organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3′-cyano-1′-methyl-2-oxo-4′-phenylspiro­[acenaphthene-1,2′-pyrrolidine]-3′-carboxyl­ate

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: liming928@qust.edu.cn

(Received 16 November 2007; accepted 18 December 2007; online 16 January 2008)

In the title compound, C26H22N2O3, the acenaphthen-1-one ring system is nearly planar and the pyrrolidine ring adopts a distorted envelope conformation. An inter­molecular C—H⋯O hydrogen bond stabilizes the crystal structure.

Related literature

For related literature, see: Ma & Hecht (2004[Ma, J. & Hecht, S. M. (2004). Chem. Commun. 10, 1190-1191.]); Usui et al. (1998[Usui, T., Kondoh, M., Cui, C.-B., Mayumi, T. & Osada, H. (1998). Biochem. J. 333, 543-548.]); Raghunathan & Suresh Babu (2004[Raghunathan, R. & Suresh Babu, A. R. (2006). Tetrahedron Lett. 47, 9221-9225.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22N2O3

  • Mr = 410.46

  • Orthorhombic, P 21 21 21

  • a = 7.564 (3) Å

  • b = 14.549 (6) Å

  • c = 19.397 (8) Å

  • V = 2134.7 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 (2) K

  • 0.22 × 0.18 × 0.14 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.988

  • 12376 measured reflections

  • 2513 independent reflections

  • 1924 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.13

  • 2513 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26B⋯O1i 0.96 2.53 3.276 (5) 135
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1999[Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Spiro compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties. The spirooxindole system is the core structure of many pharmacological agents and natural alkaloids (Ma & Hecht, 2004). Spirotryprostatin A, a natural alkaloid isolated from the fermentation broth of Aspergillus fumigatus, has been identified as a novel inhibitor of microtubule assembly (Usui et al., 1998). Because of their synthetic and biological potential, considerable interest has been focused on the synthesis of spirooxindole derivatives via 1,3-dipolar cycloaddition reactions (Raghunathan & Suresh Babu, 2006). In order to develop new biological activities, we synthesized the title compound, the structure of which is reported here.

In the molecule of the title compound (Fig. 1) there is one spiro junction at atom C12. The 2H-acenaphthylen-1-one ring system (C1—C12) is nearly planar, with a maximum displacement of 0.081 (3) Å for atom C1. The pyrrolidine ring adopts a distorted envelope conformation, with atom C12 forming the flap of the envelope displaced by 0.288 (2) A%. The mean plane through the pyrrolidine ring is almost perpendicular to the 2H-acenaphthylen-1-one ring (dihedral angle 86.62 (7)°). The crystal structure (Fig. 2) is stabilized by an intermolecular C—H···O hydrogen bond (Table 1).

Related literature top

For related literature, see: Ma & Hecht (2004); Usui et al. (1998); Raghunathan & Suresh Babu (2006).

Experimental top

A mixture of acenaphthylene-1,2-dione (1 mmol, 0.182 g), sarcosine (1 mmol, 0.089 g), benzaldehyde (1 mmol, 0.106 g), cyanoacetic acid ethyl ester (1 mmol, 0.113 g), and acetonitrile (15 ml) in a 25 ml flask was stirred for 3 h under reflux and monitored by TLC). After cooling to room temperature, the solid product was filtered off. Single crystals of the title compound were obtained by slow evaporation of an ethanol solution (m.p. 458 K).

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged in the final refinement.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 35% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Intermolecular H bonds are shown as dashed lines.
Ethyl 3'-cyano-1'-methyl-2-oxo-4'-phenyl-spiro[acenaphthene-1,2'- pyrrolidine]-3'-carboxylate top
Crystal data top
C26H22N2O3Dx = 1.277 Mg m3
Mr = 410.46Melting point: 458 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3377 reflections
a = 7.564 (3) Åθ = 2.5–22.3°
b = 14.549 (6) ŵ = 0.08 mm1
c = 19.397 (8) ÅT = 294 K
V = 2134.7 (15) Å3Prism, brown
Z = 40.22 × 0.18 × 0.14 mm
F(000) = 864
Data collection top
Bruker SMART 100 CCD area-detector
diffractometer
2513 independent reflections
Radiation source: fine-focus sealed tube1924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 97
Tmin = 0.982, Tmax = 0.988k = 1718
12376 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.2087P]
where P = (Fo2 + 2Fc2)/3
2513 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C26H22N2O3V = 2134.7 (15) Å3
Mr = 410.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.564 (3) ŵ = 0.08 mm1
b = 14.549 (6) ÅT = 294 K
c = 19.397 (8) Å0.22 × 0.18 × 0.14 mm
Data collection top
Bruker SMART 100 CCD area-detector
diffractometer
2513 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1924 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.049
12376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.13Δρmax = 0.15 e Å3
2513 reflectionsΔρmin = 0.16 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0623 (3)0.94458 (13)0.30244 (11)0.0575 (6)
O20.5975 (3)0.73612 (15)0.19934 (13)0.0628 (6)
O30.6641 (2)0.88028 (13)0.22923 (11)0.0481 (5)
N11.1489 (3)0.74780 (15)0.28010 (11)0.0376 (5)
N21.0479 (4)0.90974 (17)0.13933 (13)0.0585 (8)
C10.9708 (4)0.88274 (18)0.32249 (14)0.0374 (6)
C20.8422 (4)0.88321 (19)0.37975 (13)0.0376 (6)
C30.7857 (4)0.9520 (2)0.42294 (16)0.0505 (8)
H30.82821.01170.41830.061*
C40.6623 (5)0.9298 (3)0.47409 (16)0.0612 (9)
H40.62040.97600.50290.073*
C50.6013 (4)0.8416 (3)0.48296 (15)0.0557 (9)
H50.51860.82950.51730.067*
C60.6615 (4)0.7694 (2)0.44122 (14)0.0423 (7)
C70.6195 (4)0.6742 (2)0.44642 (15)0.0524 (8)
H70.54060.65390.47990.063*
C80.6951 (4)0.6131 (2)0.40222 (15)0.0525 (8)
H80.66900.55100.40750.063*
C90.8115 (4)0.63939 (19)0.34877 (14)0.0433 (7)
H90.86000.59550.31950.052*
C100.8515 (3)0.73065 (18)0.34083 (13)0.0341 (6)
C110.7806 (3)0.79340 (18)0.38829 (12)0.0338 (6)
C120.9724 (3)0.78274 (17)0.29125 (12)0.0320 (6)
C131.1399 (4)0.6722 (2)0.23060 (15)0.0463 (7)
H13A1.13950.61360.25430.056*
H13B1.24060.67400.19960.056*
C140.9672 (4)0.68563 (16)0.19040 (13)0.0357 (6)
H140.88300.64070.20880.043*
C150.9028 (3)0.78135 (17)0.21481 (12)0.0314 (6)
C161.2531 (4)0.7268 (3)0.34135 (17)0.0578 (9)
H16A1.25160.77860.37200.087*
H16B1.37270.71360.32810.087*
H16C1.20350.67430.36430.087*
C170.9744 (5)0.67010 (18)0.11349 (14)0.0460 (8)
C181.1162 (6)0.6991 (2)0.07389 (17)0.0716 (12)
H181.20910.73110.09410.086*
C191.1185 (9)0.6799 (3)0.0032 (2)0.1023 (19)
H191.21340.69900.02380.123*
C200.9814 (10)0.6332 (3)0.0262 (2)0.107 (2)
H200.98470.62010.07310.128*
C210.8409 (8)0.6057 (3)0.0116 (2)0.0861 (14)
H210.74730.57500.00940.103*
C220.8374 (5)0.6235 (2)0.08185 (16)0.0591 (9)
H220.74160.60370.10800.071*
C230.9873 (4)0.85531 (18)0.17424 (14)0.0365 (6)
C240.7021 (4)0.79504 (19)0.21206 (14)0.0370 (6)
C250.4781 (4)0.9068 (2)0.2361 (2)0.0607 (9)
H25A0.42090.90620.19140.073*
H25B0.41680.86390.26600.073*
C260.4721 (5)0.9978 (3)0.2651 (3)0.0941 (14)
H26A0.52260.99690.31050.141*
H26B0.35161.01810.26770.141*
H26C0.53831.03910.23640.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0665 (15)0.0462 (12)0.0598 (13)0.0230 (12)0.0173 (12)0.0112 (10)
O20.0395 (12)0.0543 (13)0.0945 (18)0.0096 (11)0.0045 (12)0.0145 (13)
O30.0324 (10)0.0414 (11)0.0706 (14)0.0034 (9)0.0027 (10)0.0039 (10)
N10.0311 (11)0.0483 (13)0.0335 (12)0.0031 (10)0.0026 (10)0.0012 (10)
N20.0741 (19)0.0453 (15)0.0561 (16)0.0064 (14)0.0201 (15)0.0074 (13)
C10.0370 (15)0.0385 (14)0.0365 (14)0.0067 (13)0.0005 (12)0.0024 (12)
C20.0384 (15)0.0433 (15)0.0312 (13)0.0010 (13)0.0001 (12)0.0016 (12)
C30.0575 (19)0.0464 (17)0.0477 (17)0.0045 (15)0.0032 (16)0.0073 (14)
C40.065 (2)0.073 (2)0.0458 (18)0.016 (2)0.0149 (17)0.0116 (17)
C50.0451 (19)0.083 (3)0.0386 (17)0.0052 (17)0.0114 (14)0.0015 (16)
C60.0340 (15)0.0610 (18)0.0320 (14)0.0032 (15)0.0006 (13)0.0070 (13)
C70.0482 (19)0.071 (2)0.0380 (17)0.0146 (16)0.0013 (14)0.0183 (16)
C80.060 (2)0.0519 (18)0.0456 (17)0.0141 (17)0.0057 (16)0.0170 (15)
C90.0525 (18)0.0398 (16)0.0377 (15)0.0043 (14)0.0028 (14)0.0046 (12)
C100.0338 (14)0.0377 (14)0.0307 (14)0.0025 (12)0.0028 (11)0.0041 (11)
C110.0319 (14)0.0426 (15)0.0269 (13)0.0009 (12)0.0054 (11)0.0015 (11)
C120.0301 (13)0.0373 (14)0.0287 (13)0.0023 (11)0.0002 (11)0.0005 (10)
C130.0448 (16)0.0455 (16)0.0486 (17)0.0104 (14)0.0008 (14)0.0063 (14)
C140.0438 (15)0.0297 (13)0.0336 (14)0.0011 (12)0.0025 (12)0.0001 (11)
C150.0328 (13)0.0319 (13)0.0293 (13)0.0014 (11)0.0007 (11)0.0003 (11)
C160.0418 (18)0.081 (2)0.0503 (19)0.0054 (17)0.0088 (14)0.0014 (17)
C170.074 (2)0.0295 (14)0.0348 (15)0.0050 (15)0.0030 (16)0.0001 (11)
C180.120 (3)0.0406 (17)0.055 (2)0.018 (2)0.033 (2)0.0067 (15)
C190.200 (6)0.048 (2)0.059 (2)0.013 (3)0.060 (3)0.0018 (19)
C200.228 (7)0.055 (2)0.038 (2)0.008 (4)0.001 (3)0.0052 (18)
C210.141 (4)0.065 (2)0.052 (2)0.016 (3)0.029 (3)0.012 (2)
C220.081 (2)0.0478 (17)0.0484 (18)0.0094 (19)0.0120 (18)0.0104 (15)
C230.0376 (16)0.0357 (14)0.0363 (14)0.0031 (12)0.0035 (13)0.0001 (12)
C240.0373 (15)0.0394 (16)0.0343 (14)0.0020 (13)0.0005 (12)0.0038 (12)
C250.0289 (16)0.065 (2)0.089 (2)0.0090 (15)0.0051 (17)0.0028 (18)
C260.045 (2)0.068 (2)0.169 (4)0.0164 (19)0.002 (3)0.025 (3)
Geometric parameters (Å, º) top
O1—C11.200 (3)C13—C141.534 (4)
O2—C241.193 (3)C13—H13A0.9700
O3—C241.316 (3)C13—H13B0.9700
O3—C251.465 (4)C14—C171.510 (4)
N1—C121.445 (3)C14—C151.550 (3)
N1—C161.458 (4)C14—H140.9800
N1—C131.461 (3)C15—C231.479 (4)
N2—C231.138 (3)C15—C241.532 (4)
C1—C21.476 (4)C16—H16A0.9600
C1—C121.576 (4)C16—H16B0.9600
C2—C31.374 (4)C16—H16C0.9600
C2—C111.397 (4)C17—C221.382 (4)
C3—C41.401 (4)C17—C181.385 (5)
C3—H30.9300C18—C191.400 (5)
C4—C51.374 (5)C18—H180.9300
C4—H40.9300C19—C201.365 (8)
C5—C61.401 (4)C19—H190.9300
C5—H50.9300C20—C211.352 (7)
C6—C111.410 (4)C20—H200.9300
C6—C71.425 (4)C21—C221.388 (5)
C7—C81.362 (5)C21—H210.9300
C7—H70.9300C22—H220.9300
C8—C91.413 (4)C25—C261.440 (5)
C8—H80.9300C25—H25A0.9700
C9—C101.371 (4)C25—H25B0.9700
C9—H90.9300C26—H26A0.9600
C10—C111.403 (4)C26—H26B0.9600
C10—C121.528 (3)C26—H26C0.9600
C12—C151.574 (3)
C24—O3—C25118.7 (2)C13—C14—C15103.1 (2)
C12—N1—C16116.8 (2)C17—C14—H14106.5
C12—N1—C13108.7 (2)C13—C14—H14106.5
C16—N1—C13113.8 (2)C15—C14—H14106.5
O1—C1—C2128.3 (2)C23—C15—C24108.4 (2)
O1—C1—C12124.3 (2)C23—C15—C14110.8 (2)
C2—C1—C12107.4 (2)C24—C15—C14114.7 (2)
C3—C2—C11120.4 (3)C23—C15—C12110.3 (2)
C3—C2—C1131.8 (3)C24—C15—C12111.3 (2)
C11—C2—C1107.7 (2)C14—C15—C12101.19 (19)
C2—C3—C4118.1 (3)N1—C16—H16A109.5
C2—C3—H3121.0N1—C16—H16B109.5
C4—C3—H3121.0H16A—C16—H16B109.5
C5—C4—C3121.9 (3)N1—C16—H16C109.5
C5—C4—H4119.0H16A—C16—H16C109.5
C3—C4—H4119.0H16B—C16—H16C109.5
C4—C5—C6121.2 (3)C22—C17—C18118.9 (3)
C4—C5—H5119.4C22—C17—C14119.0 (3)
C6—C5—H5119.4C18—C17—C14122.0 (3)
C5—C6—C11116.3 (3)C17—C18—C19119.5 (4)
C5—C6—C7127.9 (3)C17—C18—H18120.3
C11—C6—C7115.8 (3)C19—C18—H18120.3
C8—C7—C6119.8 (3)C20—C19—C18120.0 (5)
C8—C7—H7120.1C20—C19—H19120.0
C6—C7—H7120.1C18—C19—H19120.0
C7—C8—C9123.2 (3)C21—C20—C19121.2 (4)
C7—C8—H8118.4C21—C20—H20119.4
C9—C8—H8118.4C19—C20—H20119.4
C10—C9—C8118.8 (3)C20—C21—C22119.5 (5)
C10—C9—H9120.6C20—C21—H21120.2
C8—C9—H9120.6C22—C21—H21120.2
C9—C10—C11118.2 (2)C17—C22—C21120.9 (4)
C9—C10—C12133.1 (3)C17—C22—H22119.6
C11—C10—C12108.6 (2)C21—C22—H22119.6
C2—C11—C10113.8 (2)N2—C23—C15175.6 (3)
C2—C11—C6122.1 (3)O2—C24—O3125.8 (3)
C10—C11—C6124.1 (3)O2—C24—C15124.8 (3)
N1—C12—C10118.2 (2)O3—C24—C15109.3 (2)
N1—C12—C1599.43 (19)C26—C25—O3107.9 (3)
C10—C12—C15112.7 (2)C26—C25—H25A110.1
N1—C12—C1112.9 (2)O3—C25—H25A110.1
C10—C12—C1102.2 (2)C26—C25—H25B110.1
C15—C12—C1111.8 (2)O3—C25—H25B110.1
N1—C13—C14106.1 (2)H25A—C25—H25B108.4
N1—C13—H13A110.5C25—C26—H26A109.5
C14—C13—H13A110.5C25—C26—H26B109.5
N1—C13—H13B110.5H26A—C26—H26B109.5
C14—C13—H13B110.5C25—C26—H26C109.5
H13A—C13—H13B108.7H26A—C26—H26C109.5
C17—C14—C13116.9 (3)H26B—C26—H26C109.5
C17—C14—C15116.6 (2)
O1—C1—C2—C33.3 (5)C2—C1—C12—C105.6 (3)
C12—C1—C2—C3178.0 (3)O1—C1—C12—C1566.0 (3)
O1—C1—C2—C11174.2 (3)C2—C1—C12—C15115.2 (2)
C12—C1—C2—C114.6 (3)C12—N1—C13—C1421.8 (3)
C11—C2—C3—C41.6 (4)C16—N1—C13—C14153.8 (2)
C1—C2—C3—C4178.8 (3)N1—C13—C14—C17137.8 (2)
C2—C3—C4—C51.7 (5)N1—C13—C14—C158.5 (3)
C3—C4—C5—C60.5 (5)C17—C14—C15—C2344.9 (3)
C4—C5—C6—C112.8 (4)C13—C14—C15—C2384.6 (2)
C4—C5—C6—C7176.0 (3)C17—C14—C15—C2478.2 (3)
C5—C6—C7—C8178.0 (3)C13—C14—C15—C24152.3 (2)
C11—C6—C7—C80.8 (4)C17—C14—C15—C12161.9 (2)
C6—C7—C8—C92.1 (5)C13—C14—C15—C1232.4 (2)
C7—C8—C9—C100.3 (4)N1—C12—C15—C2372.4 (2)
C8—C9—C10—C112.7 (4)C10—C12—C15—C23161.5 (2)
C8—C9—C10—C12178.2 (3)C1—C12—C15—C2347.1 (3)
C3—C2—C11—C10179.3 (3)N1—C12—C15—C24167.3 (2)
C1—C2—C11—C101.5 (3)C10—C12—C15—C2441.2 (3)
C3—C2—C11—C60.8 (4)C1—C12—C15—C2473.2 (3)
C1—C2—C11—C6177.0 (2)N1—C12—C15—C1445.0 (2)
C9—C10—C11—C2174.3 (3)C10—C12—C15—C1481.1 (2)
C12—C10—C11—C22.3 (3)C1—C12—C15—C14164.5 (2)
C9—C10—C11—C64.2 (4)C13—C14—C17—C22138.3 (3)
C12—C10—C11—C6179.2 (2)C15—C14—C17—C2299.1 (3)
C5—C6—C11—C23.0 (4)C13—C14—C17—C1840.0 (4)
C7—C6—C11—C2176.0 (3)C15—C14—C17—C1882.5 (4)
C5—C6—C11—C10178.7 (3)C22—C17—C18—C190.6 (5)
C7—C6—C11—C102.4 (4)C14—C17—C18—C19177.7 (3)
C16—N1—C12—C1049.9 (3)C17—C18—C19—C200.2 (6)
C13—N1—C12—C1080.4 (3)C18—C19—C20—C210.8 (7)
C16—N1—C12—C15172.1 (2)C19—C20—C21—C221.4 (7)
C13—N1—C12—C1541.8 (2)C18—C17—C22—C210.0 (5)
C16—N1—C12—C169.2 (3)C14—C17—C22—C21178.4 (3)
C13—N1—C12—C1160.4 (2)C20—C21—C22—C171.0 (6)
C9—C10—C12—N146.5 (4)C25—O3—C24—O22.2 (5)
C11—C10—C12—N1129.4 (2)C25—O3—C24—C15174.6 (3)
C9—C10—C12—C1568.7 (4)C23—C15—C24—O2131.9 (3)
C11—C10—C12—C15115.4 (2)C14—C15—C24—O27.5 (4)
C9—C10—C12—C1171.1 (3)C12—C15—C24—O2106.6 (3)
C11—C10—C12—C14.7 (3)C23—C15—C24—O351.2 (3)
O1—C1—C12—N145.1 (4)C14—C15—C24—O3175.7 (2)
C2—C1—C12—N1133.6 (2)C12—C15—C24—O370.2 (3)
O1—C1—C12—C10173.2 (3)C24—O3—C25—C26171.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26B···O1i0.962.533.276 (5)135
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H22N2O3
Mr410.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)7.564 (3), 14.549 (6), 19.397 (8)
V3)2134.7 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART 100 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
12376, 2513, 1924
Rint0.049
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.13
No. of reflections2513
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26B···O1i0.962.533.276 (5)134.9
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This project was supported by the National Science Found­ation of China (No. 20572057) and the Natural Science Foundation of Shandong Province (Y2006B11) and the Doctoral Foundation of Qingdao University of Science and Technology.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, J. & Hecht, S. M. (2004). Chem. Commun. 10, 1190–1191.  Web of Science CrossRef Google Scholar
First citationRaghunathan, R. & Suresh Babu, A. R. (2006). Tetrahedron Lett. 47, 9221–9225.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationUsui, T., Kondoh, M., Cui, C.-B., Mayumi, T. & Osada, H. (1998). Biochem. J. 333, 543–548.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds