | N3—H3D | 0.9100 |
C3—C4 | 1.369 (7) | O1WA—H3W | 0.8934 |
C3—H3 | 0.9500 | O1WA—H4W | 0.9660 |
C4—C5 | 1.379 (7) | O2W—H1W | 0.8700 |
C4—H4 | 0.9500 | O2W—H2W | 0.8498 |
O1i—Cu1—O1 | 180.000 (1) | N1—C5—C4 | 121.7 (5) |
O1i—Cu1—N1i | 83.39 (16) | C4—C5—Cu1 | 152.8 (4) |
O1—Cu1—N1i | 96.61 (16) | N1—C5—H5 | 119.1 |
O1i—Cu1—N1 | 96.61 (16) | C4—C5—H5 | 119.1 |
O1—Cu1—N1 | 83.39 (16) | Cu1—C5—H5 | 88.0 |
N1i—Cu1—N1 | 180.000 (1) | O2—C6—O1 | 125.3 (5) |
O1i—Cu1—O4ii | 96.02 (14) | O2—C6—C1 | 119.8 (4) |
O1—Cu1—O4ii | 83.98 (14) | O1—C6—C1 | 114.9 (4) |
N1i—Cu1—O4ii | 90.52 (15) | O2—C6—Cu1 | 165.3 (4) |
N1—Cu1—O4ii | 89.48 (15) | C1—C6—Cu1 | 74.8 (3) |
O1i—Cu1—O4iii | 83.98 (14) | O4—C7—O3 | 126.2 (5) |
O1—Cu1—O4iii | 96.02 (14) | O4—C7—C2 | 118.0 (5) |
N1i—Cu1—O4iii | 89.48 (15) | O3—C7—C2 | 115.5 (4) |
N1—Cu1—O4iii | 90.52 (15) | N2—C8—C9 | 110.5 (8) |
O4ii—Cu1—O4iii | 180.000 (1) | N2—C8—H8A | 109.5 |
C6—O1—Cu1 | 114.8 (3) | C9—C8—H8A | 109.5 |
C7—O4—Cu1iv | 134.2 (3) | N2—C8—H8B | 109.5 |
C5—N1—C1 | 118.9 (4) | C9—C8—H8B | 109.5 |
C5—N1—Cu1 | 128.3 (3) | H8A—C8—H8B | 108.1 |
C1—N1—Cu1 | 112.8 (3) | C8—C9—C10 | 111.4 (9) |
N1—C1—C2 | 122.9 (4) | C8—C9—H9A | 109.3 |
N1—C1—C6 | 113.9 (4) | C10—C9—H9A | 109.3 |
C2—C1—C6 | 123.2 (4) | C8—C9—H9B | 109.3 |
C2—C1—Cu1 | 163.3 (4) | C10—C9—H9B | 109.3 |
C6—C1—Cu1 | 73.4 (3) | H9A—C9—H9B | 108.0 |
C1—C2—C3 | 116.9 (4) | N3—C10—C9 | 112.5 (8) |
C1—C2—C7 | 124.9 (4) | N3—C10—H10A | 109.1 |
C3—C2—C7 | 118.1 (4) | C9—C10—H10A | 109.1 |
C4—C3—C2 | 119.9 (5) | N3—C10—H10B | 109.1 |
C4—C3—H3 | 120.0 | C9—C10—H10B | 109.1 |
C2—C3—H3 | 120.0 | H10A—C10—H10B | 107.8 |
C3—C4—C5 | 119.6 (5) | H3W—O1WA—H4W | 91.9 |
C3—C4—H4 | 120.2 | H1W—O2W—H2W | 88.7 |
C5—C4—H4 | 120.2 | ||
N1i—Cu1—O1—C6 | −176.6 (4) | C3—C4—C5—Cu1 | 1.2 (10) |
N1—Cu1—O1—C6 | 3.4 (4) | O1i—Cu1—C5—N1 | 176.7 (4) |
O4ii—Cu1—O1—C6 | −86.8 (4) | O1—Cu1—C5—N1 | −3.3 (4) |
O4iii—Cu1—O1—C6 | 93.2 (4) | N1i—Cu1—C5—N1 | 180.000 (3) |
O1i—Cu1—N1—C5 | −3.2 (4) | O4ii—Cu1—C5—N1 | 81.2 (4) |
O1—Cu1—N1—C5 | 176.8 (4) | O4iii—Cu1—C5—N1 | −98.8 (4) |
O4ii—Cu1—N1—C5 | −99.2 (4) | O1i—Cu1—C5—C4 | 173.2 (8) |
O4iii—Cu1—N1—C5 | 80.8 (4) | O1—Cu1—C5—C4 | −6.8 (8) |
O1i—Cu1—N1—C1 | 175.0 (3) | N1i—Cu1—C5—C4 | 176.5 (7) |
O1—Cu1—N1—C1 | −5.0 (3) | N1—Cu1—C5—C4 | −3.5 (7) |
O4ii—Cu1—N1—C1 | 79.0 (3) | O4ii—Cu1—C5—C4 | 77.6 (7) |
O4iii—Cu1—N1—C1 | −101.0 (3) | O4iii—Cu1—C5—C4 | −102.4 (7) |
C5—N1—C1—C2 | 2.0 (7) | Cu1—O1—C6—O2 | 178.7 (5) |
Cu1—N1—C1—C2 | −176.4 (4) | Cu1—O1—C6—C1 | −1.2 (6) |
C5—N1—C1—C6 | −176.0 (4) | N1—C1—C6—O2 | 177.1 (5) |
Cu1—N1—C1—C6 | 5.6 (5) | C2—C1—C6—O2 | −1.0 (8) |
C5—N1—C1—Cu1 | 178.4 (6) | Cu1—C1—C6—O2 | −179.1 (6) |
O1i—Cu1—C1—N1 | −5.9 (4) | N1—C1—C6—O1 | −3.0 (7) |
O1—Cu1—C1—N1 | 174.1 (4) | C2—C1—C6—O1 | 179.0 (5) |
N1i—Cu1—C1—N1 | 180.000 (3) | Cu1—C1—C6—O1 | 0.8 (4) |
O4ii—Cu1—C1—N1 | −99.6 (3) | N1—C1—C6—Cu1 | −3.8 (4) |
O4iii—Cu1—C1—N1 | 80.4 (3) | C2—C1—C6—Cu1 | 178.2 (5) |
O1i—Cu1—C1—C2 | 4.7 (13) | O1i—Cu1—C6—O2 | 176.0 (15) |
O1—Cu1—C1—C2 | −175.3 (13) | O1—Cu1—C6—O2 | −4.0 (15) |
N1i—Cu1—C1—C2 | −169.4 (11) | N1i—Cu1—C6—O2 | −0.1 (18) |
N1—Cu1—C1—C2 | 10.6 (11) | N1—Cu1—C6—O2 | 179.9 (18) |
O4ii—Cu1—C1—C2 | −89.0 (12) | O4ii—Cu1—C6—O2 | 86.3 (17) |
O4iii—Cu1—C1—C2 | 91.0 (12) | O4iii—Cu1—C6—O2 | −93.7 (17) |
O1i—Cu1—C1—C6 | 179.4 (3) | O1i—Cu1—C6—O1 | 180.000 (2) |
O1—Cu1—C1—C6 | −0.6 (3) | N1i—Cu1—C6—O1 | 3.9 (4) |
N1i—Cu1—C1—C6 | 5.3 (5) | N1—Cu1—C6—O1 | −176.1 (4) |
N1—Cu1—C1—C6 | −174.7 (5) | O4ii—Cu1—C6—O1 | 90.3 (4) |
O4ii—Cu1—C1—C6 | 85.7 (3) | O4iii—Cu1—C6—O1 | −89.7 (4) |
O4iii—Cu1—C1—C6 | −94.3 (3) | O1i—Cu1—C6—C1 | −1.1 (5) |
N1—C1—C2—C3 | −2.9 (7) | O1—Cu1—C6—C1 | 178.9 (5) |
C6—C1—C2—C3 | 175.0 (4) | N1i—Cu1—C6—C1 | −177.2 (3) |
Cu1—C1—C2—C3 | −11.1 (15) | N1—Cu1—C6—C1 | 2.8 (3) |
N1—C1—C2—C7 | 174.0 (5) | O4ii—Cu1—C6—C1 | −90.8 (3) |
C6—C1—C2—C7 | −8.2 (8) | O4iii—Cu1—C6—C1 | 89.2 (3) |
Cu1—C1—C2—C7 | 165.8 (10) | Cu1iv—O4—C7—O3 | 164.8 (4) |
C1—C2—C3—C4 | 1.8 (7) | Cu1iv—O4—C7—C2 | −21.4 (7) |
C7—C2—C3—C4 | −175.3 (4) | C1—C2—C7—O4 | 109.8 (6) |
C2—C3—C4—C5 | 0.0 (7) | C3—C2—C7—O4 | −73.4 (6) |
C1—N1—C5—C4 | 0.0 (7) | C1—C2—C7—O3 | −75.7 (6) |
Cu1—N1—C5—C4 | 178.1 (4) | C3—C2—C7—O3 | 101.1 (5) |
C1—N1—C5—Cu1 | −178.1 (7) | N2—C8—C9—C10 | −175.6 (8) |
C3—C4—C5—N1 | −1.0 (7) | C8—C9—C10—N3 | 76.1 (11) |
Symmetry codes: (i) −x, −y+2, −z+2; (ii) x−1, y, z; (iii) −x+1, −y+2, −z+2; (iv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O3 | 0.91 | 1.96 | 2.854 (1) | 167 |
N2—H2B···O2v | 0.91 | 2.01 | 2.830 (1) | 150 |
N3—H3B···N2vi | 0.91 | 1.56 | 2.283 (1) | 134 |
N3—H3B···O2Wvii | 0.91 | 1.95 | 2.852 (13) | 174 |
N3—H3C···O3v | 0.91 | 2.42 | 3.041 (10) | 126 |
N3—H3C···O4v | 0.91 | 2.08 | 2.991 (1) | 174 |
N3—H3D···O1WAviii | 0.91 | 2.03 | 2.934 (1) | 170 |
N3—H3D···O1WBviii | 0.91 | 2.51 | 3.407 (15) | 170 |
O1WA—H3W···O1ix | 0.89 | 2.11 | 2.764 (1) | 130 |
O1WA—H4W···O3ii | 0.97 | 1.74 | 2.696 (1) | 168 |
O2W—H1W···O1WA | 0.87 | 2.00 | 2.779 (15) | 148 |
O2W—H1W···O1WB | 0.87 | 1.59 | 2.350 (1) | 145 |
O2W—H2W···O3x | 0.85 | 1.92 | 2.768 (1) | 179 |
C5—H5···O1WAxi | 0.95 | 2.60 | 3.534 (13) | 169 |
C8—H8A···O2 | 0.99 | 2.37 | 2.891 (11) | 112 |
C8—H8B···O4ii | 0.99 | 2.49 | 3.396 (11) | 153 |
Symmetry codes: (ii) x−1, y, z; (v) −x+1, −y+2, −z+1; (vi) −x, −y+2, −z+1; (vii) x−1, y+1, z; (viii) x, y+1, z; (ix) x, y−1, z; (x) −x+1, −y+1, −z+1; (xi) −x, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | (C3H12N2)[Cu(C7H3NO4)2]·3H2O |
Mr | 523.94 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.6857 (12), 7.8251 (18), 9.9188 (9) |
α, β, γ (°) | 82.6561 (10), 84.0079 (13), 71.9520 (17) |
V (Å3) | 488.20 (15) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.19 |
Crystal size (mm) | 0.21 × 0.16 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.775, 0.836 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10997, 2348, 2310 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.176, 1.01 |
No. of reflections | 2348 |
No. of parameters | 189 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.69, −0.93 |
Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 1998) and Mercury (Macrae et al., 2006).
Cu1—O1 | 1.960 (4) | Cu1—O4i | 2.549 (4) |
Cu1—N1 | 1.970 (4) | ||
O1ii—Cu1—N1ii | 83.39 (16) | O4i—Cu1—O4iii | 180.000 (1) |
O1—Cu1—N1ii | 96.61 (16) |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y+2, −z+2; (iii) −x+1, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O3 | 0.910 | 1.960 | 2.854 (1) | 167 |
N2—H2B···O2iv | 0.910 | 2.005 | 2.830 (1) | 150 |
N3—H3B···N2v | 0.910 | 1.559 | 2.283 (1) | 134 |
N3—H3B···O2Wvi | 0.91 | 1.95 | 2.852 (13) | 174 |
N3—H3C···O3iv | 0.91 | 2.42 | 3.041 (10) | 126 |
N3—H3C···O4iv | 0.910 | 2.084 | 2.991 (1) | 174 |
N3—H3D···O1WAvii | 0.910 | 2.034 | 2.934 (1) | 170 |
N3—H3D···O1WBvii | 0.91 | 2.51 | 3.407 (15) | 170 |
O1WA—H3W···O1viii | 0.893 | 2.105 | 2.764 (1) | 130 |
O1WA—H4W···O3i | 0.966 | 1.744 | 2.696 (1) | 168 |
O2W—H1W···O1WA | 0.87 | 2.00 | 2.779 (15) | 148 |
O2W—H1W···O1WB | 0.870 | 1.585 | 2.350 (1) | 145 |
O2W—H2W···O3ix | 0.850 | 1.919 | 2.768 (1) | 179 |
C5—H5···O1WAx | 0.95 | 2.60 | 3.534 (13) | 169 |
C8—H8A···O2 | 0.99 | 2.37 | 2.891 (11) | 112 |
C8—H8B···O4i | 0.99 | 2.49 | 3.396 (11) | 153 |
Symmetry codes: (i) x−1, y, z; (iv) −x+1, −y+2, −z+1; (v) −x, −y+2, −z+1; (vi) x−1, y+1, z; (vii) x, y+1, z; (viii) x, y−1, z; (ix) −x+1, −y+1, −z+1; (x) −x, −y+1, −z+2. |
Acknowledgements
Financial support from Ilam University and the Teacher Training University is gratefully acknowledged.
References
Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1998). SHELXTL. Version. 5.10. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Intermolecular intractions, such as hydrogen bonding, π-π stacking, ion pairing and donor-acceptor interactions, are famous for making aggregates of molecules. One or more of these interactions may result in the formation of specific and spontaneous self-associations or self-associated compounds. Research has shown that hydrogen bonding plays the key role in preparation of self-assembled compounds.There is a very close relationship between hydrogen bonding and formation of proton transfer compounds (Aghabozorg, Attar Gharamaleki, Ghadermazi et al., 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah et al., 2007; Aghabozorg, Daneshvar et al., 2007).
Here, we report on the synthesis and X-ray crystal structure of the title compound. Selected bond lengths, bond angles are given in Table 1. The CuIIcompound is composed of an anionic complex, [Cu(py-2,3-dc)2]2–, propane-1,3-diammonium as a counter-ion, (pnH2)2+, and three uncoordinated water molecules (Fig. 1). The CuII atom resides on a center of symmetry and is six-coordinated by two pyridine-2,3-dicarboxylate, (py-2,3-dc)2–, groups which act as a bidentate ligand through one O atom and one N atom and two O atoms of bridging (py-2,3-dc)2– ligands that occupy trans positions with [O4ii—Cu1—O4iii = 180°; ii: x - 1, y, z and iii: -x + 1, -y + 2, -z + 2] which create the title polymeric structure. On the other hand, O1—Cu1—N1—C1 and N1—Cu1—O1—C6 torsion angles are 175.1 (3)° and -176.7 (4)°, respectively indicate that two (py-2,3-dc)2– units are in the plane. In the crystal structure, the spaces between two layers of [Cu(py-2,3-dc)2]2– are filled with a layers of (pnH2)2+ cations and water molecules (Fig 2). Solvate water molecules are disordered over two sites: O1WA and O1WB with equal occupancies and O2W by the center of inversion.
A notable feature of this compound is the presence of π-π and C—O···π stacking interactions. The π-π stacking between two aromatic rings of (py-2,3-dc)2– fragments with distances of 3.539 (3) Å (1 - x, 1 - y, 2 - z) are observed (Fig. 3). The C—O···π distances are 3.240 (5) Å (C6–O2···Cg1(1 - x, 2 - y, 2 - z); Cg1 is the centroid for the N1/C1–C5 ring] (Fig. 4). Intermolecular O—H···O, O—H···N, N—H···O, C—H···O and C—H···N hydrogen bonds with D···A ranging from 2.283 (1) Å to 3.534 (13) Å (Table 2) seem to be effective in the stabilization of the crystal structure, resulting in the formation of an interesting supramolecular structure.